¹¹**B**(**p**,*α*) **1990Aj01**

History

Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	J. H. Kelley, J. E. Purcell and C. G. Sheu	NP A968,71 (2017)	1-Jan-2017

1967Ma11: ¹¹B(p, α)2 α E=6.4-7.9 MeV, measured σ (E_p), σ (E_{α}, θ).

1969Ga03: ¹¹B(p, α) E_p=38 MeV, measured σ (E_{α}, θ). PWBA analysis.

- 1969Nu01: ¹¹B(p, α) E=7.3 MeV, measured $\sigma(\theta)$.
- 1971Ca16: ¹¹B(p, α) E=12,20,24,30 MeV, measured $\sigma(\theta)$. PWBA analysis.
- 1971Go20: ¹¹B(p, α) E=0.163 MeV, Measured $\sigma(E_{\alpha 1}, \theta_{\alpha 1}, \theta_{\alpha 2})$. ¹²C deduced resonances, level-width.
- 1971Ka21: ¹¹B(p, α) E=40 MeV, measured $\sigma(E_{\alpha},\theta(\alpha))$.

1972De01,1972De02: ¹¹B(p, α)⁸Be, E_p=45.0 MeV, measured $\sigma(\theta_{c.m.}=20^{\circ}-160^{\circ})$. Finite-range DWBA.

- **1972Ge19**: ¹¹B(p, α) E=1.39,2.00,2.64 MeV, measured $\sigma(E_{\alpha},\theta(\alpha))$.
- 1972Hu04: ¹¹B(p, α) E=163 keV, measured α - α -coin spectra.

1974An19: ¹¹B(p, α) E=163 KeV, measured σ . ¹²C levels deduced Γ_p , Γ_γ , S.

1975Ma49,1975Ma37: ¹¹B(p, α) E=1.8-3.0 MeV, measured σ (E, θ). ¹¹B(pol. p, α) E \approx 2.6 MeV, measured polarization. ¹²C deduced resonances.

1975Va04: ¹¹B(p, α) E=7.5-10.5 MeV, measured σ (E,E $_{\alpha}$), α - α -coin.

- 1976Gr22: ¹¹B(p, α), measured $\sigma(\theta)$. Deduced 3α reaction mechanism.
- 1976Ko18: ¹¹B(p, α) E=6 MeV, measured $\sigma(\alpha,\theta)$.
- 1977Av01: ¹¹B(p, α) E=660 MeV, measured absolute σ .
- 1977Bu07: ¹¹B(p,α) E=6.0-18.0 MeV, measured $\sigma(E,\theta)$. ¹²C deduced isoscalar giant resonance.
- 1977Fu09: ¹¹B(p, α) E=6.5-7.3 MeV, measured σ (E,E $_{\alpha}$, θ).
- 1981Ov02: ¹¹B(p, α) E=33 MeV, measured $\sigma(E_{\alpha})$.
- 1983Bo19: ¹¹B(p, α) E=4.5-7.55 MeV, measured σ (E, θ). Deduced reaction σ . ¹²C deduced levels, J, π , reduced widths.
- 1983Bu06: ¹¹B(p, α) E=6-24 MeV, measured $\sigma(E,\theta)$. Deduced $\sigma(E)$, reaction mechanism. DWBA analyses.
- 1985Pu03: ¹¹B(p, α) E=1.98,2.62,0.68 MeV, analyzed breakup $\sigma(\theta_{\alpha 1}, \theta_{\alpha 2}, E_{\alpha 1})$.
- 1987Be17: ¹¹B(p,3 α) E_{c.m.}=22-1100 keV, measured E_{α}, I_{α}, σ (E, θ). ¹²C deduced resonance, Γ .
- 1988Bo37: ¹¹B(p, $\alpha\gamma$) E \approx 2.7-3.8 MeV, measured $\sigma(\theta)$ vs E.
- 1988Ha04: ¹¹B(p, α) E=20-100 MeV, measured E_{γ}, I_{γ}, $\sigma(\theta)$, analyzing power vs θ . ¹²C dedcued GDR, parameters, EWSR.
- **1989Lu05**: ¹¹B(p, α) E=2.385-2.843 MeV, measured $\sigma(E_{\alpha})$, $\sigma(E)$.
- 1993An06,1999An35: ¹¹B(p, α) E_{c.m.}=17-134 keV, measured spectra, α yield.
- **1996Vo23**: ¹¹B(p, α) E=150-800 keV, measured $\sigma(\theta)$.
- 1996Yu04: ¹¹B(p, α) E=0.165-2.58 MeV, analyzed α -spectra following ⁸Be breakup. Deduced breakup σ .
- 1998Li51: ¹¹B(p, α) E=667,1370 keV, measured α spectra, $\sigma(E_{\alpha},\theta)$, σ . Deduced sequential decay process features.
- **1998Ma54**: ¹¹B(p, α) E=1700-2700 keV, measured $\sigma(\theta=165^{\circ})$.
- 2002Gr09: ¹¹B(p, α) E=100-200 keV, measured E $_{\alpha}$.
- 2002Li29: ¹¹B(p, α) E=0.4-1.6 MeV, measured E_{α}, σ , $\sigma(\theta)$.
- 2008La18: ¹¹B(p, α), deduced S-factors.
- 2010Ko33: ¹¹B(p, α) E=2.2-4.2 MeV, measured proton spectrum, E_{α}, I_{α}. Deduced yields, $\sigma(\theta)$.
- 2010La11: ¹¹B(p, α) E_{c.m.}=0-0.6 MeV, deduced S-factor using Trojan Horse Method.
- 2011St01: XUNDL dataset compiled by TUNL, 2011. Beams of $E_p=675$ keV and 2.64 MeV, from the TUNL FN-Tandem facility impinged on a 56 μ g/cm² enriched ¹¹B target populating ¹²C*(16.576,18.38 MeV). Measured E_{α} , I_{α} , α - α coin. Emitted α -particles were detected in an array of 8 Si surface barrier detectors positioned at 20°-60°. Discussion of the reaction mechanism is given based on Monte Carlo simulations of the observations. Deduced implications on reaction model, astrophysical reaction rates.

2016La24: XUNDL dataset compiled by TUNL, 2016.

The ¹²C*(16.11 MeV) 3α decay kinematics and decay mechanism was studied using E_p=167 to 170 keV beams from the Aarhus University Van de Graff accelerator. The beams impinged on 10-15 μ g/cm² natural boron targets, populating the ¹²C*(16.11 MeV) level. The full decay kinematics were detected using a set of 5 cm×5 cm double-sided Si strip detectors, that were placed in about ten different configurations throughout the measurement period. The branching ratio for α_0 decay is determined by analyzing the multiplicity 2 ($\Gamma_{\alpha0}/\Gamma$ =0.054 *11*) and multiplicity 3 ($\Gamma_{\alpha0}/\Gamma$ =0.051 *5*) events.

 ${}^{12}_{6}C_{6}$

¹¹**B**(**p**,*α*) **1990Aj01** (continued)

¹²C Levels

E(level)	\mathbf{J}^{π}	T _{1/2}	Comments
16105.8 7	2+	5.3 keV 2	T=1; $\Gamma_{\nu0}$ =0.58 eV; $\Gamma_{\alpha0}$ =290 eV 45; Γ_{μ} =21.7 eV 18
			$\Gamma_{\nu 1} = 12.6 \text{ eV } 18; \Gamma_{\alpha 1} = 6.3 \text{ keV } 5$
			E(level): $E_{res}=148.3 \text{ keV } I$ and $\Gamma_{c.m}=5.3 \text{ keV } 2$ (1987Be17) and $E_{res}=149.8 \text{ keV } 2$
			and $\Gamma_{c.m.}=5.2 \text{ keV} + 5-3 (1979\text{Da03}).$
			Also see $\Gamma_{\alpha 0}/\Gamma = 0.051 \ 5 \ (2016La24)$.
16576	2-	300 keV	T=1; $\Gamma_{\gamma 0}$ <0.4 eV; $\Gamma_{\alpha 0}$ <0.27 keV; Γ_{p} =150 keV
			$\Gamma_{\gamma 1} = 8.0 \text{ eV}; \ \Gamma_{\alpha 1} = 150 \text{ keV} \ (1965\text{Se06})$
			Simulations indicate the primary α -particle is emitted with $l=3$ to ⁸ Be(2 ⁺).
			Implications are discussed (2011St01).
17230	1-	1150 keV	T=1; $\Gamma_{\gamma 0}$ =44 eV; Γ_{a0} =10 keV; Γ_{p} =1 MeV
17 70 103	0+	061 11 5	$I_{\gamma 1} = 5. \text{ eV}; I_{\alpha 1} = 140 \text{ keV} (1965 \text{Sel6})$
17.79×10 ⁵	01	96 kev 5	$T = 1; T_{\alpha 0} = 4.6 \text{ keV}; T_{p} = 76 \text{ keV}$
10.20. 103	2-	210.1 17	$I_{\alpha 1} = 11.4 \text{ KeV} (19655606)$
18.38×10 ⁵	3	$\approx 310 \text{ keV}$	$I = I; I_{\gamma 0} \approx 2 \times 10^{-5} \text{ eV}; I_{\alpha 0} = 65 \text{ KeV}; I_{p} = 68 \text{ KeV}$
			$\Gamma_{\gamma l} = 5.2 \text{ eV}, \Gamma_{\alpha l} = 1/7 \text{ KeV}$ (19055000) Simulations indicate the minory experticle is emitted with $l = 1$ mostly to $^{8}\text{Pe}(2^{+})$ in
			Simulations indicate the primary α -particle is enflued with $i=1$, mostly to $Be(2)$, in agreement with prior studies (2011St01)
18.30×10^{3}	0-	13 koV	$\Gamma_{a} < 0.5 \text{ eV}$: $\Gamma_{a} < 1 \text{ keV}$: $\Gamma_{a} = 23 \text{ keV}$
10.39×10	0	43 KC V	$\Gamma_{\gamma 0} < 0.5 \text{ eV}, \Gamma_{\alpha 0} < 1 \text{ keV}, \Gamma_{p} = 55 \text{ keV}$ $\Gamma_{\gamma 1} < 0.5 \text{ eV}; \Gamma_{\gamma 1} < 5 \text{ keV}$ (1965Se06)
			$\Gamma_{\gamma} \approx 9 \text{ keV} (1965\text{Se06}).$
18.71×10^{3}		100 keV	$T=1: \Gamma_{n} < 10 \text{ keV}$
			From $\sigma_{res}(p,\alpha_0)=3.4$ mb (1965Se06).
18.81×10^{3}	2^{+}	100 keV	T=1; $\Gamma_{\nu 0}=0.4 \text{ eV}$; $\Gamma_{\alpha 0}<0.2 \text{ keV}$; $\Gamma_{p}=97 \text{ keV}$
			$\Gamma_{\gamma 1} = 2.0 \text{ eV}; \Gamma_{\alpha 1} < 1.5 \text{ keV} (1965 \text{Se06})$
			$\Gamma p' \approx 2.0 \text{ keV} (1965 \text{Se06}).$
19.2×10^{3}	(1^{-})	1100 keV	T=1; $\Gamma_{\gamma 0}$ =25 eV; Γ_{a0} =50 keV; Γ_{p} =300 keV
			$\Gamma_{\gamma 1} = 10$. eV; $\Gamma_{\alpha 1} = 200$ keV; $\Gamma_n = 1.1$ keV (1965Se06)
2			$\Gamma p' \approx 400 \text{ keV} (1965 \text{Se06}).$
19.39×10^{3}	(2^{+})	1100 keV	T=0; $\Gamma_{\gamma 0}$ <3 eV; $\Gamma_{\alpha 0}$ =20 keV; Γ_{p} =450 keV
			$\Gamma_{\gamma 1} = 3. \text{ eV}; \Gamma_{\alpha 1} = 450 \text{ keV} (1965\text{Se06})$
20.47.103		100 1 17	$1 \text{ p} \approx 50 \text{ keV} (19658e06).$
20.4×10^3	(2-)	180 keV	E(level): From (1963Sy01,1964AI20).
20.64×10^{3}	(3)	275 keV	[1=1]
21 21 21 2032		20 traV	E(16ve1): F10111 (19055)(01,1904A120). E(16ve1): From reference in (1080A:01)
21.51×10^{-7}		50 KeV	E(level): From (1960AJ01). E(level): From (1960AJ01).
21.5×10^{3}		500 koV	E(10001); FIOIII (1904A120). E(10001); From (1064A120)
22.1×10^{3}	(1-)	2200 keV	E(16V61); FIOIII (1904A120). T-1, E > 2500 eV
22.0×10*	(1)	5200 KeV	$I=1; I_{\gamma 0} > 2.500 \text{ eV}$ E(level): From (1064 A 120)
23.0×10^{3}			F(level): From (1975Va04)
23.0×10 23.6×10 ³			F(level): From (1964 4120, 1975 Va04).
25.0×10^{3}			F(level): From (1975Va04)
25.4×10^{3}	(1^{-})		F(level): From (1964 4120 1977 m01)
20.72×10^{3}	(1)	~6000 keV	F(level): From (1977Sn01).
21.7/10		~0000 KC V	E(10001), 110111 (17770101),