12 B β^- decay:20.20 ms 1981Ka31,2009Hy01,2016Mu06

	History		
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	I. H. Kelley, J. E. Purcell and C. G. Sheu	NP A968.71 (2017)	1-Jan-2017

Parent: ¹²B: E=0.0; $J^{\pi}=1^+$; $T_{1/2}=20.20$ ms 2; $Q(\beta^-)=13369.4$ 13; % β^- decay=100

- ¹²B-Q(β^{-}): From (2017Wa10).
- $^{12}\text{B-J}^{\pi}, T_{1/2}$: From Adopted Levels for ^{12}B in ENSDF database.
- 1972Al31: ¹²B(β^-), measured $\beta\gamma$ -coin. Deduced log *ft*, β -branching.
- 1974Mc11: ¹²B, measured E_{β} , I_{β} , $\beta\gamma$ -coin. Deduced log *ft*.
- 1978Al01: ¹²B(β^-), measured E_{β}, I_{β}, $\beta\gamma$ -coin, T_{1/2}. Deduced β -branching, mirror asymmetries, *ft*.
- 1981Ka31: ¹²B(β^-), measured $\beta\gamma$ -coin, $\beta\gamma(t)$. Deduced I β , log *ft*.
- 1988Na09: ¹²B, measured I_{β}, I_{γ}, $\beta\gamma$ -coin. Deduced mirror asymmetry. Deduced Gamow-Teller β -decay branching ratio.
- 1988Sa04: ¹²B(β^-), measured β -decay T_{1/2}.

1990Ca10: ¹²B(β^{-}), measured spectral shape factors.

1993Mi36, 1993Oh05: ${}^{12}B(\beta^{-})$, measured modified β -NMR spectra. Deduced quadrupole moment.

2000St19: ¹²B(β^{-}), measured E_{β}, I_{β}.

2005Di16: ¹²B(β^-), measured β -delayed E_{α}, $\alpha\alpha$ -coin. ¹²C deduced excited states, J, π . R-matrix analysis.

2007PeZY: ¹²B(β^{-}), measured branching β -decay ratios.

2009Di06: ¹²B(β^-), measured E_{α}, E_{γ}, $\alpha\alpha\alpha$ -coin. ¹²C deduced levels, J, π , triple- α continuum states and their decay modes.

2009Hy01: ¹²B(β^-), deduced branching ratio, log *ft*, β (GT) to various ¹²C states.

2009Hy02: ¹²B(β^-), measured E_{α}, I_{α}, E_{γ}, I_{γ}, E_{β}, $\beta\gamma$ -, $\beta\alpha$ -, $\alpha\alpha\alpha$ -coin. ¹²C deduced levels, β feedings, and log *ft*. Triple- α method and R-matrix analysis.

2010Hy01: ${}^{12}B(\beta^{-})$, measured 3α summed spectra and associated branching ratios for breakup via the ⁸Be ground-state and via excited states of ⁸Be. ${}^{12}C$ deduced levels, resonances, Gammow-Teller strengths and widths using multilevel, many-channel R-matrix formalism.

2009Hy01,2009Hy02,2010Hy01: The authors performed two measurements of ¹²B decay into α unbound states of ¹²C using two different techniques. In addition ¹²N decay was also measured. The first method involved implantation of ¹²B into a thin carbon foil located in the center of a large solid angle Si Strip array (at IGSOL/JYFL) that measured breakup α particle kinematics; a HPGe detector measured the ¹²C*(4.44 MeV) de-excitation gamma-rays, and the measurement was normalized to the value presently adopted in ENSDF. The second method involved implantation of ¹²B into a thick Si detector (at TRIuP/KVI) and measuring the total 3α decay energy.

(2009Hy02) gives details of the JYFL measurement, while (2009Hy01) is reported as giving the most precise analysis of the KVI and JYFL measurements.

(2010Hy01) gives a detailed multi-channel multi-level R-matrix analysis of 0⁺ and 2⁺ levels above the E_x =7.65 MeV level that may contribute to the shape of the 3 α energy spectrum observed in ¹²B and ¹²N decay to ¹²C. The analysis focuses mainly on these higher-lying state and is difficult to fold in with the analysis given in (2009Hy01,2009Hy02). A significant difference from the prior work is the assumption that the E_x =10.3 MeV bump (J^π=0⁺) is from interference; they suggest instead the J^π=0⁺₃ state at E_x =11.2 MeV 3 with Γ =1.5 MeV 6.

2016Mu06: The authors measured the ¹²C γ rays produced following ¹²B β decay and deduced the branching ratio to ¹²C*(7654).

¹²B atoms were produced at the center of the Gammasphere detector by irradiating a thick deuterated titanium foil with 40 MeV ¹¹B ions from the ANL/ATLAS accelerator. The γ rays emitted following ¹²B decay were detected using the Gammasphere, a 110 element Compton suppressed HPGe detector array; in the present measurement 98 array elements were utilized. Throughout the measurement a low-Z target chamber was used to minimize the bremsstrahlung background caused by the high-energy β rays emitted in the decays.

The γ singles and $\gamma - \gamma$ coincidence spectra were analyzed to determine yield of the $J^{\pi} = 2^+_1 \rightarrow 0^+_1 \gamma$ rays (4.44 MeV) and $J^{\pi} = 0^+_2 \rightarrow 2^+_1 \gamma$ rays (3.21 MeV). The γ -ray energies are reported. A total of $10^9 \gamma \gamma$ coincidence events are observed. The $\gamma \gamma$ angular correlations are analyzed yielding $a_2 = -3.37$ and $a_4 = 4.29$.

In the discussion, the branching ratio feeding ¹²C*(7654), B(7.65), is related to the γ (4.44)- γ (3.21) coincidence yield, $\Gamma_{\gamma}/\Gamma(7.65)$, the B(4.44) and a set of variables that depend on the experimental configuration. The authors used $\Gamma_{\gamma}/\Gamma(7.65)=(4.07 \ II)\times 10^{-4}$ (see discussion) and B(4.44)=(1.23 5)%, which is the unweighted average of values given in (1990Aj01).

For other references see (1980Aj01).

$^{12}\mathbf{B}\,\beta^-$ decay:20.20 ms 1981Ka31,2009Hy01,2016Mu06 (continued)

¹²C Levels

E(level) [†]	$J^{\pi \ddagger}$	$T_{1/2}^{\ddagger}$	Comments
0	0^{+}		
4439.82 <i>31</i>	2^{+}	10.8×10 ⁻³ eV 6	
7657.8 10	0^+	9.3 eV 9	E(level): Based on the atomic mass of ⁴ He and the decay energy for the breakup of this state into 3α , 379.6 keV 20: See (1980Aj01).
10.3×10 ³ 12710	$\binom{(0^+)}{1^+}$	3.0 MeV 7 18.1 eV 28	

[†] From recoil corrected γ -ray energies, except where noted. [‡] From Adopted Levels.

β^- radiations

E(decay)	E(level)	Iβ ^{−†}	Log ft	Comments
(659.4 13)	12710	0.00026 2	3.91 4	av Eβ=243.62 54
(3069.4 13)	10300	0.062 <i>3</i>	4.287 21	I β^- : From weighted average of renormalized values 3.2×10^{-4} 7 (JYFL) and 2.6×10^{-4} 2 (KVI) in (2009Hy02). See Table 12.24 in (2017Ke05). av E β =1351.93 63
(5567.112)	10,000	0.002.5		Iβ ⁻ : From weighted average of the renormalized values 0.055 7 (JYFL) and 0.063 3 (KVI) in (2009Hy02). See Table 12.24 in (2017Ke05). In (2010Hy01)the authors indicate that the $J^{\pi}=0_3^+$ resonance has parameters $E_x=11.2$ MeV 3 with $\Gamma=1.5$ MeV 6, suggesting that the previously observed $E_x=10.3$ MeV bump results from interference. They further indicate that the $J^{\pi}=2_2^+$ resonance has parameters $E_x=11.1$ MeV 3 and $\Gamma=1.4$ MeV 4. In addition, for these two states (2010Hy01) find B(>)=0.07 3 and B(>)=0.06 4 (log <i>ft</i> =4.75 25 and log <i>ft</i> =4.82 35) for the $J^{\pi}=0_3^+$ and 2_2^+ states, respectively. See Table 12.24 in (2017Ke05).
(5711.6 17)	7657.8	0.54 2	4.572 17	 av Eβ=2642.55 81 Iβ⁻: The adopted value is dominated by renormalized (KVI) results reported in (2009Hy01). See Table 12.24 in (2017Ke05).
(8929.6 <i>13</i>)	4439.82	1.182 19	5.143 7	av $E\beta$ =4234.18 67 $I\beta^-$: $I\beta$ (4440) is used as a global normalization in most measurements. $I\beta^-$: We adopt $I\beta$ =1.182 <i>19</i> from (1981Ka31) since the experimental approach aimed to overcome most systematic effects that influence the value. In some other analyses, the unweighted average of 1.283 <i>40</i> (1978Al01) and 1.182 <i>19</i> (1981Ka31) was used to normalize the reported values. In (1990Aj01), both values were listed with no preference or average value given. The value given of (1981Ka31) is based on their measured value, while the value in (1978Al01) is a weighted average of 1.276 <i>50</i> measured by them and 1.29 <i>5</i> previously adopted by (1974Mc11). See Table 12.23 in (2017Ke05).
(13369.4 13)	0	98.216 28	4.0617 5	av E β =6438.65 65 I β ⁻ : Unity minus the sum of branching to higher states. See discussion (2017Ke05) Table 12.24.

[†] Absolute intensity per 100 decays.

		12 B β^- decay:20.20 ms		ıs	1981Ka31,2009Hy01,2016Mu06 (continued)	
	$\underline{\gamma(^{12}C)}$					
Eγ	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Comments
3216.9 8	2.3×10 ⁻⁴ 1	7657.8	0^+	4439.82	2+	I_{γ} : From Γγ/Γ=(4.16 11)×10 ⁻⁴ and Iβ(0.54 2)%.
4438.91 <i>31</i>	1.182 19	4439.82	2+	0	0^+	E_{γ} : From (2016Mu06). E_{γ} : From (1967Ch19).

[†] Absolute intensity per 100 decays.

¹²B β^- decay:20.20 ms 1981Ka31,2009Hy01,2016Mu06

Decay Scheme	
Intensities: I_{γ} per 100 parent decays	Legend
$\begin{array}{c c} 1^{+} & 0.0 \\ \hline Q_{\beta^{-}} = 13369.4 \ 13 \\ 12 \\ 5 \\ B_{7} \end{array} \qquad 20.20 \ \mathrm{ms} \ 2 \\ \%\beta^{-} = 100 \\ \%\beta^{-} = 100 \end{array}$	$\begin{array}{c c} & I_{\gamma} < 2\% \times I_{\gamma}^{max} \\ \hline & I_{\gamma} < 10\% \times I_{\gamma}^{max} \\ \hline & I_{\gamma} > 10\% \times I_{\gamma}^{max} \end{array}$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	18.1 eV 28 3.0 MeV 7 9.3 eV 9 10.8×10 ⁻³ eV 6

 ${}^{12}_{6}C_{6}$