$^{12}N\beta^+$ decay:11.000 ms 1981Ka31,2009Hy01

	History			
Туре	Author	Citation	Literature Cutoff Date	
Full Evaluation	J. H. Kelley, J. E. Purcell and C. G. Sheu	NP A968,71 (2017)	1-Jan-2017	

Parent: ¹²N: E=0.0; $J^{\pi}=1^+$; $T_{1/2}=11.000$ ms 16; $Q(\beta^+)=17338.1$ 10; $\%\beta^+$ decay=100

¹²N-Q(
$$\beta^+$$
): From (2017Wa10).

 12 N-J^{π},T_{1/2}: From Adopted Levels for 12 N in ENSDF database.

1972Al31: ¹²N, measured $\beta\gamma$ -coin. Deduced log *ft*, β -branching.

1974Mc11: ¹²N,measured E_{β} , I_{β} , $\beta\gamma$ -coin. Deduced log *ft*.

1978Al01: ¹²N,measured E_{β}, I_{β}, $\beta\gamma$ -coin, T_{1/2}. Deduced β -branching, mirror asymmetries, *ft*.

1981Ka31: ¹²N, measured $\beta\gamma$ -coin, $\beta\gamma$ (t). Deduced I_{β}, log *ft*.

1988Na09: ¹²N, measured I_{β}, I_{γ}, $\beta\gamma$ -coin. Deduced mirror asymmetry. ¹²B, ¹²N deduced Gamow-Teller β -decay branching ratio.

1990Ca10: ¹²N(β^+), measured spectral shape factors.

1991Li32: ¹²N, measured β -decay asymmetry.

1993Mi32: ¹²N(β^+), measured I_{β}(θ). Deduced alignment coefficients.

1998Mi14: ¹²N(β^+), measured β -ray angular distribution from oriented nuclei.

1998Se04: ¹²N(β^+), measured β^+ polarization asymmetry from decay of polarized nuclei.

1999Mi41,2000Mi11: ¹²N(β^+), measured E_{β}, I_{β}(θ) from aligned nuclei.

2001Th18: ¹²N(β^+), measured positrons longitudinal polarization following decay.

2002BoZY: ¹²N(β^+ p), analyzed β -delayed multi-particle emission data. Deduced branching ratios, decay mechanism features. 2002Fy02,2003Fy02,2003Fy04,2004Fy02,2004Fy03: ¹²N(EC), measured β -delayed E_{α}, $\alpha\alpha$ -coin. ¹²C level deduced three-body

decay mechanism, excited states.

2002Mi01,2002Mi03,2002Mi36,2002Mi49,2003Mi24: $^{12}N(\beta^+)$, measured E_{β} , angular distributions from spin-aligned sources.

2004Bo43: ¹²N(β^+), measured β -delayed particle spectra, yields. ¹²C deduced excited states particle-decay features.

2009Di06: ¹²N(β^+), measured E_{α}, E_{γ}, $\alpha\alpha\alpha$ -coin. ¹²C deduced levels, J, π , triple- α continuum states and their decay modes. R-matrix analysis.

- 2009Hy01,2009Hy02,2010Hy01: ¹²N(β^+), measured E_{α}, I_{α}, E_{γ}, I_{γ}, E_{β}, $\beta\gamma$ -, $\beta\alpha$ -, $\alpha\alpha\alpha$ -coin. ¹²C deduced levels, β feedings, and log *ft*.
- The authors performed two measurements of ¹²N decay into α unbound states of ¹²C using two different techniques. In addition ¹²B decay was also measured. The first method involved implantation of ¹²N into a thin carbon foil located in the center of a large solid angle Si Strip array (at IGSOL/JYFL) that measured breakup α particle kinematics; a HPGe detector mesured the ¹²C*(4.44 MeV) de-excitation gamma-rays, and the measurement was normalized to the value presently adopted in ENSDF. The second method involved implantation of ¹²N into a thick Si detector (at TRIuP/KVI) and measuring the total 3 α decay energy.

(2009Hy02) gives details of the JYFL measurement, while (2009Hy01) is reported as giving the most precise analysis of the KVI and JYFL measurements.

(2010Hy01) gives a detailed multi-channel multi-level R-matrix analysis of 0⁺ and 2⁺ levels above the $E_x=7.65$ MeV level that may contribute to the shape of the 3α energy spectrum observed in ¹²B and ¹²N decay to ¹²C. The analysis focuses mainly on these higher-lying state and is difficult to fold in with the analysis given in (2009Hy01,2009Hy02). A significant difference from the prior work is the assumption that the $E_x=10.3$ MeV bump ($J^{\pi}=0^+$) is from interference; they suggest instead the $J^{\pi}=0^+_3$ state at $E_x=11.2$ MeV 3 with $\Gamma=1.5$ MeV 6.

¹²C Levels

E(level)	J^{π}	T _{1/2} †
0	0^{+}	
4439.82 <i>31</i>	2^{+}	10.8×10 ⁻³ eV 6
7654.07 19	0^{+}	9.3 eV 9
$10.3 \times 10^3 \ 3$	(0^{+})	3.0 MeV 7
12710	1^{+}	18.1 eV 28
15110	1^{+}	43.6 eV 10

[†] From Adopted Levels.

		12 IN <i>j</i> 2	^{5*} decay:11.0	00 ms 19	51Ka51,2009Hy	(continued)
				ε, β^+ rad	diations	
E(decay)	E(level)	$I\beta^{+\dagger}$	$\mathrm{I}\varepsilon^{\dagger}$	Log ft	$I(\varepsilon + \beta^+)^{\dagger}$	Comments
(2228.1 10)	15110	0.0023 15	4.×10 ⁻⁶ 3	3.6 3	2.3×10 ⁻³ 15	av Eβ=495.21 45; εK=0.001824 5; εL=0.0001020 3 Iε: From average of (2009Hy01) and (1967Al03) See discussion in Table 12.42 of (2017Ke05).
(4628.1 10)	12710	0.120 3		3.924 11	0.120 3	av $E\beta$ =1624.94 49 I ε : Mainly from the KVI data in (2009Hy01). See other values in Table 12.42 of (2017Ke05).
(7.04×10 ³ 30)	10300	0.403 9		4.42 11	0.403 9	 av Eβ=2.80×10³ 15 Iε: From weighted average of 0.38 5 (JYFL) and 0.404 9 (KVI). In (2009Hy01) this is listed as the sum of feeding to E_x=9-12 MeV. See discussion in Table 12.42 in (2017Ke05). In (2010Hy01) the authors indicate that the J^π=0⁺₃ resonance has parameters E_x=11.2 MeV 3 with Γ=1.5 MeV 6, suggesting that the previously observed E_x=10.3 MeV bump results from interference. They further indicate that the J^π=2⁺₂ resonance has parameters E_x=11.1 MeV 3 and Γ=1.4 MeV 4. In addition, for these two states (2010Hy01) find B(>)=0.06 2 and B(>)=0.05 3 (log ft=4.82 18 and log ft=4.90 40) for the
(9684.0 10)	7654.07	1.41 3		4.622 10	1.41 3	av $E\beta$ =4113.48 51 I ε : from (KVI) in (2009Hy01). See other values in Table 12.42 of (2017Ke05).
(12898.3 11)	4439.82	1.898 <i>32</i>		5.148 8	1.898 <i>32</i>	 av Eβ=5711.13 Iε: Iβ(4440) is used as a global normalization in most measurements. Iε: We adopt Iβ=1.898 32 from (1981Ka31) since the experimental approach aimed to overcome most systematic effects that influence the value. For other values see Table 12.23 in (2017Ka05).
(17338.1 10)	0	96.17 5		4.1106 7	96.17 5	av E β =7922.87 I ε : unity minus the sum of branching to higher states. See discussion in (2017Ke05) Table 12.42.

$^{12}N \beta^+$ decay: 11 000 1981K 931 2009Hv01 (continued)

 † Absolute intensity per 100 decays.

$\gamma(^{12}C)$

E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E_i (level)	\mathbf{J}_i^{π}	$E_f J_f^{\pi}$	Comments
3213.8	5.9×10 ⁻⁴ 2	7654.07	0^{+}	4439.82 2+	I_{γ} : From Γγ/Γ=(4.16 11)×10 ⁻⁴ and Iβ=(1.41 3)%.
4438.91	1.90 3	4439.82	2^{+}	$0 0^+$	

[†] From adopted gammas.
 [‡] Absolute intensity per 100 decays.

¹²N β⁺ decay:11.000 ms 1981Ka31,2009Hy01

Decay Scheme

Intensities: I_{γ} per 100 parent decays

Leg	end
	$\begin{array}{l} I_{\gamma} < 2\% \times I_{\gamma}^{max} \\ I_{\gamma} < 10\% \times I_{\gamma}^{max} \\ I_{\gamma} > 10\% \times I_{\gamma}^{max} \end{array}$

 $\% \varepsilon + \% \beta^{+} = 100 / \frac{1^{+} \qquad 0.0}{Q_{\varepsilon} = 17338.1 \ 10} \qquad 11.000 \ \text{ms} \ 16}{\frac{12}{7} N_{5}}$ $\underline{I\beta^+}$ Log ft<u>I</u>£ $\frac{\frac{1^{+}}{1^{+}}}{(0^{+})}$ 0.000 15110 $4. imes 10^{-6}$ 3.6 43.6 eV 10 0.0023 12710 3.924 18.1 eV 28 0.120 · 32138 1 ŝ 10300 3.0 MeV 7 0.403 4.42 | 436 7654.07 0^+ 9.3 eV 9 1.41 4.622 4439.82 $10.8 \times 10^{-3} \text{ eV} 61.898$ 2^{+} 5.148 0+ 0 96.17 4.1106 ${}^{12}_{6}C_{6}$