${}^{12}_{6}C_{6}$

$^{12}C(p,p'),(\alpha,\alpha')$ 2012Fr05

	History		
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	J. H. Kelley, J. E. Purcell and C. G. Sheu	NP A968,71 (2017)	1-Jan-2017

2012Fr05: XUNDL dataset compiled by TUNL, 2012.

The authors simultaneously analyzed the ¹²C(p,p') data of (2009Fr07) and the ¹²C(α,α') data of (2011It08) using an R-matrix approach in order to find a more consistent description of the 2⁺ excitation of the J^{π}=0⁺, E_x=7.65 MeV "Hoyle" state of ¹²C. Experimental details are found in (2009Fr07,2011It08); the emphasis of this work is the level parameters for the J^{π}=2⁺₂ state. 2009Fr07: XUNDL dataset compiled by TUNL, 2009.

The authors measured ${}^{12}C(p,p')$ at $E_p=66$ and 200 MeV. The motivation was a search for the $J^{\pi}=2^+$ excitation of so-called 0⁺ "Hoyle State" at 7.65 MeV. The 2⁺ excitation of the Hoyle state is expected near 1-4 MeV above $E_x=7.65$ MeV.

Angular distributions were measured at θ =10°, 16° and 28° for E_p=66 MeV and θ =7°, 10°, 13°, 16° and 20° for E_p=200 MeV. The data were analyzed using the code FRESCO to perform coupled-channels calculations. For E_p=66 MeV the search focused near θ =16° where the influence of the broad E_x=10.3 MeV J^{π}=0⁺ state is minimal. The authors suggest evidence for a new J^{π}=2⁺ state.

2011Zi01: XUNDL dataset compiled by TUNL, 2011.

The authors measured the ¹²C(p,p') reaction at $E_p=25$ MeV in search of evidence supporting the $J^{\pi}=2^+_2$ state that was first reported by (2009Fr07) at $E_x\approx9.6$ MeV.

A beam of 25 MeV protons from the Yale tandem impinged on a 40 μ g/cm² ^{nat}C target (and an enriched ¹³C target). The proton recoils were detected by an Enge Split Pole Spectrometer at θ =20°, 35° and 45° for the excitation energy range 7 MeV≈<E_x≈<13 MeV. The instrumented resolution (FWHM) of 37.0 keV was determined from the observed widths of the 7.65 and 12.71 MeV states of ¹²C. Broad tails on the sides of the J^π=3⁻ state at E_x=9.64 MeV are interpreted as evidence supporting the J^π=2⁺₂ state at E_x≈9.6 MeV. Contributions from the J^π=0⁺₃, E_x=10.3 MeV level, with Γ≈3 MeV, are observed to be small. No evidence was found for an 11.1×10³ 2, 2⁺ resonance suggested in (2010Hy01).

2011It08: XUNDL dataset compiled by TUNL, 2012.

- Inelastic α -particle scattering on a ¹²C target was analyzed in a search for the $J^{\pi}=2^+_2$ excitation in ¹²C which is thought to be strongly coupled to the so called "Hoyle state" having $J^{\pi}=0^+_2$ E_x=7.65 MeV.
- A beam of E=386 MeV α -particles from the RCNP Osaka Cyclotron impinged on a 2.84 mg/cm² natC target, and the inelastically scattered α -particles were detected between $0^{\circ} \le \theta_{lab} \le 15'$ in the Grand Raiden spectrometer covering the range 3 MeV $\le E_x \le 30$ MeV. The data were analyzed both: by evaluating the peaks in the excitation spectra, as well as, via a multipole decomposition analysis. In addition to the known states in the region of interest, evidence for new states at $E_x=9.84$ and 9.93 MeV is found; discussion suggests these are the $J^{\pi}=2^+_2$ and 0^+_3 states in 12 C. Higher-lying states are visible in the spectrum, but no analysis is presented.

¹²C Levels

E(level) [†]	$J^{\pi \dagger}$	T _{1/2} †	L	Comments
$\frac{E(\text{level})^{\dagger}}{0}$ 4.44×10 ³ 7654 9641 9.75×10 ³ 15	$\frac{J^{\pi^{\dagger}}}{0^{+}}$ 2+ 0+ 3^{-} 2^{+} 2^{+}	$\frac{T_{1/2}^{\dagger}}{10.8 \times 10^{-3} \text{ eV } 6}$ 9.3 eV 46 keV 0.75 MeV 15	<u>L</u> 3	Comments $B(E2)=37\times10^{-4} e^{2}b^{2} I (2011It08).$ $B(E3)=251\times10^{-6} e^{2}b^{3} I0 (2011It08).$ $E(level),J^{\pi},T_{1/2}: From simultaneous R-matrix analysis of (p,p') and (\alpha,\alpha') data. Analysis indicates the reduced width is close to the Wigner limit, implying a highly clustered structure.(2012Fr05).In (2009Fr07) the J\pi=2+ state is reported at Ex=9.6 MeV I with \Gamma=0.60 MeV I0.In (2011Zi01) broad wings on the tails of 12C*(9.64) at Ex=9.6 MeV with \Gamma \approx 600 keV are interpreted as evidence in support of the 2+ state which is suggested as the member of a rotational band that is built upon the Ex=7.65 MeV, J\pi=0+ level of 12C (the Hoyle state).In (2011II08) the J\pi=2+ state is reported at E = 0.84 MeV 6 with \Gamma = 1.01$
				In (2011108), the $J^{\alpha}=2^{+}$ state is reported at $E_x=9.84$ MeV 6 with $\Gamma=1.01$ MeV 15. The state is a candidate for the excited state of the 0 ⁺ Hoyle resonance at 7654 and also the α -particle condensate state.
				Continued on next page (footnotes at end of table)

12 C(p,p'),(α , α') 2012Fr05 (continued)

¹²C Levels (continued)

E(level) [†]	$J^{\pi^{\dagger}}$	T _{1/2} †	L	Comments
9.93×10 ³ 3	0+	2.71 MeV 8	0	B(E2)=1.6×10 ⁻⁴ e ² b ² 2 (2011It08). E(level),J ^{π} ,T _{1/2} : Reported in (2011It08). Possible 0 ⁺ ₇ +0 ⁺ doublet.
10.85×10^{3} 11828	1^{-} 2^{-}	273 keV 230 keV	1	5 4

 † From Adopted Levels, except where noted.