¹²C(e,e') **1984Hi06,2000Vo04,1975Aj02**

TypeAuthorCitationLiterature Cutoff DateFull EvaluationJ. H. Kelley, J. E. Purcell and C. G. SheuNP A968,71 (2017)1-Jan-2017

1967Af04: ¹²C(e,e) E=100,200 MeV, measured $\sigma(\theta)$.

- 1967Cr01: ¹²C(e,e') E=100-200 MeV, measured σ (E(e'), θ), deduced levels, Γ_{γ} .
- 1968Dr01: ¹²C(e,e') E=140 MeV, measured $\sigma(E(e'),\theta)$, measured form factors, deduced giant resonance structure.
- 1968Pr01: ¹²C(e,e') E=100-200 MeV, measured σ (E(e'), θ =180°), deduced levels, J, π , Γ_{γ} .
- 1968Ri06: ¹²C(e,e') E=60-100 MeV, measured $\sigma(E(e'),\theta)$, deduced giant resonance structure.
- 1969Be21: ¹²C(e,e) E=30-60 MeV, measured $\sigma(E,\theta)$. ¹²C deduced charge radii.
- 1969Gu05,1970Gu12: ¹²C(e,e') E=200 MeV, measured $\sigma(E(e'),\theta)$, measured form factors, deduced giant resonance structure.
- 1969To01: ¹²C(e,e') E=183,200 MeV, measured σ (E(e')), measured form factors. Analyzed ¹²C*(10.84).
- 1969Va10: ¹²C(e,e') E=50,65,70 MeV, measured σ (E(e')), measured form factors, deduced levels.
- 1970Li02: ¹²C(e,e') E=52-102 MeV, measured $\sigma(E(e'),\theta)$, measured form factors, deduced giant resonance structure.
- 1970Si08: ¹²C(e,e) E=375,750 MeV, measured $\sigma(\theta)$. ¹²C deduced charge distributions.
- 1969To10,1970To13: ¹²C(e,e') E=250 MeV, measured σ (E(e'), θ), measured form factors, deduced levels, giant resonance, J, π .
- 1971Be25: ¹²C(e,e) E=30,60 MeV, measured $\sigma(\theta)$. ¹²C deduced rms nuclear charge radii.
- 1971Na14: ¹²C(e,e),(e,e') E=183,250 MeV, measured $\sigma(\theta)$, $\sigma(E_{e'},\theta)$. Deduced form factors. ¹²C deduced rms radii, quadrupole moment, deformation parameters.
- 1971St10: ¹²C(e,e),(e,e') E=1,1.5,2.25,3,4 GeV, measured $\sigma(E,\theta)$. Deduced elastic, inelastic from factors.
- 1972Ja10: ¹²C(e,e) Q=0.15-0.7 fm⁻¹, measured absolute cross sections. ¹²C deduced charge radii.
- **1973Ch16**: ¹²C(e,e') E=150 MeV, measured σ (E(e'), θ), deduced $\Gamma(\gamma_0)(15.11)$.
- **1973K112**: ¹²C(e,e) E=374.6 MeV, measured $\sigma(E,\theta)$.
- 1974Ce01: ¹²C(e,e') E=50.5 MeV, measured σ (E(e')), deduced resonance $\Gamma(\gamma_0)$.
- 1974In05: ¹²C(e,e),(e,e') measured charge form factors. Deduced α -clusters.
- 1978F109: ¹²C(e,e'); measured form factors, deduced ¹²C*(4.44) convection currents, ¹²C*(16.1) spin megnetization contributions.
- 1978Fr03: ¹²C(e,e') E=32.8-62.2 MeV, measured σ (E(e'), θ), deduced resonance $\Gamma(\gamma_0)(16.11)$.
- 1978Sh14: ¹²C(e,e') E=140 MeV; measured σ (E(e')), deduced resonances.
- 1979Ba72: ¹²C(e,e) E=27-87 MeV, measured $\sigma(E,\theta)$. ¹²C deduced rms radius.
- **1979Ha14**: ¹²C(e⁻,e⁻),(e⁻,e⁻),(e⁺,e⁺),(e⁺,e⁺) E=very high, measured σ .
- 1979Fl08: ¹²C(e,e'); measured σ (¹²C*(12.71,15.11), deduced charge dependent isospin-mixing matrix element.
- 1980Ca07: ¹²C(e,e) E=25-115 MeV, measured absulute σ . ¹²C deduced ground-state charge distribution shape, rms charge radius.
- 1982Re12: ¹²C(e,e) E=100-300 MeV, measured absolute $\sigma(\theta)$. ¹²C deduced rms radius, charge distribution.
- 1983De53: ¹²C(e,e') E=80-330 MeV; measured σ (E(e')), deduced resonances, J, π , Γ , $\Gamma(\gamma_0)$.
- 1984Hi06: ¹²C(e,e') E=50.7-338 MeV; measured σ (E(e')), deduced resonances, J, π , Γ .
- 1984Ry01: ¹²C(e,e') E=150.6; measured $\sigma(\theta, E(e'))$, deduced resonances.
- 1985Pa01: ${}^{12}C(e,e'\gamma)$ E=66.9 MeV; measured ${}^{12}C^*(4.44 \text{ MeV})$ longitudinal form factor.
- 1986Of01,1986OfZZ: ¹²C(e,e) E=238,374.5,419,431,747.2 MeV, measured form factor. Deduced reaction mechanism, deduced dispersive effect induced energy dependence.
- 1987Hi09: ¹²C(e,e') E=80-485 MeV; deduced ¹²C levels excitation form factors.
- 1988Ko21: 12 C(pol. e,e) E \approx 250 MeV, measured asymmetry vs target voltage.
- 1989Ka36: ¹²C(e,e) E=238-690 MeV, measured σ at form factor minimum. Deduced higher order processes role.
- 1990So03,1990Ko47,1991So08: ¹²C(pol. e,e) E=250 MeV, measured parity violating electroweak asymmetry.
- 1991Br13: ¹²C(e,e) E=238-690 MeV, measured σ . Deduced energy dependence causes.
- 1991Of01: ¹²C(e,e) E \approx 240,430 MeV, measured $\sigma(\theta)$. Deduced form factor energy dependence features. ¹²C deduced rms charge radius.
- 1995Ca14: ${}^{12}C(e,e')$ E=60 MeV; measured B(E1)(10.84).
- 1995Lu25: ¹²C(e,e),(e,e') E=62 MeV, measured $\sigma(\theta)$.
- 2000Vo04: ¹²C(e,e') E=30-60 MeV; deduced magnetic dipole transition widths, isospin mixing, Coulomb matrix element.
- 2007Ch04: ¹²C(e,e),(e,e'), analyzed $\sigma(\theta)$. ¹²C deduced excited state density, related features.
- 2011Vo16: ${}^{12}C(e,e')$ E=73 MeV; Measured E_e, I_e; deduced pair decay width.
- 2010Ch17: XUNDL dataset compiled by TUNL, 2010.
- ¹²C(e,e') E=29-78 MeV, measured reaction products. Deduced transition form factors, charge density, pair decay width of the

¹²C(e,e') 1984Hi06,2000Vo04,1975Aj02 (continued)

Hoyle state. The electron beams impinged on a 6.4 mg/cm², 98.9% ¹²C target. Scattered electrons were measured at $69^{\circ} < \theta < 141^{\circ}$. DWBA and PWBA were used to analyze the q (momentum) dependence for the transition, which is related to the transition width.

¹²C Levels

 $\Gamma_{\gamma 0}$: from (2000Vo04) except where noted.

E(level) [†]	\mathbf{J}^{π}	T _{1/2}	Comments
0.0			<i>Nuclear charge radius</i> from measurements of the elastic scattering form factor. $R_{r.m.s.}=2.471 \text{ fm } 9 \ (=2.478 \text{ fm with dispersion corrections}) \ (1991Of01).$ $R_{r.m.s.}=2.464 \text{ fm } 12 \ (= 2.468 \text{ fm with dispersion corrections}) \ (1982Re12).$ $R_{r.m.s.}=2.472 \text{ fm } 15 \ (1980Ca07).$
4.44×10^{3}	2+		This compares with $R_{r.m.s.}=2.4829$ fm 19 from muonic X-ray studies (1984Ru12). T=0: $\Gamma_{c}=10.8\times10^{-3}$ eV 6
7.65×10^3	0^{+}		T=0
	0		The radiative width is Γ_{π} =62.3×10 ⁻⁶ eV 20 for pair decay (2010Ch17,2011Vo16). See discussion on the earlier value Γ_{π} =60 μ eV 4 in (1980Aj01).
9.64×10^{3}	3-		T=0; $\Gamma_{\gamma 0}$ =3.1×10 ⁻⁴ eV 4
10.84×10^{3}	1-		T=0
11.83×10^{3}	2^{-}		T=0
12.71×10^{3}	1^{+}	14.6 [‡] eV 26	T=0; $\Gamma_{\nu 0}$ =0.32 eV 2
14.08×10^{3}	4+	≈0.3 MeV	T=0
15.11×10^{3}	1^{+}		T=1; $\Gamma_{\nu 0}$ =35.9 eV 6
$15.44 \times 10^3 4$		1.5 MeV 2	
16.11×10^3	2+		T=1; $\Gamma_{\gamma 0}$ =0.35 eV 4 $\Gamma_{\gamma 0}$ from (1978Fr03), also see $\Gamma_{\gamma 0}$ =0.83 eV 6 from (1969Gu05).
16.57×10^{3}	2-		$T=1$; $\Gamma_{v0}=48 \times 10^{-3}$ eV 8
$17.6 \times 10^3 2$			$\Gamma_{\text{calculated}} \approx 100 \text{ keV}$, see (1972An03).
18.20×10^3 5	(2^{-})	0.30 [#] MeV 10	T=0
18.6×10^3 /	(3^{-})		$\Gamma_{colculated} \approx 300 \text{ keV}$, see (1972An03).
19.35×10 ³ 10	2-	0.40 [#] MeV 10	T=1
$19.59 \times 10^3 4$	4^{-}	550 [#] keV 70	T=1
20.0×10^3 /	(2^+)		
20.56×10^3 5	3+	$300^{\#}$ keV 50	Т=1
$21.6 \times 10^3 I$	(3^{-})	500 Rev 50	
22.0×10^3 /	(1^{-})		$\Gamma_{\text{calculated}} \approx 2-3 \text{ MeV}$, see (1972An03).
22.7×10^3 <i>I</i>	(2^{-})	0.45 [#] MeV 15	T=1
$23.8 \times 10^3 I$	(2^{-})	0.15 100 15	1-1
24.9×10^3	(1)		
25.5×10^3	(1^{-})		
25.5×10^3	(3^{-})		
26.4×10^3 3	(0)		
27.8×10^3 2			
$30.2 \times 10^3 4$			
32.3×10 ³ 3			
† See references in (1975Ai02)			

See references in (1975Aj02). \div

[‡] From (1974Ce01).

[#] From (1984Hi06).

 ${}^{12}_{6}C_{6}$