¹¹B(³He,¹²C) 2010Ki08,2012Ki07

History					
Туре	Author	Citation	Literature Cutoff Date		
Full Evaluation	J. H. Kelley, J. E. Purcell and C. G. Sheu	NP A968,71 (2017)	1-Jan-2017		

2009Ki13: ¹¹B(³He,d) E=8.5 MeV, measured E_p , I_p , E_α , I_α in complete kinematics. ¹²C deduced γ -ray and α -decay branching ratios from high energy levels, B(M1).

2010Ki08: XUNDL dataset compiled by TUNL, 2010.

- The ¹²C*(9.6,10.8,11.8,12.7,13.3 MeV) 3α breakup states were populated at E(³He)=8.5 MeV at the Centro de Microanalisis de Materiales in Madrid. The 3α ejectiles were detected in an array of position sensitive Δ E-E detectors that covering 38% of 4π . The excitation energies of residual ¹²C nuclei were determined by complete reconstruction of the 3α +d ejectiles. For sequential decays involving ⁸Be, the participation of ⁸Be*(0,3.04 MeV) were resolved.
- A Dalitz plot analysis was used to evaluate the spin and parity of participating resonances. Discussion on Sequential vs Democratic (Direct) breakup processes is given.

2012Ki07: XUNDL dataset compiled by TUNL, 2012.

- The 3α -particle correlations following ¹²C* breakup in search of support for direct 3-body breakup of ¹²C*(7.65 MeV) as suggested by (2011Ra34). Significant discussion is given on the astrophysical impact of modifications to the 3α reaction rate as suggested by (2011Ra34). Also see (2012Ma10).
- The complete reaction kinematics were determined at $E({}^{3}He)=8.5$ MeV by coincidence measurement of the recoiling deuteron and the breakup α -particles in an array of four position sensitive ΔE -E telescopes. Analysis of the deuteron momentum indicates ${}^{12}C*(7.65,9.6,10.8,11.8,12.7)$ groups. The d+3 α multiplicity=4 events corresponding to ${}^{12}C*(7.65 \text{ MeV})$ were analyzed via Daliz plot analysis of the α -particle correlations; The analysis employed "kinematic fitting", which constrains the event-by-event data to rigorously conserve energy and momentum for the Hoyle state breakup events.
- No definite evidence for breakup other than sequential breakup via ${}^{12}C^*(7.65 \text{ MeV}) \rightarrow \alpha + {}^{8}Be_{g.s.}$ is observed. Limits of: direct breakup into 3 equal energy α -particles (DDE)< 0.9×10^{-3} ; direct breakup into one α -particle at rest with 2 equal energy α -particles (DDL)< 0.9×10^{-3} , and decay into 3-body phase space (DD Φ)< 5×10^{-3} are deduced.

¹²C Levels

E(level) [†]	$J^{\pi \dagger}$	$T_{1/2}^{\dagger}$	Comments
7654.	0^{+}	9.3 eV	Decay is consistent with 100% decay to $\alpha + {}^{8}Be_{g.s.}$ (2012Ki07) determine upper limit of
			0.005 for direct α decay branches bypassing the ground state of ⁸ Be.
9641	3-	46 keV	
10844	1-	273 keV	
11828	2-	230 keV	
12710	1^{+}	18.1 eV	
13.35×10^{3}	4-	360 keV	

[†] From Adopted Levels.