## <sup>13</sup>**B** $\beta$ <sup>-</sup>**n decay:17.30 ms 1969Jo21,1974Al12**

| History         |                                            |                   |                        |  |  |  |  |
|-----------------|--------------------------------------------|-------------------|------------------------|--|--|--|--|
| Туре            | Author                                     | Citation          | Literature Cutoff Date |  |  |  |  |
| Full Evaluation | J. H. Kelley, J. E. Purcell and C. G. Sheu | NP A968,71 (2017) | 1-Jan-2017             |  |  |  |  |

Parent: <sup>13</sup>B: E=0;  $J^{\pi}=3/2^-$ ;  $T_{1/2}=17.30 \text{ ms } 17$ ;  $Q(\beta^-n)=8490.6 \ 10$ ;  $\%\beta^-n \text{ decay}=0.286 \ 37$ 

<sup>13</sup>B-T<sub>1/2</sub>: From average of (2008ReZZ,1995ReZZ,1988Sa04,1971Wi07,1962Ma19).

<sup>13</sup>B-Q( $\beta$ <sup>-</sup>n): from (2017Wa10).

1969Jo21: A beam of 3 MeV tritons impinged on a thick <sup>11</sup>B target producing <sup>13</sup>B nuclei via the <sup>11</sup>B(t,p) reaction. The target was irradiated for 3 ms, while counting lasted for 12 ms. The target was surrounded by a 3 inch by 2 inch beta counter scintillator, a 1 inch thick by 8 inch diameter NE102 neutron detector and a 5 inch by 5 inch NAI gamma-ray detector. Neutron energies were determined by time-of-flight between the beta and neutron detectors. population of relatively strong neutron branches from <sup>13</sup>C\*(7.5,8.86 MeV) were observed. Significantly stronger branches to <sup>13</sup>C\*(0,3.68 MeV) were deduced from the beta- and beta-gamma spectra (92.1% and 7.6%, respectively).

1974A112: The experimental setup was similar to (1969Jo21), except a longer neutron flight path was used and higher statistics were obtained. Weaker branches from <sup>13</sup>C\*(8.86,9.90 MeV) were observed, and an upper limit on decay from <sup>13</sup>C\*(9.50 MeV) was established.

| E(level) <sup>†</sup> | $J^{\pi}$ |
|-----------------------|-----------|
| 0.0                   | $0^{+}$   |
| 4439.82 21            | $2^{+}$   |

<sup>†</sup> From Adopted Levels.

 $\gamma(^{12}C)$ 

<sup>12</sup>C Levels

| $E_{\gamma}$ | $I_{\gamma}^{\dagger}$ | $E_i$ (level) | $\mathbf{J}_i^{\pi}$ | $\mathbf{E}_{f}$ | $\mathbf{J}_f^{\pi}$ |
|--------------|------------------------|---------------|----------------------|------------------|----------------------|
| 4439         | 0.001                  | 4439.82       | $2^{+}$              | 0.0              | $0^{+}$              |

<sup>†</sup> Absolute intensity per 100 decays.

Delayed Neutrons (12C)

| $E(n)^{\#}$   | E( <sup>12</sup> C) | $I(n)^{@}$            | E( <sup>13</sup> C) |
|---------------|---------------------|-----------------------|---------------------|
| 472 5         | 4439.82             | ≈0.001 <sup>‡</sup>   | 9897                |
| 2401 3        | 0.0                 | 0.094 <sup>†</sup> 20 | 7547                |
| 3613 18       | 0.0                 | 0.16 <sup>†</sup> 3   | 8860                |
| 4203.2 1      | 0.0                 | < 0.01 <sup>‡</sup>   | 9500                |
| 4570 <i>5</i> | 0.0                 | 0.022 <sup>‡</sup> 7  | 9897                |

<sup>†</sup> From (1969Jo21).

<sup>‡</sup> From (1974Al12).

<sup>#</sup> E(n) deduced from Q (2017Wa10) and  ${}^{13}C/{}^{12}C$  level energies in ENSDF.

<sup>@</sup> Absolute intensity per 100 decays.

## <sup>13</sup>B $\beta^-$ n decay:17.30 ms 1969Jo21,1974Al12

## Decay Scheme

 $\gamma$  Intensities: I<sub> $\gamma$ </sub> per 100 parent decays I(n) Intensities: I(n) per 100 parent decays

