NSR Query Results


Output year order : Descending
Format : Normal

NSR database version of March 18, 2024.

Search: Author = H.Nakada

Found 79 matches.

Back to query form



2024AB03      J.Phys.(London) G51, 035101 (2024)

K.Abe, H.Nakada

Pairing effects on pure rotational energy of nuclei

NUCLEAR STRUCTURE 34Mg, 80,100Zr; calculated g dependence of the deformation parameter, unprojected and the projected energies by applying the angular-momentum projection to the self-consistent axial mean-field solutions with the semi-realistic effective Hamiltonian M3Y-P6, the pairing effects on the pure rotational energy of nuclei, i.e. the rotational energy at a fixed intrinsic state; deduced the Hartree-Fock (HF) level that the individual terms of the Hamiltonian contribute to the rotational energy with ratios insensitive to nuclides except for light or weakly-deformed nuclei, the pair correlations significantly change the contributions, even for the well-deformed heavy nuclei.

doi: 10.1088/1361-6471/ad1a77
Citations: PlumX Metrics


2023NA25      Phys.Rev. C 108, 034603 (2023)

H.Nakada, K.Yoshida, K.Ogata

Description of the inclusive (d, d' x) reaction with the semiclassical distorted-wave model

doi: 10.1103/PhysRevC.108.034603
Citations: PlumX Metrics


2023OM04      Phys.Rev. C 108, 054308 (2023)

Y.Omura, H.Nakada, K.Abe, M.Takahashi

Low-energy quadrupole collectivity of Sn nuclei in self-consistent calculations with a semi-realistic interaction

doi: 10.1103/PhysRevC.108.054308
Citations: PlumX Metrics


2022AB24      Phys.Rev. C 106, 054317 (2022)

K.Abe, H.Nakada

Analysis of the Peierls-Yoccoz rotational energy of nuclei with a semi-realistic interaction

NUCLEAR STRUCTURE 24,34,36,38,40Mg, 80,100,102,104,106,108,110Zr, 152,154,156Sm, 154Nd; calculated levels, J, π, excitation energies of 2+ states, ratios of excitation energies E(4+)/E(2+) and general E(J+)/E(2+), ratios dependence on the quadrupole deformation parameter. Comparison to experimental values. Rotational energy of nuclei has been analyzed by the angular-momentum projection on the axial Hartree-Fock solutions. Self-consistently mean-field HF calculations with semi-realistic effective Hamiltonian M3Y-P6.

doi: 10.1103/PhysRevC.106.054317
Citations: PlumX Metrics


2022HI07      Phys.Rev. C 106, 034326 (2022)

Y.Hirayama, M.Mukai, Y.X.Watanabe, P.Schury, H.Nakada, J.Y.Moon, T.Hashimoto, S.Iimura, S.C.Jeong, M.Rosenbusch, M.Oyaizu, T.Niwase, M.Tajima, A.Taniguchi, M.Wada, H.Miyatake

In-gas-cell laser resonance ionization spectroscopy of 200, 201Pt

NUCLEAR MOMENTS 198,200,201Pt; measured time-of-flight (TOF) spectra for ions with mass-to-charge-ratios, laser resonance ionization spectra using Multireflection time-of-flight mass spectrograph (MRTOF-MS) at KEK Isotope Separation System (KISS) of RIKEN facility. 200,201Pt; deduced differential mean-square charge radii and isotope shifts relative to those of 198Pt, magnetic dipole and electric quadrupole moments of 201Pt, β2 deformation parameters Comparison with theoretical calculations using symmetry-conserving configuration-mixing (SCCM) with Gogny D1S energy density functionals (SCCM+Gogny D1S), finite-range droplet model (FRDM), and constrained-Hartree-Fock-Bogoliubov (CHFB) theory with five-dimensional collective Hamiltonian (5DCH) based on the Gogny D1 interaction. 201Pt; deduced most likely spin-parity of 5/2-. 198,200,201Pt produced in 198Pt(136Xe, X), E=10.75 MeV/nucleon multi-nucleon transfer reactions.

doi: 10.1103/PhysRevC.106.034326
Citations: PlumX Metrics


2021DA01      Phys.Rev.Lett. 126, 032502 (2021)

T.Day Goodacre, A.V.Afanasjev, A.E.Barzakh, B.A.Marsh, S.Sels, P.Ring, H.Nakada, A.N.Andreyev, P.Van Duppen, N.A.Althubiti, B.Andel, D.Atanasov, J.Billowes, K.Blaum, T.E.Cocolios, J.G.Cubiss, G.J.Farooq-Smith, D.V.Fedorov, V.N.Fedosseev, K.T.Flanagan, L.P.Gaffney, L.Ghys, M.Huyse, S.Kreim, D.Lunney, K.M.Lynch, V.Manea, Y.Martinez Palenzuela, P.L.Molkanov, M.Rosenbusch, R.E.Rossel, S.Rothe, L.Schweikhard, M.D.Seliverstov, P.Spagnoletti, C.Van Beveren, M.Veinhard, E.Verstraelen, A.Welker, K.Wendt, F.Wienholtz, R.N.Wolf, A.Zadvornaya, K.Zuber

Laser Spectroscopy of Neutron-Rich 207, 208Hg Isotopes: Illuminating the Kink and Odd-Even Staggering in Charge Radii across the N = 126 Shell Closure

NUCLEAR MOMENTS 202,203,206,207,208Hg; measured frequencies; deduced hyperfine spectra, mean-square charge radii. Comparison with relativistic Hartree-Bogoliubov and nonrelativistic Hartree-Fock-Bogoliubov approaches, available data.

doi: 10.1103/PhysRevLett.126.032502
Citations: PlumX Metrics

Data from this article have been entered in the XUNDL database. For more information, click here.


2020NA08      Int.J.Mod.Phys. E29, 1930008 (2020)

H.Nakada

Properties of exotic nuclei and their linkage to the nucleonic interaction

NUCLEAR STRUCTURE 16,24O, 24,40Mg, 40,48Ca, 56Ni, 90Zr, 100,132Sn, 208Pb; calculated binding energies, r.m.s. matter and charge radii, level energies, J, π, neutron separation energies. Comparison with available data.

doi: 10.1142/S021830131930008X
Citations: PlumX Metrics


2019NA21      Phys.Rev. C 100, 044310 (2019)

H.Nakada

Irregularities in nuclear radii at magic numbers

NUCLEAR STRUCTURE Z=8, N=6-16; Z=20, N=15-45; Z=28, N=20-60; Z=50, N=50-90; Z=82, N=100-140; N=20, Z=14-28; N=28, Z=16-30; N=50, Z=25-50; N=82, Z=35-70; N=126, Z=55-95; calculated differential mean-square charge radii, Z and N dependence of rms matter radii using Hartree-Fock-Bogolyubov approach with D1S, M3Y-P6, and M3Y-P6a interactions. Comparison with results from RMF theory, and with experimental data; investigated influence of magic numbers on nuclear radii; deduced evidence for the 3N-force effects on the l-s splitting.

doi: 10.1103/PhysRevC.100.044310
Citations: PlumX Metrics


2018MI21      Phys.Rev. C 98, 064318 (2018)

S.Miyahara, H.Nakada

Shape evolution of Zr nuclei and roles of the tensor force

NUCLEAR STRUCTURE 80,82,84,86,88,90,92,94,96,98,100,102,104,106,108,110,112,114,116,118,120,122Zr; calculated deformations, energies as function of intrinsic mass quadrupole moment, proton and neutron single particle energies using axial Hartree-Fock calculations with M3Y-P6 interaction. Comparison with other theoretical predictions.

doi: 10.1103/PhysRevC.98.064318
Citations: PlumX Metrics


2018NA17      Phys.Rev. C 98, 011301 (2018)

H.Nakada, K.Takayama

Intertwined effects of pairing and deformation on neutron halos in magnesium isotopes

NUCLEAR STRUCTURE 34,35,36,37,38,40Mg; calculated rms matter radii, deformation parameters, and density distributions using self-consistent Hartree-Fock-Bogolyubov calculations, assuming the axial symmetry, with M3Y-P6 interaction. Comparison with experimental values, and with other theoretical predictions. 37Mg; discussed neutron halo, and p-wave contributions.

doi: 10.1103/PhysRevC.98.011301
Citations: PlumX Metrics


2017TS04      Prog.Theor.Exp.Phys. 2017, 073D02 (2017)

Y.Tsukioka, H.Nakada

Analytical and numerical assessment of the accuracy of the approximated nuclear symmetry energy in the Hartree-Fock theory

doi: 10.1093/ptep/ptx090
Citations: PlumX Metrics


2016AL09      Phys.Rev. C 93, 044320 (2016)

Y.Alhassid, G.F.Bertsch, C.N.Gilbreth, H.Nakada

Benchmarking mean-field approximations to level densities

NUCLEAR STRUCTURE 148Sm, 162Dy; calculated canonical excitation energies, mean square angular momentum and second moments of angular momentum, entropies, as function of inverse temperature, s-wave resonance spacings, state densities, particle-projected frozen-potential (FP) density versus excitation energy. Shell model Monte Carlo (SMMC) and Hartree-Fock (HF) calculations. Assessment of accuracy of finite-temperature mean-field theory. Data files presented in supplemental material depository. Benchmarking of level densities in mean-field approximations for heavy spherical (e.g. 148Sm) and heavy deformed (e.g. 162Dy) nuclei. Comparison with available experimental data.

doi: 10.1103/PhysRevC.93.044320
Citations: PlumX Metrics


2016NA24      Eur.Phys.J. A 52, 185 (2016)

H.Nakada, K.Sugiura, T.Inakura, J.Margueron

Can realistic interaction be useful for nuclear mean-field approaches?

NUCLEAR STRUCTURE 40,48,52,80Ca; calculated energy difference between p1s1/2 and sp0d3/2 states. Ca, Sn, Pb; calculated isotope shifts. M3Y-type semi-realistic interaction within mean-field approach. Compared with available data.

doi: 10.1140/epja/i2016-16185-y
Citations: PlumX Metrics


2016SU20      Phys.Rev. C 94, 024343 (2016)

Y.Suzuki, H.Nakada, S.Miyahara

Effects of a realistic tensor force on nuclear quadrupole deformation near the "shore" of the island of inversion

NUCLEAR STRUCTURE 30Ne, 32,40Mg, 34,42Si, 44S; calculated intrinsic mass quadrupole moment, deformation parameter β, and energies at the lowest and second lowest minima, proton and neutron single-particle levels; deduced effects of the tensor force on deformation. Constrained Hartree-Fock calculations assuming axial symmetry with M3Y-type semirealistic interaction containing a realistic tensor force. Comparison with available experimental results.

doi: 10.1103/PhysRevC.94.024343
Citations: PlumX Metrics


2015AL18      Phys.Rev. C 92, 024307 (2015)

Y.Alhassid, M.Bonett-Matiz, S.Liu, H.Nakada

Direct microscopic calculation of nuclear level densities in the shell model Monte Carlo approach

NUCLEAR STRUCTURE 56Fe, 60,62Ni, 60Co, 162Dy; calculated microscopic nuclear level densities, and moment of inertia at finite excitation energy in the shell model Monte Carlo (SMMC) approach. Comparison with experimental data.

doi: 10.1103/PhysRevC.92.024307
Citations: PlumX Metrics


2015FU08      Phys.Rev. C 91, 064316 (2015)

Y.Fujita, H.Fujita, T.Adachi, G.Susoy, A.Algora, C.L.Bai, G.Colo, M.Csatlos, J.M.Deaven, E.Estevez Aguado, C.J.Guess, J.Gulyas, K.Hatanaka, K.Hirota, M.Honma, D.Ishikawa, A.Krasznahorkay, H.Matsubara, R.Meharchand, F.Molina, H.Nakada, H.Okamura, H.J.Ong, T.Otsuka, G.Perdikakis, B.Rubio, H.Sagawa, P.Sarriguren, C.Scholl, Y.Shimbara, E.J.Stephenson, T.Suzuki, A.Tamii, J.H.Thies, K.Yoshida, R.G.T.Zegers, J.Zenihiro

High-resolution study of Gamow-Teller excitations in the 42Ca (3He, t) 42Sc reaction and the observation of a "low-energy super-Gamow-Teller state"

NUCLEAR REACTIONS 42Ca(3He, t), E=140 MeV/nucleon; measured triton spectra, σ(θ) using Grand Raiden spectrometer at RCNP facility. 42Sc; deduced levels, J, π, IAS, isospin of excited GT states, L-transfers, B(GT), configurations. Comparison of B(GT) values with those for 44,48Sc, and from 42Ti β+ decay to 42Sc. Isospin assignments made in comparison with results from 42Ca(p, p') reaction. Comparison with shell-model calculations using GXPF1J interaction. 12N, 16F, 40,44Sc; observed peaks from contaminants in the target material, and appropriate corrections applied to triton spectra for 42Sc.

doi: 10.1103/PhysRevC.91.064316
Citations: PlumX Metrics

Data from this article have been entered in the XUNDL database. For more information, click here.


2015IN03      Phys.Rev. C 92, 064302 (2015)

T.Inakura, H.Nakada

Constraining the slope parameter of the symmetry energy from nuclear structure

NUCLEAR STRUCTURE 16,22,24O, 40,48,54,70Ca, 68,78,84Ni, 132,140,176Sn, 208Pb; calculated correlation coefficients of neutron skin thickness, cross section of low-energy dipole (LED), dipole polarizability αD, and αDS0 with the slope parameter of the symmetry energy S0. Hartree-Fock plus random-phase approximation with various effective interactions.

doi: 10.1103/PhysRevC.92.064302
Citations: PlumX Metrics


2015MA48      Phys.Rev.Lett. 115, 102501 (2015)

H.Matsubara, A.Tamii, H.Nakada, T.Adachi, J.Carter, M.Dozono, H.Fujita, K.Fujita, Y.Fujita, K.Hatanaka, W.Horiuchi, M.Itoh, T.Kawabata, S.Kuroita, Y.Maeda, P.Navratil, P.von Neumann-Cosel, R.Neveling, H.Okamura, L.Popescu, I.Poltoratska, A.Richter, B.Rubio, H.Sakaguchi, S.Sakaguchi, Y.Sakemi, Y.Sasamoto, Y.Shimbara, Y.Shimizu, F.D.Smit, K.Suda, Y.Tameshige, H.Tokieda, Y.Yamada, M.Yosoi, J.Zenihiro

Nonquenched Isoscalar Spin-M1 Excitations in sd-Shell Nuclei

NUCLEAR REACTIONS 24Mg, 28Si, 32S, 36Ar(p, p'), E=295 MeV; measured reaction products, Ep, Ip; deduced σ(θ), σ(θ, E), the squared spin M1 nuclear transition matrix elements, no quenching for isoscalar spin M1 transitions, while the matrix elements for isovector spin M1 transitions are quenched by an amount comparable with the analogous Gamow-Teller transitions on those target nuclei. Comparison with no-core shell model (NCSM) calculations.

doi: 10.1103/PhysRevLett.115.102501
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 datasetE2491. Data from this article have been entered in the XUNDL database. For more information, click here.


2015NA05      Phys.Rev. C 91, 021302 (2015)

H.Nakada, T.Inakura

Effects of three-nucleon spin-orbit interaction on isotope shifts of Pb nuclei

NUCLEAR STRUCTURE 188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214Pb; calculated isotope shifts, occupation probabilities on n1g9/2 and n0i11/2 orbitals. Effects of the 3N interaction. Hartree-Fock-Bogoliubov calculations using semirealistic M3Y-P6 interaction. Comparison with experimental data.

doi: 10.1103/PhysRevC.91.021302
Citations: PlumX Metrics


2015NA17      Phys.Rev. C 92, 044307 (2015)

H.Nakada

Further evidence for three-nucleon spin-orbit interaction in isotope shifts of nuclei with magic proton numbers

NUCLEAR STRUCTURE 38,39,40,41,42,43,44,45,46,47,48,50,52Ca, 56,57,58,59,60,61,62,63,64,65,66,67,68Ni, 108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135Sn, 188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214Pb; calculated isotope shifts. 16O, 40Ca, 60Ni, 120Sn, 208Pb; calculated root-mean-square charge radii of reference nuclei. Hartree-Fock-Bogolyubov calculations with M3Y-P6 and M3Y-P6a interactions. Effects of the density-dependent LS interaction. Comparison with experimental data.

doi: 10.1103/PhysRevC.92.044307
Citations: PlumX Metrics


2015OZ01      Phys.Rev. C 91, 034329 (2015)

C.Ozen, Y.Alhassid, H.Nakada

Nuclear state densities of odd-mass heavy nuclei in the shell model Monte Carlo approach

NUCLEAR STRUCTURE 143,145,147,149Nd, 149,150,151,153,155Sm; calculated thermal excitation energy and partition function as function of temperature, level densities versus excitation energy. Shell model Monte Carlo (SMMC) calculations. Comparison with experimental data.

doi: 10.1103/PhysRevC.91.034329
Citations: PlumX Metrics


2014AL12      Nucl.Data Sheets 118, 233 (2014)

Y.Alhassid, C.Ozen, H.Nakada

Calculating Level Densities of Heavy Nuclei by the Shell Model Monte Carlo Method

NUCLEAR STRUCTURE 148,150,152,154Sm; calculated average total nuclear spin. 143,144,145,146,147,148,149,150,152Nd, 148,149,150,151,152,153,154,155Sm; calculated state density vs excitation energy, even-mass nuclei collective enhancement factor using Monte Carlo microscopic approach. Compared with available data.

doi: 10.1016/j.nds.2014.04.045
Citations: PlumX Metrics


2014NA09      Prog.Theor.Exp.Phys. 2014, 033D02 (2014)

H.Nakada, K.Sugiura

Predicting magic numbers of nuclei with semi-realistic nucleon-nucleon interactions

NUCLEAR STRUCTURE N=6, 14, 16, 20, 28, 32, 34, 40, 50, 56, 58, 82, 90, 124, 126, 164, 184;Z=14, 16, 20, 28, 34, 38, 40, 50, 58, 64, 82, 92, 120, 124, 126; calculated nuclear properties, vanishing pair correlations in the spherical HFB regime; deduced magic numbers.

doi: 10.1093/ptep/ptu027
Citations: PlumX Metrics


2013NA03      Phys.Rev. C 87, 014336 (2013)

H.Nakada

Semi-realistic nucleon-nucleon interactions with improved neutron-matter properties

NUCLEAR STRUCTURE 16,24O, 40,48Ca, 90Zr, 100,132Sn, 208Pb; calculated binding energies, rms matter radii, single-particle energies, proton and neutron rms radii. Z=8, N=7-18; Z=20, N=17-50; Z=28, N=24-62; Z=50, N=53-92; Z=82, N=97-134; calculated S(n). N=20, Z=14-28; N=28, Z=16-30; N=50, Z=28-50; N=82, Z=47-72; N=126, Z=70-94; calculated S(p). Z=82, N=116-134; calculated isotope shifts. Discussed tensor-force effects on shell structure. HFB calculations with new parameter sets of semi-realistic effective interactions. Comparison with experimental data.

doi: 10.1103/PhysRevC.87.014336
Citations: PlumX Metrics


2013NA06      Phys.Rev. C 87, 034302 (2013)

H.Nakada, T.Inakura, H.Sawai

Crossover from skin mode to proton-neutron mode in E1 excitations of neutron-rich nuclei

NUCLEAR STRUCTURE 16,22,24O, 48,52,60,70Ca, 68,78,84,86Ni, 90Zr, 132Sn; calculated neutron and proton density distributions, transition densities, S(E1), B(E1) using random phase approximation (RPA) with Hartree-Fock (HF) wave functions.

doi: 10.1103/PhysRevC.87.034302
Citations: PlumX Metrics


2013NA17      Phys.Rev. C 87, 067305 (2013)

H.Nakada, K.Sugiura, J.Margueron

Tensor-force effects on single-particle levels and proton bubble structure around the Z or N=20 magic number

NUCLEAR STRUCTURE 34Si, 36S, 46Ar, 48Ca; calculated proton density distributions. Z=20, N=20-28, 40, 50; calculated single particle energy differences between 1s1/2 and 0d3/2 proton orbitals, tensor force effects. 34Si; possible proton bubble structure. Hartree-Fock (HF) and Hartree-Fock-Bogolyubov (HFB) calculations using semirealistic NN interactions including a realistic tensor force.

doi: 10.1103/PhysRevC.87.067305
Citations: PlumX Metrics


2013NA19      J.Phys.:Conf.Ser. 445, 012011 (2013)

H.Nakada

Mean-field and RPA approaches to stable and unstable nuclei with semi-realistic NN interactions

NUCLEAR STRUCTURE 16O, 40,48Ca, 90Zr, 208Pb; calculated binding energy, mass excess, rms matter radius using M3Y-type semi-realistic NN interactions and RPA. Compared to data. 208Pb; calculated B(M1) using M3Y-type semi-realistic NN interaction. Compared to data.

doi: 10.1088/1742-6596/445/1/012011
Citations: PlumX Metrics


2013OZ01      Phys.Rev.Lett. 110, 042502 (2013)

C.Ozen, Y.Alhassid, H.Nakada

Crossover from Vibrational to Rotational Collectivity in Heavy Nuclei in the Shell-Model Monte Carlo Approach

NUCLEAR STRUCTURE 148,150,152,154Sm, 144,146,148,150,152Nd; calculated the crossover from vibrational to rotational collectivity in the low-temperature behavior. HFB approximation.

doi: 10.1103/PhysRevLett.110.042502
Citations: PlumX Metrics


2013SH08      Phys.Rev. C 87, 024301 (2013)

T.Shizuma, T.Hayakawa, H.Ohgaki, H.Toyokawa, T.Komatsubara, N.Kikuzawa, T.Inakura, M.Honma, H.Nakada

Dipole strength distribution in 56Fe

NUCLEAR REACTIONS 56Fe(polarized γ, γ'), E=7.6, 8.6, 10.0 MeV; measured Eγ, Iγ, widths, azimuthal asymmetry at TERAS facility in Tsukuba. 56Fe; deduced levels, PDR, J, π, multipolarity, B(M1), B(E1); summed dipole strengths. Comparison with random-phase approximation (RPA) with the Skyrme interaction, and shell-model calculations in the pf shell using the GXPF1J and KB3G effective interactions.

doi: 10.1103/PhysRevC.87.024301
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 datasetK2408. Data from this article have been entered in the XUNDL database. For more information, click here.


2012IW02      Phys.Rev.Lett. 108, 262501 (2012)

C.Iwamoto, H.Utsunomiya, A.Tamii, H.Akimune, H.Nakada, T.Shima, T.Yamagata, T.Kawabata, Y.Fujita, H.Matsubara, Y.Shimbara, M.Nagashima, T.Suzuki, H.Fujita, M.Sakuda, T.Mori, T.Izumi, A.Okamoto, T.Kondo, B.Bilgier, H.C.Kozer, Y.-W.Lui, K.Hatanaka

Separation of Pygmy Dipole and M1 Resonances in 90Zr by a High-Resolution Inelastic Proton Scattering Near 0 degrees

NUCLEAR REACTIONS 90Zr(p, p'), E=295 MeV; measured reaction products, proton spectra; deduced E1 and M1 strength distributions, fine structure, B(E1), pigmy dipole and M1 resonances, resonance parameters. ECIS95 calculations.

doi: 10.1103/PhysRevLett.108.262501
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 datasetE2381.


2012NA22      Prog.Theor.Phys.(Kyoto), Suppl. 196, 371 (2012)

H.Nakada

Mean-Field and RPA Approaches to Stable and Unstable Nuclei with Semi-Realistic NN Interaction

NUCLEAR STRUCTURE 208Pb, 90Zr, 100,102,104,106,108,110,112,114,116,118,120,122,124,126,128,130Sn; calculated B(E2), energy levels, J, π. M3Y-type semi-realistic NN interactions in the mean-field and RPA framework.

doi: 10.1143/PTPS.196.371
Citations: PlumX Metrics


2011NA10      Phys.Rev. C 83, 031302 (2011)

H.Nakada, M.Yamagami

Coulombic effect and renormalization in nuclear pairing

NUCLEAR STRUCTURE Z=10-26, N=20; Z=14-30, N=28; Z=22-48, N=50; Z=46-72, N=82; Z=64-94, N=126; calculated nuclear pairing energies, even-odd mass differences for even-even neutron-closed shell nuclei using Hartree-Fock-Bogolyubov approach and Gogny-D1S plus Coulomb interaction. Effect of the Coulomb force on the nuclear pairing properties.

doi: 10.1103/PhysRevC.83.031302
Citations: PlumX Metrics


2011SH45      J.Phys.:Conf.Ser. 312, 092056 (2011)

T.Shizuma, T.Hayakawa, H.Ohgaki, H.Toyokawa, T.Komatsubara, A.Tamii, H.Nakada

Nuclear resonance fluorescence measurements by quasi-monochromatic linearly polarized photon beams

NUCLEAR REACTIONS 208Pb(polarized γ, γ'), E=5.5, 6.1, 6.9, 7.4 MeV; measured Eγ, Iγ(θ) from inverse laser Compton scattering polarized γ using nuclear resonance fluorescence; deduced analyzing power, levels, J, π, decay width, reduced transition strength B(σλ), B(M1).

doi: 10.1088/1742-6596/312/9/092056
Citations: PlumX Metrics


2010NA03      Phys.Rev. C 81, 027301 (2010); Erratum Phys.Rev. C 82, 029903 (2010)

H.Nakada

Modified parameter sets of M3Y-type semi-realistic nucleon-nucleon interactions for nuclear structure studies

NUCLEAR STRUCTURE 16,24O, 40,48Ca, 90Zr, 132Sn, 208Pb; calculated binding energies, rms radii. 101,103,105,107,109,111,113,115,117,119,121,123,125,127,129,131,133,135,137,139,141Sn; calculated odd-even mass difference. 38,40,42,44,46,48,50,52,54,56,58,60,62,64,66,68,70Ca, 48,50,52,54,56,58,60,62,64,66,68,70,72,74,76,78,80,82,84,86,88,90,92,94Ni; calculated Hartree-Fock and Hartree-Fock Bogoliubov energies. Calculated new parameter sets for M3Y-type semirealistic nucleon-nucleon effective interactions.

doi: 10.1103/PhysRevC.81.027301
Citations: PlumX Metrics


2010NA10      Phys.Rev. C 81, 051302 (2010)

H.Nakada

Shell structure in neutron-rich Ca and Ni nuclei under semi-realistic mean fields

NUCLEAR STRUCTURE Z=20, N=18-50; Z=28, N=20-62; Z=18-30, N=32; Z=18-40, N=40; Z=24-40, N=58; calculated neutron single-particle energies and shell structure of neutron-rich nuclei using spherical Hartree-Fock calculations with semi realistic NN interactions. 78Ni; calculated level, B(E2) of first 2+. Discussed magicity.

doi: 10.1103/PhysRevC.81.051302
Citations: PlumX Metrics


2009HA14      Phys.Rev. C 79, 059802 (2009)

T.Hayakawa, T.Shizuma, T.Kajino, K.Ogawa, H.Nakada

Reply on "138La-138Ce-136Ce nuclear cosmochronometer of the supernova neutrino process"

doi: 10.1103/PhysRevC.79.059802
Citations: PlumX Metrics


2009LO04      Phys.Lett. B 680, 428 (2009)

W.H.Long, T.Nakatsukasa, H.Sagawa, J.Meng, H.Nakada, Y.Zhang

Non-local mean field effect on nuclei near Z=64 sub-shell

NUCLEAR STRUCTURE 132Sn, 134Te, 136Xe, 138Ba, 140Ce, 142Nd, 144Sm, 146Gd, 148Dy, 150Er, 152Yb, 154Hf, 156W; calculated (pseudo-)spin-orbit splitting and proton state energy differences for N=82 isotones using density dependent relativistic HartreeFock model. Comparison with other models and experimental data.

doi: 10.1016/j.physletb.2009.09.034
Citations: PlumX Metrics


2009NA35      Nucl.Phys. A828, 283 (2009)

H.Nakada, K.Mizuyama, M.Yamagami, M.Matsuo

RPA calculations with Gaussian expansion method

NUCLEAR STRUCTURE 40,48,60Ca; calculated excitation energy and transition strength. Comparison of several methods.

doi: 10.1016/j.nuclphysa.2009.07.010
Citations: PlumX Metrics


2009NA43      Eur.Phys.J. A 42, 565 (2009)

H.Nakada

Mean-field and RPA approaches to stable and unstable nuclei with semi-realistic interactions

NUCLEAR STRUCTURE 16O, 40,48Ca, 208Pb; calculated binding energies, rms radii. 100,102,104,106,108,110,112,114,116,118,120,122,124,126,128,130,132,134,136,138,140,142,144Sn; calculated proton single-particle levels. 16,24O; calculated levels, J, π. 208Pb; calculated B(M1). Comparison with data.

doi: 10.1140/epja/i2008-10750-y
Citations: PlumX Metrics


2008AL25      Phys.Rev.Lett. 101, 082501 (2008)

Y.Alhassid, L.Fang, H.Nakada

Heavy Deformed Nuclei in the Shell Model Monte Carlo Method

NUCLEAR STRUCTURE 162Dy; calculated ground state energy, moment of inertia, level density; comparison with experimental results; shell model Monte Carlo approach;

doi: 10.1103/PhysRevLett.101.082501
Citations: PlumX Metrics


2008HA20      Phys.Rev. C 77, 065802 (2008)

T.Hayakawa, T.Shizuma, T.Kajino, K.Ogawa, H.Nakada

138La-138Ce-136Ce nuclear cosmochronometer of the supernova neutrino process

NUCLEAR STRUCTURE 138La, 140Pr; calculated levels, J, π. Evaluated the 138La-138Ce-136Ce chain as a nuclear cosmochronometer. Comparison with experimental data.

doi: 10.1103/PhysRevC.77.065802
Citations: PlumX Metrics


2008NA18      Nucl.Phys. A808, 47 (2008)

H.Nakada

Application of Gaussian expansion method to nuclear mean-field calculations with deformation

NUCLEAR STRUCTURE 16,24O, 40,48Ca, 90Zr, 208Pb; calculated binding energy, radii, density distribution. 22,24,26,28,30,32,34,36,38Mg; calculated binding energy, quadrupole moment, radii, density distribution. Application of the Gaussian expansion method to Hartree-Fock and Hartree-Fock-Bogolyubov calculations.

doi: 10.1016/j.nuclphysa.2008.05.011
Citations: PlumX Metrics


2008NA24      Phys.Rev. C 78, 051304 (2008); Publishers Note Phys.Rev. C 78, 069907 (2008)

H.Nakada, Y.Alhassid

Isospin-projected nuclear level densities by the shell model Monte Carlo method

NUCLEAR STRUCTURE 58Cu, 70Zn; calculated level densities. Shell Model Monte Carlo approach.

doi: 10.1103/PhysRevC.78.051304
Citations: PlumX Metrics


2008NA25      Phys.Rev. C 78, 054301 (2008)

H.Nakada

Mean-field approach to nuclear structure with semi-realistic nucleon-nucleon interactions

NUCLEAR STRUCTURE 16,24O, 40,48Ca, 90Zr, 132Sn, 208Pb; calculated binding energies, rms matter radii. 14,16,18,20,22,24,26,28O, 40Ca, 208Pb; calculated single-particle energies. 18,20,22,24,26O; calculated two-neutron separation energy. Comparison with experimental data. Mean-field Hartree-Fock, Hartree-Fock-Bogoliubov calculations.

NUCLEAR STRUCTURE 100,102,104,106,108,110,112,114,116,118,120,122,124,126,128,130,132,134,136,138,140Sn; calculated mass differences. Comparison with experimental data.

doi: 10.1103/PhysRevC.78.054301
Citations: PlumX Metrics


2008SH23      Phys.Rev. C 78, 061303 (2008)

T.Shizuma, T.Hayakawa, H.Ohgaki, H.Toyokawa, T.Komatsubara, N.Kikuzawa, A.Tamii, H.Nakada

Fine structure of the magnetic-dipole-strength distribution in 208Pb

NUCLEAR REACTIONS 208Pb(polarized γ, γ), E=7.0-7.4 MeV; measured Eγ, Iγ, angular distributions, azimuthal asymmetry, B(M1), B(E1), widths. 208Pb; deduced levels, J, π.

doi: 10.1103/PhysRevC.78.061303
Citations: PlumX Metrics

Data from this article have been entered in the XUNDL database. For more information, click here.


2007AL51      Phys.Rev.Lett. 99, 162504 (2007)

Y.Alhassid, S.Liu, H.Nakada

Spin Projection in the Shell Model Monte Carlo Method and the Spin Distribution of Nuclear Level Densities

NUCLEAR STRUCTURE 55,56Fe, 60Co; calculated spin distributions of level densities using the shell model monte carlo approach.

doi: 10.1103/PhysRevLett.99.162504
Citations: PlumX Metrics


2006NA03      Nucl.Phys. A764, 117 (2006); Erratum Nucl.Phys. A801, 169 (2008)

H.Nakada

Hartree-Fock-Bogolyubov calculations with Gaussian expansion method

NUCLEAR STRUCTURE 14,15,16,17,18,19,20,21,22,23,24,25,26O; calculated energies, radii, density distributions. 24O, 30Si, 52Ca, 60Ni; calculated neutron pair energies. 24O, 26Ne, 28Mg, 30Si, 32S, 52Ca, 54Ti, 56Cr, 58Fe, 60Ni; calculated neutron quasi-particle energies. Hartree-Fock-Bogolyubov calculations.

doi: 10.1016/j.nuclphysa.2005.09.007
Citations: PlumX Metrics


2006NA40      Phys.Rev.C 74, 061301 (2006)

H.Nakada, K.Tanabe

New Bardeen-Cooper-Schrieffer-type theory at finite temperature with particle-number conservation

doi: 10.1103/PhysRevC.74.061301
Citations: PlumX Metrics


2006NA41      Int.J.Mod.Phys. E15, 1761 (2006)

H.Nakada, K.Tanabe

BCS-type theory in canonical ensembles

doi: 10.1142/S0218301306005290
Citations: PlumX Metrics


2005ES09      Phys.Rev. C 72, 044303 (2005)

K.Esashika, H.Nakada, K.Tanabe

Effects of particle-number conservation on heat capacity of nuclei

NUCLEAR STRUCTURE 161,162Dy; calculated heat capacities, other thermal properties. Finite-temperature BCS theory with particle number projection.

doi: 10.1103/PhysRevC.72.044303
Citations: PlumX Metrics


2005TA05      Phys.Rev. C 71, 024314 (2005)

K.Tanabe, H.Nakada

Quantum number projection at finite temperature via thermofield dynamics

doi: 10.1103/PhysRevC.71.024314
Citations: PlumX Metrics


2004SH15      Eur.Phys.J. A 20, 207 (2004)

T.Shizuma, Z.G.Gan, K.Ogawa, H.Nakada, M.Oshima, Y.Toh, T.Hayakawa, Y.Hatsukawa, M.Sugawara, Y.Utsuno, Z.Liu

A new isomer in 136Ba populated by deep inelastic collisions

NUCLEAR REACTIONS 139La(82Se, X)136Ba, E=450 MeV; measured prompt and delayed Eγ, Iγ, γγ-coin. 136Ba deduced levels, J, π, isomer T1/2, B(E2). Comparisons with shell model predictions.

doi: 10.1140/epja/i2003-10163-6
Citations: PlumX Metrics

Data from this article have been entered in the XUNDL database. For more information, click here.


2003FU07      Phys.Rev. C 67, 064312 (2003)

Y.Fujita, Y.Shimbara, A.F.Lisetskiy, T.Adachi, G.P.A.Berg, P.von Brentano, H.Fujimura, H.Fujita, K.Hatanaka, J.Kamiya, T.Kawabata, H.Nakada, K.Nakanishi, Y.Shimizu, M.Uchida, M.Yosoi

Analogous Gamow-Teller and M1 transitions in 26Mg, 26Al, and 26Si

NUCLEAR REACTIONS 26Mg(3He, t), E=140 MeV; measured triton spectrum, σ(E). 26Al deduced Gamow-Teller strength distribution, B(M1). High-resolution spectrometer.

NUCLEAR STRUCTURE 26Mg, 26Al, 26Si analyzed Gamow-Teller and M1 transition strengths, isobaric analog states. Particle-rotor model calculations.

doi: 10.1103/PhysRevC.67.064312
Citations: PlumX Metrics

Data from this article have been entered in the XUNDL database. For more information, click here.


2003HO31      Phys.Rev. C 68, 054306 (2003); Erratum Phys.Rev. C 68, 069901 (2003)

L.Hou, T.Ishii, M.Asai, J.Hori, K.Ogawa, H.Nakada

Measurement of B(M1) for the πp3/2νp1/2-1 doublet in 68Cu

RADIOACTIVITY 68mCu(IT) [from 68Zn(n, p)]; measured Eγ, Iγ, γγ-coin. 68Cu deduced levels J, π, T1/2, configurations, B(M1). Comparison with model predictions.

doi: 10.1103/PhysRevC.68.054306
Citations: PlumX Metrics


2003NA12      Phys.Rev. C 68, 014316 (2003)

H.Nakada

Hartree-Fock approach to nuclear matter and finite nuclei with M3Y-type nucleon-nucleon interactions

NUCLEAR STRUCTURE 208Pb; calculated single-particle level energies. M3Y-type interactions, density-dependent contact term.

doi: 10.1103/PhysRevC.68.014316
Citations: PlumX Metrics


2003NA24      Nucl.Phys. A718, 691c (2003)

H.Nakada, Y.Alhassid

Microscopic Nuclear Level Densities by the Shell Model Monte Carlo Method

NUCLEAR STRUCTURE 56Fe, 58Cu, 60Ni, 68Zn; calculated level densities. Shell Model Monte Carlo approach.

doi: 10.1016/S0375-9474(03)00890-X
Citations: PlumX Metrics


2003NA36      Nucl.Phys. A722, 117c (2003)

H.Nakada

Hartree-Fock calculations on unstable nuclei with several types of effective interactions

doi: 10.1016/S0375-9474(03)01346-0
Citations: PlumX Metrics


2002MA80      Prog.Theor.Phys.(Kyoto), Suppl. 146, 595 (2002)

T.Matsuzawa, H.Nakada, K.Ogawa

Role of the Z = 64 Core Excitation in High-Spin Isomers in Proton-Rich N ∼ 82 Nuclei

NUCLEAR STRUCTURE 152Yb, 145Eu, 147Tb, 154Lu; analyzed high-spin isomers B(E2), configurations; deduced core excitation effects.

doi: 10.1143/PTPS.146.595
Citations: PlumX Metrics


2002NA03      Nucl.Phys. A699, 511 (2002); Erratum Nucl.Phys. A714, 696 (2003)

H.Nakada, M.Sato

A Method of Implementing Hartree-Fock Calculations with Zero- and Finite-Range Interactions

NUCLEAR STRUCTURE 16,24,28O; calculated energies, radii, density distributions. 14,16,18,20,22,24,26,28O; calculated neutron single-particle energies, two-neutron separation energies. Hartree-Fock calculations.

doi: 10.1016/S0375-9474(01)01283-0
Citations: PlumX Metrics


2002NA29      Prog.Theor.Phys.(Kyoto), Suppl. 146, 442 (2002)

H.Nakada

A Hartree-Fock Calculation with Yukawa Interaction

NUCLEAR STRUCTURE 14,16,18,20,22,24,26,28O; calculated two-neutron separation energies, matter radii.

doi: 10.1143/PTPS.146.442
Citations: PlumX Metrics


2000AL13      Phys.Rev.Lett. 84, 4313 (2000)

Y.Alhassid, G.F.Bertsch, S.Liu, H.Nakada

Parity Dependence of Nuclear Level Densities

NUCLEAR STRUCTURE 56Fe, 60Ni, 68Zn; calculated level densities, occupation numbers, parity dependences. Simple formula, comparison with Monte Carlo shell model results.

doi: 10.1103/PhysRevLett.84.4313
Citations: PlumX Metrics


2000MA90      Phys.Rev. C62, 054304 (2000); Erratum Phys.Rev. C63, 029902 (2001)

T.Matsuzawa, H.Nakada, K.Ogawa, G.Momoki

Seniority Isomerism in Proton-Rich N = 82 Isotones and Its Indication to Stiffness of the Z = 64 Core

NUCLEAR STRUCTURE 145Eu, 146Gd, 147Tb, 148Dy, 149Ho, 150Er, 151Tm, 152Yb, 153Lu, 154Hf; calculated levels, J, π, isomer decay B(E2); deduced role of core excitation. Shell model, comparisons with data.

doi: 10.1103/PhysRevC.62.054304
Citations: PlumX Metrics


1999AL34      Phys.Rev.Lett. 83, 4265 (1999)

Y.Alhassid, S.Liu, H.Nakada

Particle-Number Reprojection in the Shell Model Monte Carlo Method: Application to nuclear level densities

NUCLEAR STRUCTURE 50,51,52,53,54,55,56Mn, 52,53,54,55,56,57,58Fe, 54,55,56,57,58,59,60Co; calculated level density vs excitation energy, related parameters. Shell model Monte Carlo approach, particle number reprojection method. Comparisons with data.

doi: 10.1103/PhysRevLett.83.4265
Citations: PlumX Metrics


1999OG11      Phys.Lett. 464B, 157 (1999)

K.Ogawa, H.Nakada, S.Hino, R.Motegi

Thomas-Ehrman Shifts in Nuclei Around 16O and Role of Residual Nuclear Interaction

NUCLEAR STRUCTURE 15,16C, 15F, 16Ne; calculated levels, J, π; deduced reduction in residual interaction. Phenomenological shell model.

doi: 10.1016/S0370-2693(99)00993-4
Citations: PlumX Metrics


1998NA08      Nucl.Phys. A629, 523c (1998)

H.Nakada

Role of Shell Structure in the 2νββ Nuclear Matrix Elements

doi: 10.1016/S0375-9474(97)00731-8
Citations: PlumX Metrics


1998NA33      Phys.Lett. 436B, 231 (1998)

H.Nakada, Y.Alhassid

Microscopic Nuclear Level Densities from Fe to Ge by the Shell Model Monte Carlo Method

NUCLEAR STRUCTURE 54,56,58Fe, 58,60,62,64Ni, 64,66,68,70Zn, 70,72Ge; calculated total, parity-projected level densities, first 2+ state excitation energies, related features. Shell model Monte Carlo method.

doi: 10.1016/S0370-2693(98)00911-3
Citations: PlumX Metrics


1997FU08      Z.Phys. A358, 279 (1997)

K.Furutaka, T.Hayakawa, H.Nakada, Y.Hatsukawa, M.Kidera, M.Oshima, S.Mitarai, H.Kusakari, T.Komatsubara, M.Matsuda, K.Furuno

High Spin States of 62,64Zn

NUCLEAR REACTIONS 40Ca(28Si, X), E=120 MeV; measured γγ-coin, Eγ, Iγ. 62,64Zn deduced high-spin levels, J, π, configuration.

doi: 10.1007/s002180050329
Citations: PlumX Metrics

Data from this article have been entered in the XUNDL database. For more information, click here.


1997HA45      Z.Phys. A359, 3 (1997)

Y.Hatsukawa, T.Hayakawa, K.Furutaka, H.Nakada, M.Kidera, T.Ishii, M.Matsuda, M.Oshima, S.Mitarai, M.Sugawara, H.Kusakari, T.Komatsubara, K.Furuno

High-Spin States in 61Cu

NUCLEAR REACTIONS 40Ca(28Si, 3pα), E=120 MeV; measured Eγ, Iγ, γγ-, (particle)γ-coin, DCO ratios. 61Cu deduced high-spin levels, J, π, band structure. Shell model comparison.

doi: 10.1007/s002180050356
Citations: PlumX Metrics


1997NA04      Phys.Rev. C55, 748 (1997)

H.Nakada, T.Otsuka

Microscopic Analysis of Quadrupole Collective Motion in Cr-Fe Nuclei. I. Renormalization of collective states and interacting boson model parameters

NUCLEAR STRUCTURE 56,58Fe, 54,56Cr; calculated levels. Quadrupole collective motion microscopic analysis, collective states renormalization, interacting boson model parameters.

doi: 10.1103/PhysRevC.55.748
Citations: PlumX Metrics


1997NA09      Phys.Rev. C55, 2418 (1997)

H.Nakada, T.Otsuka

Microscopic Analysis of Quadrupole Collective Motion in Cr-Fe Nuclei. II. Doorway Nature of Mixed-Symmetry States

NUCLEAR STRUCTURE 54,56Cr, 56,58Fe; calculated F-spin probabilities, levels, B(λ). Renormalized SD-space.

doi: 10.1103/PhysRevC.55.2418
Citations: PlumX Metrics


1997NA16      Phys.Rev.Lett. 79, 2939 (1997)

H.Nakada, Y.Alhassid

Total and Parity-Projected Level Densities of Iron-Region Nuclei in the Auxiliary Fields Monte Carlo Shell Model

NUCLEAR STRUCTURE 56Fe; calculated level density, total energy, related features; deduced model parameter dependence. Shell model Monte Carlo method. Comparison to data, Hartree-Fock approximation.

doi: 10.1103/PhysRevLett.79.2939
Citations: PlumX Metrics


1997UT01      Phys.Lett. 397B, 6 (1997)

Y.Utsuno, T.Otsuka, H.Nakada

Distribution of E2 Excitations in sd-Shell Nuclei

NUCLEAR STRUCTURE 28Si, 24Mg, 32S; calculated levels, B(λ), overlap factor R(Q). 20Ne, 36Ar, 30,32Si; calculated overlap factor R(Q). Realistic shell model, sd-space.

doi: 10.1016/S0370-2693(97)00154-8
Citations: PlumX Metrics


1996FU03      Phys.Lett. 365B, 29 (1996)

Y.Fujita, H.Akimune, I.Daito, M.Fujiwara, M.N.Harakeh, T.Inomata, J.Janecke, K.Katori, H.Nakada, S.Nakayama, A.Tamii, M.Tanaka, H.Toyokawa, M.Yosoi

Isospin Decomposition of the Gamow-Teller Strength in 58Cu

NUCLEAR REACTIONS 58Ni(3He, t), E=100 MeV/nucleon; measured triton spectra, θ=0°. 58Cu deduced Gamow-Teller transition strength, isospin components.

doi: 10.1016/0370-2693(95)01304-0
Citations: PlumX Metrics


1996NA17      Nucl.Phys. A607, 235 (1996)

H.Nakada, T.Sebe, K.Muto

Realistic Shell-Model Calculations of the 2νββ Nuclear Matrix Elements and the Role of the Shell Structure in Intermediate States

RADIOACTIVITY 36Ar, 54Fe(2EC); 58Ni(2EC), (β+EC); calculated 2ν-accompanied 2β-decay T1/2. Realistic shell model.

doi: 10.1016/S0375-9474(96)00227-8
Citations: PlumX Metrics


1996NA19      J.Phys.(London) G22, 1349 (1996)

H.Nakada, T.Sebe

Microscopic Description of Gamow-Teller Transitions in Middle pf-Shell Nuclei by a Realistic Shell-Model Calculation

RADIOACTIVITY 50Sc, 51,52Ti, 52,53V(β-); 54Mn, 55Fe, 55,56Co, 56,57Ni(β+); calculated β-decay associated Gamow-Teller transition strength.

doi: 10.1088/0954-3899/22/9/008
Citations: PlumX Metrics


1994NA02      Phys.Rev. C49, 886 (1994)

H.Nakada, T.Otsuka

E2 Properties of Nuclei Far from Stability and the Proton-Halo Problem of 8B

NUCLEAR STRUCTURE 9,8,6,7Li, 8,10B, 9,10Be, 10C; calculated levels, B(λ), quadrupole moments. Shell model, E2 core polarization effects.

doi: 10.1103/PhysRevC.49.886
Citations: PlumX Metrics


1994NA04      Nucl.Phys. A571, 467 (1994)

H.Nakada, T.Sebe, T.Otsuka

Microscopic Description of Nuclei in the Middle of the pf-Shell by a Shell-Model Calculation with G-Matrix Interaction

NUCLEAR STRUCTURE 49,50,51Sc, 50,51,52Ti, 51,52,53V, 52,53,54Cr, 53,54,55Mn, 54,55,56Fe, 55,56,57Co, 56,57,58Ni; calculated levels, B(λ), E2 static moments. Shell model, large basis, Kuo-Brown G-matrix.

doi: 10.1016/0375-9474(94)90222-4
Citations: PlumX Metrics


1994NA18      Nucl.Phys. A577, 203c (1994)

H.Nakada, T.Sebe

0(h-bar x Omega) MEC Effect on M1 Properties of Middle pf-Shell Nuclei

NUCLEAR STRUCTURE 55Co; calculated μ. 54Fe, 56Co, 57Ni; calculated μ, B(M1). Large basis, shell model, meson exchange effects.

doi: 10.1016/0375-9474(94)90856-7
Citations: PlumX Metrics


1991NA13      Phys.Rev.Lett. 67, 1086 (1991)

H.Nakada, T.Otsuka, T.Sebe

Mixed-Symmetry 2+ State of 56Fe in Realistic Shell Model

NUCLEAR STRUCTURE 56Fe; calculated levels, B(λ), transition form factors. Shell model, realistic interaction.

doi: 10.1103/PhysRevLett.67.1086
Citations: PlumX Metrics


Back to query form