¹²C(¹²C,3α) **1991Ca01,2007Fr17,2010Mu05**

	History		
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	J. H. Kelley, J. E. Purcell and C. G. Sheu	NP A968,71 (2017)	1-Jan-2017

1991Ca01: ¹²C(¹²C,3 α) E=7.5 MeV/nucleon; measured $\alpha\alpha$ coin. Deduced ¹²C levels, J^{π}, decay branching ratios.

2007Fr17: ¹²C(¹²C,3 α) E=82-106 MeV; measured $\alpha\alpha$ coin. Deduced ¹²C levels.

XUNDL dataset compiled by McMaster, 2007.

Analysis of previous E=82-106 MeV experiment at the Australian National University. Charged particles were measured in the MEGHA chamber using the Charissa array (composed of eight Si strip detectors). Excited states identified based on α -decay to ground and excited states in ⁸Be. Resolution (FWHM)=200 keV. Measured angular distributions.

2010Mu05: ${}^{12}C({}^{12}C,3\alpha)$ E=101.5 MeV; measured $\alpha\alpha$ coin. Deduced ${}^{12}C$ levels, J^{π} , decay branching ratios.

2011Ma04: ${}^{12}C({}^{12}C, {}^{12}C), ({}^{12}C, {}^{12}C')$ E=121.5 MeV, measured reaction products. Deduced $\sigma(\theta)$, properties of the Hoyle state.

2010Mu05: ${}^{12}C({}^{12}C,3\alpha)$ E=101.5 MeV, measured reaction products, E_{α}, I_{α}. Deduced excitation energy spectrum, J, π , no evidence of J^{π}=2⁺₂ state. XUNDL dataset compiled by TUNL, 2010.

Measured the 3α breakup of ¹²C in search of the 2⁺ excitation of the ¹²C*(7.65) J^{π}=0⁺ state. No conclusive evidence is found in the region of E_x=9-10 MeV.

A beam of $E({}^{12}C)=101.5$ MeV ions, from the Australian National University Pelletron, impinged on a 50 µg/cm². The ejected 3α particles were detected in an array of position sensitive ΔE - ΔE -E detectors. While the excitation of the ejected 3α system was determined by kinematic reconstruction, the participation of ${}^{12}C^*(0,4.4,9.6 \text{ MeV})$ in the residual was also deduced. Experimental resolution ranges between ≈ 90 keV for ${}^{12}C^*(7.65 \text{ MeV})$ to ≈ 175 keV for ${}^{12}C^*(9.64 \text{ MeV})$. An angular correlation analysis was used to enhance the experimental sensitivity for a J $^{\pi}$ =2⁺ resonance.

2016Mo05: XUNDL dataset compiled by TUNL, 2016.

The authors analyzed the decay of ¹²C*(7654), populated in ¹²C(¹²C,¹²C') and ¹²C(¹²C,²⁴Mg* \rightarrow ¹²C+¹²C*) reactions to gain a better understanding of the intensity of various exotic decay modes of ¹²C*(7654).

A beam of 95 MeV ¹²C ions impinged on a \approx 85 µg/cm² ¹²C foil placed in the target position of the GARFIELD+RCo detector, which provides roughly 80% of 4 π coverage. Segmented detectors give particle identification from either Δ E-E or CsI(Tl) pulse shape analysis. Events are roughly categorized in 2 types: first are peripheral binary inelastic scattering reactions, where the projectile is excited while the target remains in its ground state, second are hot central collisions, where the ²⁴Mg compound nucleus is formed prior to decay into six α particles. Events corresponding to population of ¹²C*(7654) were identified and analyzed. Other states at ¹²C*(0,4440,7654,9640,10800) were observed to participate. For the ¹²C*(7654) events, Dalitz plots were used to determine the contributions from sequential decay (via ⁸Be_{g.s.}), direct decay (DD), direct decay with equal energy sharing among the 3 α particles (DDE), 3 α direct decay in a linear chain (DDL), and uniform population of the 3-body phase space (DD Φ).

2014It01: XUNDL dataset compiled by TUNL, 2014.

- The authors measured the full kinematics of ${}^{12}C+{}^{12}C\rightarrow{}^{12}C_{g.s.}+{}^{12}C^*(7.65 \text{ MeV})\rightarrow{}^{12}C_{g.s.}+3\alpha$ to better constrain the decay mechanism of the ${}^{12}C^*(7.65 \text{ MeV})$ Hoyle state.
- A beam of 110 MeV ¹²C ions, from the Tohoku University CYRIC facility impinged on a 50 μ g/cm² ^{nat}C foil that was rotated by 60° with respect to the incident beam. Products from the ¹²C(¹²C,¹²C_{g.s.}+¹²C*(7.65 MeV)) reaction were detected using two Si detector telescopes. The recoiling ¹²C_{g.s.} ejectile was detected at θ =-67° in a 150 μ m thick detector, while the three breakup α -particles were detected in a 5 cm×5 cm position sensitive double sided strip detector that covered $\theta_{horizontal}$ =3.0° to 12.2° and $\theta_{vertical}$ =-4.6° to +4.6°.
- The kinematic relation between the ¹²C recoil and the 3α breakup particles was selected to isolate excitation of the α -unbound ¹²C*(7.65 MeV) state exclusively; a total of 21,000 decay events were measured. A Dalitz plot was generated to analyze the energy correlations of the breakup α -particles. Three decay configurations were considered.

Results are consistent with a 100% SD mechanism. Limits of I(DDE)<0.08% and I(DD Φ) are placed on the other decay modes. The width of the Hoyle state, along with the partial widths are of critical importance for determining the triple- α rate.

SD: Sequential Decay through ⁸Be_{g.s.}.

- DDE: Direct Decay with equal energy α -particles.
- DDL: Direct Decay in linear chain.
- DD Φ : Direct Decay to 3-body phase space.

 ${}^{12}_{6}C_{6}$

²⁰⁰⁷Fr05: ${}^{12}C({}^{12}C,3\alpha)$ E=104, 106 MeV; measured $\alpha\alpha$ coin.

DD: Direct Decay

¹²C(¹²C,3α) **1991Ca01,2007Fr17,2010Mu05** (continued)

¹²C Levels

E(level)	J ^{πd}	Comments	
7.65×10 ^{3†‡#@} &a	0+	Decay (2016Mo05) is via: SD=(97.8 12)%. DD=(1.1 4)%. DDE<0.05%. DDL=(1.1 2)%. DD Φ <0.4%. Branching ratios (95% confidence level) for 3 α breakup of the Hoyle state are (2014It01): SD \approx 100%. DDE<0.08%. DD Φ <0.2%.	
9.64×10 ³ † ‡#@& ab	3-	$\Gamma_{\alpha 0}/\Gamma = 0.972, \ \Gamma_{\alpha 1}/\Gamma = 0.027 \ (2007Fr17).$	
10.30×10 ³ @	0^{+}		
10.84×10 ³ †‡#@&a	1-		
11.16×10 ³ ? [@] a	2+	$\Gamma_{\alpha 0}/\Gamma < 0.38$ (2007Fr17).	
		E(level): The existence of this state is controversial. It was first reported in the ¹¹ B(³ He,d) reaction, but subsequent measurements have found no evidence for its production in that reaction. The result of (2007Fr17) do not provide sufficient evidence for the state's existence (private communication, M. Freer, June 2017).	
$11.80 \times 10^3?^{@}$	1-	Γ=Broad.	
11.83×10 ³ ^{†‡@} bc	(4 ⁻)		
$12.50 \times 10^3?^{@}$	3-	Γ=Broad.	
12.71×10 ³ †‡@bc	1+		
13.35×10 ³ @c	$(2^{-},3^{+},4^{-})$	$J^{\pi}=4^{-}$ is preferred (2007Fr17).	
$14.08 \times 10^{3} \ddagger @ab$	4+	$\Gamma_{\alpha 0}/\Gamma=0.17, \ \Gamma_{\alpha 1}/\Gamma=0.83 \ (2007Fr17).$	
 [†] Reported in (1991C [‡] Reported in (2007F [#] Reported in (2010N [@] Reported in (2007F 	CaO1). TrO5). MuO5). Tr17).		
& Reported in (2016N	4005).		
^{<i>a</i>} Observed in α + ⁸ Be	eg.s. decay.		
^b Observed in $\alpha + {}^{8}Be$	e*(3.03 MeV)	decay.	
^c Unnatural parity sta	ate (2007Fr17)	L.	

^d From (2007Fr17).