NSR Query Results


Output year order : Descending
Format : Normal

NSR database version of April 25, 2024.

Search: Author = T.Inakura

Found 45 matches.

Back to query form



2023HO05      Phys.Rev. C 107, L041304 (2023)

W.Horiuchi, T.Inakura, S.Michimasa, M.Tanaka

Enlarged deformation region in neutron-rich Zr isotopes promoted by the second intruder orbit

NUCLEAR STRUCTURE 90,92,94,96,98,100,102,104,106,108,110,112,114,116,118,120,122Zr; calculated quadrupole deformation parameters, hexadecapole deformation parameters, rms point-proton and neutron radii, matter radii, nuclear diffuseness. 112Zr; calculated neutron single-particle and deformation energies. Skyrme-Hartree-Fock-Bogoliubov (HFB) model with SkM* interaction.

NUCLEAR REACTIONS 12C(90Zr, X), (92Zr, X), (94Zr, X), (96Zr, X), (98Zr, X), (100Zr, X), (102Zr, X), (104Zr, X), (106Zr, X), (108Zr, X), (110Zr, X), (112Zr, X), (114Zr, X), (116Zr, X), (118Zr, X), (120Zr, X), (122Zr, X), E=300 MeV/nucleon; calculated total σ. Skyrme-Hartree-Fock-Bogoliubov (HFB), Skyrme-HF plus Bardeen-Cooper-Schrieffer(BCS)–type pairing (HF+BCS) and spherical-constrained HF calculation. Explained mechanism of the large cross-section enhancement by occupation of the highly elongated intruder orbit originating from the spherical 0h11/2 orbit.

doi: 10.1103/PhysRevC.107.L041304
Citations: PlumX Metrics


2023ZH34      Phys.Rev. C 108, 014614 (2023)

J.T.Zhang, P.Ma, Y.Huang, X.L.Tu, P.Sarriguren, Z.P.Li, Y.Kuang, W.Horiuchi, T.Inakura, L.Xayavong, Y.Sun, K.Kaneko, X.Q.Liu, K.Yue, C.J.Shao, Q.Zeng, B.Mei, P.Egelhof, Yu.A.Litvinov, M.Wang, Y.H.Zhang, X.H.Zhou, Z.Y.Sun

Matter radius of 78Kr from proton elastic scattering at 153 MeV

NUCLEAR REACTIONS 1H(78Kr, p), E=152 MeV/nucleon; measured Ep, Ip; deduced σ(θ). 78Kr; deduced point-matter radius, neutron skin thickness. Glauber model analysis. Comparison of the obtained σ to FRESCO calculations with the phenomenological OMP parameters (KD03). Collision in Cooler Storage Ring of the Heavy Ion Research Facility in Lanzhou (HIRFL-CSR) with molecular hydrogen-gas target. MICRON double-sided Si-strip detector (DSSD) used to measure the recoil protons.

doi: 10.1103/PhysRevC.108.014614
Citations: PlumX Metrics

Data from this article have been entered in the XUNDL database. For more information, click here.


2022HO02      Phys.Rev. C 105, 014316 (2022)

W.Horiuchi, T.Inakura, S.Michimasa

Large enhancement of total reaction cross sections at the edge of the island of inversion in Ti, Cr, and Fe isotopes

NUCLEAR STRUCTURE 48,50,52,54,56,58,60,62,64Ti, 50,52,54,56,58,60,62,64,66,68Cr, 52,54,56,58,60,62,64,66,68,70,72Fe; calculated quadrupole deformation parameter β2, S(2n), rms matter radii, total reaction cross sections on a carbon target at 240 MeV/nucleon, hexadecapole β4 deformation parameters, cumulative single-particle hexadecapole moment of N=38 isotones, intrinsic density distribution contour of 58Ti, difference of the square radii, diffuseness parameters; deduced that in island of inversion, the occupation of highly elongated intruder orbits induces large quadrupole and hexadecapole deformations. Skyrme-Hartree-Fock method in three-dimensional coordinate space. Comparison with experimental data. Discussed possibility of constraining the hexadecapole deformation by a measurement of their total reaction cross sections.

doi: 10.1103/PhysRevC.105.014316
Citations: PlumX Metrics


2022HO07      Phys.Rev. C 105, 044303 (2022)

W.Horiuchi, T.Inakura

Pairing core swelling effect in Pb isotopes at N > 126

NUCLEAR STRUCTURE 214Pb; calculated valence neutron densities, occupation numbers, rms radii. 192,194,196,200,202,204,206,208,210,212,214,216,218,220Pb; calculated S(2n). 196,200,202,204,206,208,210,212,214,216,218,220,222Pb; calculated absolute difference of squared charge radii of Pb isotopes from that of 208Pb. 208,210,212,214,216,218,220,222Pb; calculated occupation numbers. 192,194,196,200,202,204,206,208,210,212,214,216,218,220,222Pb; calculated neutron skin thickness, nuclear surface diffuseness. Skyrme Hartree-Fock-Bogoliubov (HFB) theory with Skyrme-density functionals SkM*, SLy4, SV-min, UNEDF1 and fixed parameters of the density-dependent spin-orbit (DDLS) term. Comparison to available experimental data.

doi: 10.1103/PhysRevC.105.044303
Citations: PlumX Metrics


2022KO07      Prog.Theor.Exp.Phys. 2022, 023D02 (2022)

T.Kouno, C.Ishizuka, T.Inakura, S.Chiba

Pairing strength in the relativistic mean-field theory determined from the fission barrier heights of actinide nuclei and verified by pairing rotation and binding energies

NUCLEAR STRUCTURE 16O, 40,48Ca, 56,58Ni, 88Sr, 90Zr, 112,124,132Sn, 146Gd, 208Pb, 234,236U, 240,242Pu, 242,244Cm; calculated binding energies, diffraction radii, surface thickness, pairing rotation energy, fission barriers using BCS pair correlation as a residual interaction in relativistic mean-field theory. Comparison with available data.

doi: 10.1093/ptep/ptab167
Citations: PlumX Metrics


2022KO28      Int.J.Mod.Phys. E31, 2250080 (2022)

T.Kouno, C.Ishizuka, K.Fujio, T.Inakura, S.Chiba

Effects of triaxiality and pairing interaction on fission barriers of actinide nuclei

NUCLEAR STRUCTURE 232,234,236,238,240U, 232,234Pu, 238,240,242,244Pu, 242,244,246,248Cm; calculated fission barriers. Comparison with available data.

doi: 10.1142/S021830132250080X
Citations: PlumX Metrics


2021HO16      Prog.Theor.Exp.Phys. 2021, 103D02 (2021)

W.Horiuchi, T.Inakura

Deformation effect on nuclear density profile and radius enhancement in light- and medium-mass neutron-rich nuclei

NUCLEAR STRUCTURE Ne, Mg, Si, S, Ar, Ti, Cr, Fe; calculated nuclear radii; deduced role of nuclear deformation in nuclear density profiles. Skyrme-Hartree-Fock method.

doi: 10.1093/ptep/ptab087
Citations: PlumX Metrics


2021LA06      Phys.Rev. C 104, L011301 (2021)

Md.S.R.Laskar, R.Palit, E.Ideguchi, T.Inakura, S.N.Mishra, F.S.Babra, S.Bhattacharya, D.Choudhury, B.Das, B.Das, P.Dey, U.Garg, A.K.Jain, A.Kundu, D.Kumar, D.Negi, S.C.Pancholi, S.Rajbanshi, S.Sihotra

Enhanced B(E3) strength observed in 137La

NUCLEAR REACTIONS 130Te(11B, 4n)137La, E=40 MeV; measured Eγ, Iγ, γγ-coin, level half-life by γγ(t) using an array of 11 Compton-suppressed HPGe clover and 14 LaBr3(Ce) detectors at the Pelletron Linac Facility of TIFR-Mumbai. 137La; deduced levels, J, π, half-life of 1005, 11/2- level, B(E3), sudden increase of B(E3) strength at N=80. Comparison with random-phase approximation (RPA) calculations. Systematics of B(E3) strengths in 129,133La and 132,134,136,138Ba.

doi: 10.1103/PhysRevC.104.L011301
Citations: PlumX Metrics

Data from this article have been entered in the XUNDL database. For more information, click here.


2020HO09      Phys.Rev. C 101, 061301 (2020)

W.Horiuchi, T.Inakura

Core swelling in spherical nuclei: An indication of the saturation of nuclear density

NUCLEAR REACTIONS 12C(40Ca, X), (42Ca, X), (43Ca, X), (44Ca, X), (45Ca, X), (46Ca, X), (47Ca, X), (48Ca, X), (49Ca, X), (50Ca, X), (51Ca, X), (52Ca, X), (54Ca, X), (56Ca, X), (58Ca, X), (60Ca, X), (62Ca, X), (64Ca, X), (66Ca, X), (68Ca, X), (70Ca, X), E=280 MeV/nucleon; calculated total reaction σ. Comparison with available experimental data for 42,43,44,45,46,47,48,49,50,51Ca.

NUCLEAR STRUCTURE 40,42,44,46,48,50,52,54,56,58,60,62,64,66,68,70Ca, 56,58,60,62,64,66,68,70,72,74,76,78,80,82,84,86Ni, 114,116,118,120,122,124,126,128,130,132,134,136,138,140,142,144,146Sn; calculated proton and neutron rms radii, and total matter, core, and valence neutron densities using microscopic Hartree-Fock with three Skryme-type effective interactions. Discussion of core swelling mechanism in spherical nuclei. Comparison with available experimental data for 39,40,41,42,43,44,45,46,47,48,50Ca, 58,60,61,62,64Ni, 112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132Sn.

doi: 10.1103/PhysRevC.101.061301
Citations: PlumX Metrics


2019IN01      Phys.Rev. C 99, 045801 (2019)

T.Inakura, M.Matsuo

Coexistence of Anderson-Bogoliubov phonon and quadrupole cluster vibration in the inner crust of neutron stars

NUCLEAR STRUCTURE Z=28; calculated strength functions for neutron and proton quadrupole operators, neutron pair-addition and pair-removal operators, transition densities of the low-lying quadrupole collective modes, transition densities and excitation energies of the Anderson-Bogoliubov (AB) phonon dominant and the cluster vibration dominant modes, neutron and proton single-particle energies. Z=20, 40, 50; calculated excitation energy of the lowest AB phonon dominant mode, and the energy of the cluster vibration dominant mode. Collective excitations in the inner crust of neutron stars in the framework of the nuclear density functional theory using coordinate-space Hartree-Fock-Bogoliubov method and the quasiparticle random phase approximation formulated in a spherical Wigner-Seitz cell.

doi: 10.1103/PhysRevC.99.045801
Citations: PlumX Metrics


2018IN02      Phys.Rev. C 97, 054330 (2018)

T.Inakura, Y.Togano

Skyrme random-phase approximation analysis of low-energy dipole states in oxygen isotopes

NUCLEAR STRUCTURE 16,18,20,22,24O; calculated energies of isoscalar (IS) and isovector (IV) low-energy dipole (LED) 1- states, isoscalar dipole (ISD) EWSR fraction, B(E1), radial transition densities, and particle-hole contributions using Hartree-Fock plus random-phase approximation (HF+RPA) with Skyrme interactions. Comparison with experimental data.

doi: 10.1103/PhysRevC.97.054330
Citations: PlumX Metrics


2018IN03      Phys.Rev. C 98, 044312 (2018)

T.Inakura, S.Mizutori

Rod-shaped rotational states in N=Z even-even nuclei from 12C to 32S

NUCLEAR STRUCTURE 12C, 16O, 20Ne, 24Mg, 28Si, 32S; calculated rotational excitation energies of rod-shaped state as function of angular momentum, nucleon density distribution of g.s. and superdeformed state, nucleon localization measure, elongation, and triaxiality of rod-shaped states for N=Z nuclei using cranked Skyrme Hartree-Fock method.

doi: 10.1103/PhysRevC.98.044312
Citations: PlumX Metrics


2018YO04      Prog.Theor.Exp.Phys. 2018, 041D02 (2018)

R.Yokoyama, E.Ideguchi, G.S.Simpson, Mn.Tanaka, S.Nishimura, P.Doornenbal, G.Lorusso, P.-A.Soderstrom, T.Sumikama, J.Wu, Z.Y.Xu, N.Aoi, H.Baba, F.L.Bello Garrote, G.Benzoni, F.Browne, R.Daido, Y.Fang, N.Fukuda, A.Gottardo, G.Gey, S.Go, N.Inabe, T.Isobe, D.Kameda, K.Kobayashi, M.Kobayashi, I.Kojouharov, T.Komatsubara, T.Kubo, N.Kurz, I.Kuti, Z.Li, M.Matsushita, S.Michimasa, C.B.Moon, H.Nishibata, I.Nishizuka, A.Odahara, Z.Patel, S.Rice, E.Sahin, H.Sakurai, H.Schaffner, L.Sinclair, H.Suzuki, H.Takeda, J.Taprogge, Zs.Vajta, H.Watanabe, A.Yagi, T.Inakura

Beta-gamma spectroscopy of the neutron-rich 150Ba

RADIOACTIVITY 150Cs(β-) [from 9Be(238U, X), E=345 MeV/nucleon]; measured decay products, Eβ, Iβ, Eγ, Iγ, β-γ-coin.; deduced γ-ray energies, 2+ state. Comparison with theoretical calculations.

doi: 10.1093/ptep/pty037
Citations: PlumX Metrics

Data from this article have been entered in the XUNDL database. For more information, click here.


2017IN02      Phys.Rev. C 96, 025806 (2017)

T.Inakura, M.Matsuo

Anderson-Bogoliubov phonons in the inner crust of neutron stars: Dipole excitation in a spherical Wigner-Seitz cell

doi: 10.1103/PhysRevC.96.025806
Citations: PlumX Metrics


2017NA07      Phys.Lett. B 768, 387 (2017)

N.Nakatsuka, H.Baba, T.Aumann, R.Avigo, S.R.Banerjee, A.Bracco, C.Caesar, F.Camera, S.Ceruti, S.Chen, V.Derya, P.Doornenbal, A.Giaz, A.Horvat, K.Ieki, T.Inakura, N.Imai, T.Kawabata, N.Kobayashi, Y.Kondo, S.Koyama, M.Kurata-Nishimura, S.Masuoka, M.Matsushita, S.Michimasa, B.Million, T.Motobayashi, T.Murakami, T.Nakamura, T.Ohnishi, H.J.Ong, S.Ota, H.Otsu, T.Ozaki, A.Saito, H.Sakurai, H.Scheit, F.Schindler, P.Schrock, Y.Shiga, M.Shikata, S.Shimoura, D.Steppenbeck, T.Sumikama, I.Syndikus, H.Takeda, S.Takeuchi, A.Tamii, R.Taniuchi, Y.Togano, J.Tscheuschner, J.Tsubota, H.Wang, O.Wieland, K.Wimmer, Y.Yamaguchi, K.Yoneda, J.Zenihiro

Observation of isoscalar and isovector dipole excitations in neutron-rich 20O

NUCLEAR REACTIONS 197Au, He(20O, 20O'), E=276 MeV/nucleon; measured reaction products, Eγ, Iγ; deduced excited states and decay γ-ray energies, J, π, branching ratios, inelastic σ, B(E1), strength functions. Comparison with RPA calculations.

doi: 10.1016/j.physletb.2017.03.017
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 datasetE2532.


2016NA24      Eur.Phys.J. A 52, 185 (2016)

H.Nakada, K.Sugiura, T.Inakura, J.Margueron

Can realistic interaction be useful for nuclear mean-field approaches?

NUCLEAR STRUCTURE 40,48,52,80Ca; calculated energy difference between p1s1/2 and sp0d3/2 states. Ca, Sn, Pb; calculated isotope shifts. M3Y-type semi-realistic interaction within mean-field approach. Compared with available data.

doi: 10.1140/epja/i2016-16185-y
Citations: PlumX Metrics


2015IN03      Phys.Rev. C 92, 064302 (2015)

T.Inakura, H.Nakada

Constraining the slope parameter of the symmetry energy from nuclear structure

NUCLEAR STRUCTURE 16,22,24O, 40,48,54,70Ca, 68,78,84Ni, 132,140,176Sn, 208Pb; calculated correlation coefficients of neutron skin thickness, cross section of low-energy dipole (LED), dipole polarizability αD, and αDS0 with the slope parameter of the symmetry energy S0. Hartree-Fock plus random-phase approximation with various effective interactions.

doi: 10.1103/PhysRevC.92.064302
Citations: PlumX Metrics


2015NA05      Phys.Rev. C 91, 021302 (2015)

H.Nakada, T.Inakura

Effects of three-nucleon spin-orbit interaction on isotope shifts of Pb nuclei

NUCLEAR STRUCTURE 188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214Pb; calculated isotope shifts, occupation probabilities on n1g9/2 and n0i11/2 orbitals. Effects of the 3N interaction. Hartree-Fock-Bogoliubov calculations using semirealistic M3Y-P6 interaction. Comparison with experimental data.

doi: 10.1103/PhysRevC.91.021302
Citations: PlumX Metrics


2014EB02      Phys.Rev. C 90, 024303 (2014); Erratum Phys.Rev. C 92, 069902 (2015)

S.Ebata, T.Nakatsukasa, T.Inakura

Systematic investigation of low-lying dipole modes using the canonical-basis time-dependent Hartree-Fock-Bogoliubov theory

NUCLEAR STRUCTURE 8,10,12,14,16,18,20,22C, 14,16,18,20,22,24,26O, 20,22,24,26,28,30,32Ne, 18,20,22,24,26,28,30,32,34,36,38,40Mg, 24,26,28,30,32,34,36,38,40,42,44,46Si, 26,28,30,32,34,36,38,40,42,44,46,48,50S, 32,34,36,38,40,42,44,46,48,50,52,54,56Ar, 34,36,38,40,42,44,46,48,50,52,54,56,58,60,62,64Ca, 56,58,60,62,64,66,68,70,72,74,76,78,80,82,84Ni, 60,62,64,66,68,70,72,74,76,78,80,82,84,86,88Zn, 64,66,68,70,72,74,76,78,80,82,84,86,88,90,92,94,96,98Ge, 68,70,72,74,76,78,80,82,84,86,88,90,92,94,96,98,100,102,104Se, 72,74,76,78,80,82,84,86,88,90,92,94,96,98,100,102,104,106,108,110,112,114,116,118Kr, 76,78,80,82,84,86,88,90,92,94,96,98,100,102,104,106,108,110,112,114,116,118Sr, 80,82,84,86,88,90,92,94,96,98,100,102,104,106,108,110,112,114,116,118,120,122,124,126,128,130,132Zr, 84,86,88,90,92,94,96,98,100,102,104,106,108,110,112,114,116,118,120,122,124,126,128,130,132Mo, 88,90,92,94,96,98,100,102,104,106,108,110,112,114,116,118,120,122,124,126,128,130Ru, 92,94,96,98,100,102,104,106,108,110,112,114,116,118,120,122,124,126,128,130,132,134Pd, 96,98,100,102,104,106,108,110,112,114,116,118,120,122,124,126,128,130,132,134,136,138Cd, 100,102,104,106,108,110,112,114,116,118,120,122,124,126,128,130,132,134,136,138,140Sn; calculated low-lying electric dipole (E1) strengths of pygmy dipole resonances (PDR), the PDR fraction as functions of the neutron number and neutron skin thickness, proton number dependence of the PDR fraction, shell structure, neutron skin thickness, neutron and proton pairing gaps and chemical potentials, quadrupole deformation parameters β2 and γ. 128,130,132,134,136,138,140,142Te; calculated Proton number dependence of the PDR fraction. Canonical-basis time-dependent Hartree-Fock-Bogoliubov (Cb-TDHFB) theory.

doi: 10.1103/PhysRevC.90.024303
Citations: PlumX Metrics


2014HO02      Phys.Rev. C 89, 011601 (2014)

W.Horiuchi, Y.Suzuki, T.Inakura

Probing neutron-skin thickness with total reaction cross sections

NUCLEAR REACTIONS 1H, 12C(14O, X), (16O, X), (18O, X), (20O, X), (22O, X), (24O, X), (18Ne, X), (20Ne, X), (22Ne, X), (24Ne, X), (26Ne, X), (28Ne, X), (30Ne, X), (32Ne, X), (34Ne, X), (20Mg, X), (22Mg, X), (24Mg, X), (26Mg, X), (28Mg, X), (30Mg, X), (32Mg, X), (34Mg, X), (36Mg, X), (38Mg, X), (40Mg, X), (22Si, X), (24Si, X), (26Si, X), (28Si, X), (30Si, X), (32Si, X), (34Si, X), (36Si, X), (38Si, X), (40Si, X), (42Si, X), (44Si, X), (46Si, X), (26S, X), (28S, X), (30S, X), (32S, X), (34S, X), (36S, X), (38S, X), (40S, X), (42S, X), (44S, X), (46S, X), (48S, X), (50S, X), (34Ca, X), (36Ca, X), (38Ca, X), (40Ca, X), (42Ca, X), (44Ca, X), (46Ca, X), (48Ca, X), (50Ca, X), (52Ca, X), (54Ca, X), (56Ca, X), (58Ca, X), (60Ca, X), (62Ca, X), (64Ca, X), (66Ca, X), (68Ca, X), (70Ca, X), (48Ni, X), (50Ni, X), (52Ni, X), (54Ni, X), (56Ni, X), (58Ni, X), (60Ni, X), (62Ni, X), (64Ni, X), (66Ni, X), (68Ni, X), (70Ni, X), (72Ni, X), (74Ni, X), (76Ni, X), (78Ni, X), (80Ni, X), (82Ni, X), (84Ni, X), (86Ni, X), E=100, 120, 140, 160, 200, 300, 425, 550, 800, 1000 MeV; analyzed total reaction σ(E) in the Glauber model with Skyrme-Hartree-Fock method applied to generate the densities; deduced universal expression relating the reaction radius to the point matter rms radius and neutron skin thickness.

doi: 10.1103/PhysRevC.89.011601
Citations: PlumX Metrics


2014IN03      Phys.Rev. C 89, 064316 (2014)

T.Inakura, W.Horiuchi, Y.Suzuki, T.Nakatsukasa

Mean-field analysis of ground-state and low-lying electric dipole strength in 22C

NUCLEAR STRUCTURE 22C; calculated ground-state properties, neutron single-particle energies, rms matter radius, S(2n) using various Skyrme interactions, E1 strength distributions, neutron Fermi level dependence of low-lying E1 strength, dipole and neutron transition densities. Mean-field approach with Skyrme energy density functionals, and random-phase approximation for E1 strength. Importance of core excitations with the 1d5/2 orbit.

doi: 10.1103/PhysRevC.89.064316
Citations: PlumX Metrics


2013EB03      J.Phys.:Conf.Ser. 445, 012021 (2013)

S.Ebata, T.Nakatsukasa, T.Inakura

Systematic investigation of El strength for the isotopes from Z = 28 to 50

NUCLEAR STRUCTURE Ge, Se, Kr, Sr, Zr, Mo, Ru, Pd, Cd, Sn; calculated radius, neutron skin, electric dipole polarizability, pygmy-dipole-ratio using canonical-basis time-dependent Hartree-Fock-Bogoliubov (Cb-TDHFB) theory.

doi: 10.1088/1742-6596/445/1/012021
Citations: PlumX Metrics


2013IN06      Phys.Rev. C 88, 051305 (2013)

T.Inakura, T.Nakatsukasa, K.Yabana

Low-energy $E1$ strength in select nuclei: Possible constraints on neutron skin and symmetry energy

NUCLEAR STRUCTURE 24O, 26Ne, 48,52,54Ca, 58Cr, 68,78,84Ni, 208Pb; calculated correlations between low-lying electric dipole (E1) strength (PDR) and neutron-skin thickness. 84Ni; calculated E1 strengths for PDR GDR. Self-consistent random-phase approximation by using several Skyrme energy functionals.

doi: 10.1103/PhysRevC.88.051305
Citations: PlumX Metrics


2013NA06      Phys.Rev. C 87, 034302 (2013)

H.Nakada, T.Inakura, H.Sawai

Crossover from skin mode to proton-neutron mode in E1 excitations of neutron-rich nuclei

NUCLEAR STRUCTURE 16,22,24O, 48,52,60,70Ca, 68,78,84,86Ni, 90Zr, 132Sn; calculated neutron and proton density distributions, transition densities, S(E1), B(E1) using random phase approximation (RPA) with Hartree-Fock (HF) wave functions.

doi: 10.1103/PhysRevC.87.034302
Citations: PlumX Metrics


2013SH08      Phys.Rev. C 87, 024301 (2013)

T.Shizuma, T.Hayakawa, H.Ohgaki, H.Toyokawa, T.Komatsubara, N.Kikuzawa, T.Inakura, M.Honma, H.Nakada

Dipole strength distribution in 56Fe

NUCLEAR REACTIONS 56Fe(polarized γ, γ'), E=7.6, 8.6, 10.0 MeV; measured Eγ, Iγ, widths, azimuthal asymmetry at TERAS facility in Tsukuba. 56Fe; deduced levels, PDR, J, π, multipolarity, B(M1), B(E1); summed dipole strengths. Comparison with random-phase approximation (RPA) with the Skyrme interaction, and shell-model calculations in the pf shell using the GXPF1J and KB3G effective interactions.

doi: 10.1103/PhysRevC.87.024301
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 datasetK2408. Data from this article have been entered in the XUNDL database. For more information, click here.


2012EB01      Prog.Theor.Phys.(Kyoto), Suppl. 196, 316 (2012)

S.Ebata, T.Nakatsukasa, Ts.Inakura

Cb-TDHFB Calculation for the Low-Lying E1 Strength of Heavy Nuclei around the r-Process Path

doi: 10.1143/PTPS.196.316
Citations: PlumX Metrics


2012EB02      J.Phys.:Conf.Ser. 381, 012104 (2012)

S.Ebata, T.Nakatsukasa, T.Inakura

Study of pygmy dipole resonance with a new time-dependent mean field theory

NUCLEAR STRUCTURE O, Ne, Mg, S, Ar, Ca, Sr, Zr, Mo, Ru, Pd, Cd, Sn, Te, Xe; calculated ratio of pygmy dipole resonance strength using Cb-TDHFB (canonical basis TDHFB).

doi: 10.1088/1742-6596/381/1/012104
Citations: PlumX Metrics


2012HO19      Phys.Rev. C 86, 024614 (2012)

W.Horiuchi, T.Inakura, T.Nakatsukasa, Y.Suzuki

Glauber-model analysis of total reaction cross sections for Ne, Mg, Si, and S isotopes with Skyrme-Hartree-Fock densities

NUCLEAR REACTIONS 12C(17Ne, X), (18Ne, X), (19Ne, X), (20Ne, X), (21Ne, X), (22Ne, X), (23Ne, X), (24Ne, X), (25Ne, X), (26Ne, X), (27Ne, X), (28Ne, X), (29Ne, X), (30Ne, X), (31Ne, X), (32Ne, X), (33Ne, X), (34Ne, X), (20Mg, X), (21Mg, X), (22Mg, X), (23Mg, X), (24Mg, X), (25Mg, X), (26Mg, X), (27Mg, X), (28Mg, X), (29Mg, X), (30Mg, X), (31Mg, X), (32Mg, X), (33Mg, X), (34Mg, X), (35Mg, X), (36Mg, X), (37Mg, X), (38Mg, X), (24Si, X), (25Si, X), (26Si, X), (27Si, X), (28Si, X), (29Si, X), (30Si, X), (31Si, X), (32Si, X), (33Si, X), (34Si, X), (35Si, X), (36Si, X), (37Si, X), (38Si, X), (39Si, X), (40Si, X), (41Si, X), (42Si, X), (43Si, X), (44Si, X), (45Si, X), (46Si, X), (26S, X), (27S, X), (28S, X), (29S, X), (30S, X), (31S, X), (32S, X), (33S, X), (34S, X), (35S, X), (36S, X), (37S, X), (38S, X), (39S, X), (40S, X), (41S, X), (42S, X), (43S, X), (44S, X), (45S, X), (46S, X), (47S, X), (48S, X), (49S, X), (50S, X), E=240 MeV/nucleon; 12C(13O, X), (14O, X), (15O, X), (16O, X), (17O, X), (18O, X), (19O, X), (20O, X), (21O, X), (22O, X), (23O, X), (24O, X), (17Ne, X), (18Ne, X), (19Ne, X), (20Ne, X), (21Ne, X), (22Ne, X), (23Ne, X), (24Ne, X), (25Ne, X), (26Ne, X), (27Ne, X), (28Ne, X), (29Ne, X), (30Ne, X), (31Ne, X), (32Ne, X), (33Ne, X), (34Ne, X), (20Mg, X), (21Mg, X), (22Mg, X), (23Mg, X), (24Mg, X), (25Mg, X), (26Mg, X), (27Mg, X), (28Mg, X), (29Mg, X), (30Mg, X), (31Mg, X), (32Mg, X), (33Mg, X), (34Mg, X), (35Mg, X), (36Mg, X), (37Mg, X), (38Mg, X), E=1000 MeV/nucleon; calculated total reaction σ. Glauber model for high-energy nucleus-nucleus collisions with SkM* interaction. Comparison with experimental data. Role of nuclear deformation in determining the matter radius.

NUCLEAR STRUCTURE 20,21,22,23,24,25,26,27,28,29,30,31,32,33,34Ne, 22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38Mg, 24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46Si, 26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50S; calculated point matter, neutron and proton radii, neutron Fermi energy for Ne isotopes, quadrupole deformation parameter. Skyrme-Hartree-Fock calculation SkM* and SLy4 interactions.

doi: 10.1103/PhysRevC.86.024614
Citations: PlumX Metrics


2012IN02      Prog.Theor.Phys.(Kyoto), Suppl. 196, 365 (2012)

T.Inakura, T.Nakatsukasa, K.Yabana

Shell and Neutron-Skin Effects on Pygmy Dipole Resonances

NUCLEAR STRUCTURE Z=16-40; calculated low-lying dipole resonances, pygmy dipole resonances, E1 strengths. 68,84Ni; Comparison with available data.

doi: 10.1143/PTPS.196.365
Citations: PlumX Metrics


2012NA28      J.Phys.:Conf.Ser. 387, 012015 (2012)

T.Nakatsukasa, S.Ebata, P.Avogadro, L.Guo, T.Inakura, K.Yoshida

Density functional approaches to nuclear dynamics

NUCLEAR STRUCTURE 120Sn; calculated isoscalar monopole γ strength function. 132,134,136,138,140Xe; calculated B(E1) strength distribution. Density functional approach.

doi: 10.1088/1742-6596/387/1/012015
Citations: PlumX Metrics


2011IN02      Phys.Rev. C 84, 021302 (2011)

T.Inakura, T.Nakatsukasa, K.Yabana

Emergence of pygmy dipole resonances: Magic numbers and neutron skins

NUCLEAR STRUCTURE 20,22,24,26,28,30,32,34Ne, 40,42,44,46,48,50,52,54,56,58,60Ca; calculated photoabsorption cross sections. Z=8-40, N=8-82; calculated fraction of photoabsorption cross section of pygmy dipole resonances (PDR) for even-even spherical and deformed nuclei. Z=16-40, N=16-82; calculated correlations between fraction of photoabsorption cross section of pygmy dipole resonances (PDR) and neutron skin thickness for even-even nuclei. B(E1) strengths. Random-phase approximation (RPA) calculations with the Skyrme functional SkM* using finite amplitude method (FAM).

doi: 10.1103/PhysRevC.84.021302
Citations: PlumX Metrics


2011NA03      Acta Phys.Pol. B42, 609 (2011)

T.Nakatsukasa, P.Avogadro, S.Ebata, T.Inakura, K.Yoshida

Self-consistent Description of Nuclear Photoabsorption Cross-sections

NUCLEAR REACTIONS 154Sm(γ, X), E<40 MeV; calculated σ. QRPA and FAM calculations, comparison with experimental data.

NUCLEAR STRUCTURE 50Ca; calculated isoscalar monopole strength distribution. QRPA and FAM calculations.

doi: 10.5506/APhysPolB.42.609
Citations: PlumX Metrics


2010EB01      Phys.Rev. C 82, 034306 (2010)

S.Ebata, T.Nakatsukasa, T.Inakura, K.Yoshida, Y.Hashimoto, K.Yabana

Canonical-basis time-dependent Hartree-Fock-Bogoliubov theory and linear-response calculations

NUCLEAR STRUCTURE 20,22,24,26,28,30,32Ne, 24,26,28,30,32,34,36,38,40Mg; calculated quadrupole deformation parameters, pairing gaps, chemical potentials, E1 and isoscalar quadrupole strength distributions, photoabsorption cross sections from equations derived from canonical-basis (Cb) formulation of the time-dependent Hartree-Fock-Bogoliubov (TDHFB) theory.

doi: 10.1103/PhysRevC.82.034306
Citations: PlumX Metrics


2009IN03      Phys.Rev. C 80, 044301 (2009)

T.Inakura, T.Nakatsukasa, K.Yabana

Self-consistent calculation of nuclear photoabsorption cross sections: Finite amplitude method with Skyrme functionals in the three-dimensional real space

NUCLEAR REACTIONS 16O(γ, X), E=0-50 MeV; 24Mg, 40Ca(γ, X), E=10-35 MeV; 90Zr, 120Sn, 208Pb(γ, X), E=5-25 MeV; calculated photoabsorption σ, transition density contour maps, GDR energies and widths using Finite Amplitude method with different Skyrme energy functionals in the 3-dimensional real space. Comparison with experimental data.

doi: 10.1103/PhysRevC.80.044301
Citations: PlumX Metrics


2009IN04      Int.J.Mod.Phys. E18, 2088 (2009)

T.Inakura, T.Nakatsukasa, K.Yabana

Response functions in the continuum of deformed nuclei studied with the time-dependent density-functional calculations

NUCLEAR REACTIONS 16O, 24Mg, 28Si, 90Zr, 208Pb(γ, X), E<35 MeV; calculated photoabsorption σ, giant dipole resonance (GDR) peaks. Time-dependent density-functional theory (TDDFT).

doi: 10.1142/S0218301309014342
Citations: PlumX Metrics


2009IN05      Eur.Phys.J. A 42, 591 (2009)

T.Inakura, T.Nakatsukasa, K.Yabana

Systematic study of electric-dipole excitations with fully self-consistent Skyrme HF plus RPA from light-to-medium-mass deformed nuclei

NUCLEAR REACTIONS 16O, 24Mg, 28Si, 40Ca, 90Zr, 208Pb(γ, X), E<35MeV; calculated photoabsorption σ; analyzed deformation parameter. Finite amplitude method.

doi: 10.1140/epja/i2009-10811-9
Citations: PlumX Metrics


2007NA19      Phys.Rev. C 76, 024318 (2007)

T.Nakatsukasa, T.Inakura, K.Yabana

Finite amplitude method for the solution of the random-phase approximation

doi: 10.1103/PhysRevC.76.024318
Citations: PlumX Metrics


2006IN01      Nucl.Phys. A768, 61 (2006)

T.Inakura, H.Imagawa, Y.Hashimoto, S.Mizutori, M.Yamagami, K.Matsuyanagi

Mixed representation RPA calculation for octupole excitations on superdeformed states in the 40Ca and neutron-rich sulfur regions

NUCLEAR STRUCTURE 32,36,48,50S, 36Ar, 40Ca, 44Ti; calculated energy, J, octupole transition strengths for low-frequency negative-parity excitations built on superdeformed states. Self-consistent RPA approach, comparison with other models.

doi: 10.1016/j.nuclphysa.2006.01.008
Citations: PlumX Metrics


2006IN02      Phys.Scr. T125, 196 (2006)

T.Inakura

Mixed representation RPA calculation for negative-parity excitations built on superdeformed states in the 40Ca and neutron-rich sulfur regions

NUCLEAR STRUCTURE 32,36,48,50S, 36Ar, 40Ca, 44Ti; calculated negative-parity excitations built on superdeformed states. Fully self-consistent RPA.

doi: 10.1088/0031-8949/2006/T125/048
Citations: PlumX Metrics


2005IN02      Eur.Phys.J. A 25, Supplement 1, 545 (2005)

T.Inakura, H.Imagawa, Y.Hashimoto, M.Yamagami, S.Mizutori, K.Matsuyanagi

Soft octupole vibrations on superdeformed states in nuclei around 40Ca suggested by Skyrme-HF and self-consistent RPA calculations

NUCLEAR STRUCTURE 32S, 36Ar, 40Ca, 44Ti; calculated energy, J for low-frequency negative-parity excitations built on superdeformed states. Self-consistent RPA approach.

doi: 10.1140/epjad/i2005-06-111-4
Citations: PlumX Metrics


2005YO13      Eur.Phys.J. A 25, Supplement 1, 557 (2005)

K.Yoshida, T.Inakura, M.Yamagami, S.Mizutori, K.Matsuyanagi

Microscopic structure of negative-parity vibrations built on superdeformed states in sulfur isotopes close to the neutron drip line

NUCLEAR STRUCTURE 50S; calculated isoscalar octupole transition strengths, neutron density distributions, superdeformed states features. Woods-Saxon potential, RPA.

doi: 10.1140/epjad/i2005-06-142-9
Citations: PlumX Metrics


2004IN01      Int.J.Mod.Phys. E13, 157 (2004)

T.Inakura, M.Yamagami, K.Matsuyanagi, S.Mizutori, H.Imagawa, Y.Hashimoto

Static and dynamic non-axial octupole deformations suggested by Skyrme-HF and selfconsistent RPA calculations

NUCLEAR STRUCTURE 32,34,36,38,40,42,44,46,48,50S, 36Ar, 40Ca, 44Ti, 48Cr; calculated deformation energy curves. 32,36,48,50S; calculated levels, J, π, transition matrix elements. Skyrme-Hartree-Fock and RPA calculations.

doi: 10.1142/S0218301304001886
Citations: PlumX Metrics


2003IN03      Nucl.Phys. A728, 52 (2003)

T.Inakura, S.Mizutori, M.Yamagami, K.Matsuyanagi

Superdeformed bands in neutron-rich sulfur isotopes suggested by cranked Skyrme-Hartree-Fock calculations

NUCLEAR STRUCTURE 32,34,36,38,40,42,44,46,48,50S, 38Ar; calculated potential energy vs deformation. 32,36,50S deduced superdeformed configurations. Cranked Skyrme-Hartree-Fock approach.

doi: 10.1016/j.nuclphysa.2003.08.012
Citations: PlumX Metrics


2002IN04      Nucl.Phys. A710, 261 (2002)

T.Inakura, S.Mizutori, M.Yamagami, K.Matsuyanagi

Cranked Skyrme-Hartree-Fock calculation for superdeformed and hyperdeformed rotational bands in N = Z nuclei from 32S to 48Cr

NUCLEAR STRUCTURE 32S, 36Ar, 40Ca, 44Ti, 48Cr; calculated rotational bands deformation, related features. 32S, 36Ar, 40Ca, 44Ti; deduced superdeformed bands. 36Ar, 40Ca, 44Ti, 48Cr; deduced hyperdeformed bands. 40Ca deduced octupole softness. Symmetry-unrestricted cranked Skyrme-Hartree-Fock method.

doi: 10.1016/S0375-9474(02)01164-8
Citations: PlumX Metrics


2002IN06      Prog.Theor.Phys.(Kyoto), Suppl. 146, 567 (2002)

T.Inakura, M.Yamagami, S.Mizutori, K.Matsuyanagi

Cranked Skyrme-Hartree-Fock Calculations for Superdeformed and Hyperdeformed Bands in N = Z Nuclei 32S, 36Ar, 40Ca, and in Neutron Rich Nuclei, 14Be, 26Ne, 46S

NUCLEAR STRUCTURE 32,46S, 36Ar, 40Ca, 44Ti, 48Cr; calculated superdeformed and hyperdeformed bands energy vs spin. Cranked Skyrme-Hartree-Fock approach.

doi: 10.1143/PTPS.146.567
Citations: PlumX Metrics


Back to query form