NSR Query Results


Output year order : Descending
Format : Normal

NSR database version of April 27, 2024.

Search: Author = K.Yabana

Found 59 matches.

Back to query form



2016SE07      Phys.Rev. C 93, 054616 (2016)

K.Sekizawa, K.Yabana

Time-dependent Hartree-Fock calculations for multinucleon transfer and quasifission processes in the 64Ni + 238U reaction

NUCLEAR REACTIONS 238U(64Ni, X), E(cm)=277-495 MeV; calculated multinucleon transfer (MNT) and quasifission (QF) dynamics for three orientations of 238U, scattering angles, total kinetic energy (TKE), contact time, mass and charge of reaction products, density contours, production cross sections in proton-transfers channels (up to six protons), Mass-angle distribution (MAD) plots. Three-dimensional time-dependent Hartree-Fock (TDHF) calculations with Skyrme SLy5 energy density functional (EDF) for various initial conditions. Comparison with available experimental data.

doi: 10.1103/PhysRevC.93.054616
Citations: PlumX Metrics


2015AK03      Phys.Rev. C 92, 022801 (2015)

T.Akahori, Y.Funaki, K.Yabana

Imaginary-time formalism for triple-α reaction rates

doi: 10.1103/PhysRevC.92.022801
Citations: PlumX Metrics


2014SE23      Phys.Rev. C 90, 064614 (2014)

K.Sekizawa, K.Yabana

Particle-number projection method in time-dependent Hartree-Fock theory: Properties of reaction products

NUCLEAR REACTIONS 16O(24O, X)14C/15N/16O/17O/18O/25F/22O/23O/24O/26Ne, E=2, 4, 8 MeV/nucleon; calculated deflection angle, TKEL, transfer probabilities with respect to target-like fragments (TLF) and projectile-like fragments (PLF), expectation values of the angular momentum operator for fragment nuclei as function of the distance of closest approach, average excitation energies of fragment nuclei. Time-dependent Hartree-Fock (TDHF) theory in three-dimensional Cartesian grid representation combined with particle-number projection method for one- and two-nucleon removal reactions.

doi: 10.1103/PhysRevC.90.064614
Citations: PlumX Metrics


2013FU09      Phys.Rev. C 88, 014321 (2013)

Y.Fukuoka, S.Shinohara, Y.Funaki, T.Nakatsukasa, K.Yabana

Deformation and cluster structures in 12C studied with configuration mixing using Skyrme interactions

NUCLEAR STRUCTURE 12C; calculated levels, J, π, B(E2), B(E3), E0 transition probability, mass rms radius of excited states, elastic form factor for E0 transitions, Slater determinants, nuclear density contour plots. Coupling between shell-model and cluster configurations. Configuration-mixing method with different parameters of Skyrme interaction. Three-α linear-chain configuration of second excited 0+ state. Comparison with previous theoretical studies, and with experimental data.

doi: 10.1103/PhysRevC.88.014321
Citations: PlumX Metrics


2013IN06      Phys.Rev. C 88, 051305 (2013)

T.Inakura, T.Nakatsukasa, K.Yabana

Low-energy $E1$ strength in select nuclei: Possible constraints on neutron skin and symmetry energy

NUCLEAR STRUCTURE 24O, 26Ne, 48,52,54Ca, 58Cr, 68,78,84Ni, 208Pb; calculated correlations between low-lying electric dipole (E1) strength (PDR) and neutron-skin thickness. 84Ni; calculated E1 strengths for PDR GDR. Self-consistent random-phase approximation by using several Skyrme energy functionals.

doi: 10.1103/PhysRevC.88.051305
Citations: PlumX Metrics


2013OK01      Phys.Rev. C 88, 025801 (2013)

M.Okamoto, T.Maruyama, K.Yabana, T.Tatsumi

Nuclear "pasta" structures in low-density nuclear matter and properties of the neutron-star crust

doi: 10.1103/PhysRevC.88.025801
Citations: PlumX Metrics


2013SE10      Phys.Rev. C 88, 014614 (2013); Erratum Phys.Rev. C 93, 029902 (2016)

K.Sekizawa, K.Yabana

Time-dependent Hartree-Fock calculations for multinucleon transfer processes in 40, 48Ca+124Sn, 40Ca+208Pb, and 58Ni+208Pb reactions

NUCLEAR REACTIONS 124Sn(40Ca, X), (48Ca, X), E=170, 174 MeV; 208Pb(40Ca, X), E=235, 249 MeV; 208Pb(58Ni, X), E=328.4 MeV; calculated total energy loss (TKEL), σ and σ(θ) for transfer channels, average number of nucleons transferred and transfer probabilities, N/Z ratios for multinucleon transfer reactions. Time-dependent Hartree-Fock (TDHF) calculations. Comparison with experimental data, and with other calculations.

doi: 10.1103/PhysRevC.88.014614
Citations: PlumX Metrics


2012IN02      Prog.Theor.Phys.(Kyoto), Suppl. 196, 365 (2012)

T.Inakura, T.Nakatsukasa, K.Yabana

Shell and Neutron-Skin Effects on Pygmy Dipole Resonances

NUCLEAR STRUCTURE Z=16-40; calculated low-lying dipole resonances, pygmy dipole resonances, E1 strengths. 68,84Ni; Comparison with available data.

doi: 10.1143/PTPS.196.365
Citations: PlumX Metrics


2012YA06      Phys.Rev. C 85, 055803 (2012)

K.Yabana, Y.Funaki

Imaginary-time method for the radiative capture reaction rate

NUCLEAR REACTIONS 16O(α, γ)20Ne, E at kT<1000 MeV; calculated radiative capture rate as function of inverse temperature. Spectral representation of Hamiltonian, solution of time-dependent Schrodinger equation in imaginary-time axis. Comparison with calculation using ordinary method.

doi: 10.1103/PhysRevC.85.055803
Citations: PlumX Metrics


2011EB04      J.Phys.:Conf.Ser. 312, 092023 (2011)

S.Ebata, T.Nakatsukasa, K.Yabana

Linear response calculation using the canonical-basis TDHFB with a schematic pairing functional

NUCLEAR STRUCTURE 18,20,22,24,26,28Mg; calculated quadrupole deformation parameters, pairing gaps, chemical potentials, E1 strength distribution.

doi: 10.1088/1742-6596/312/9/092023
Citations: PlumX Metrics


2011IN02      Phys.Rev. C 84, 021302 (2011)

T.Inakura, T.Nakatsukasa, K.Yabana

Emergence of pygmy dipole resonances: Magic numbers and neutron skins

NUCLEAR STRUCTURE 20,22,24,26,28,30,32,34Ne, 40,42,44,46,48,50,52,54,56,58,60Ca; calculated photoabsorption cross sections. Z=8-40, N=8-82; calculated fraction of photoabsorption cross section of pygmy dipole resonances (PDR) for even-even spherical and deformed nuclei. Z=16-40, N=16-82; calculated correlations between fraction of photoabsorption cross section of pygmy dipole resonances (PDR) and neutron skin thickness for even-even nuclei. B(E1) strengths. Random-phase approximation (RPA) calculations with the Skyrme functional SkM* using finite amplitude method (FAM).

doi: 10.1103/PhysRevC.84.021302
Citations: PlumX Metrics


2010EB01      Phys.Rev. C 82, 034306 (2010)

S.Ebata, T.Nakatsukasa, T.Inakura, K.Yoshida, Y.Hashimoto, K.Yabana

Canonical-basis time-dependent Hartree-Fock-Bogoliubov theory and linear-response calculations

NUCLEAR STRUCTURE 20,22,24,26,28,30,32Ne, 24,26,28,30,32,34,36,38,40Mg; calculated quadrupole deformation parameters, pairing gaps, chemical potentials, E1 and isoscalar quadrupole strength distributions, photoabsorption cross sections from equations derived from canonical-basis (Cb) formulation of the time-dependent Hartree-Fock-Bogoliubov (TDHFB) theory.

doi: 10.1103/PhysRevC.82.034306
Citations: PlumX Metrics


2009IN03      Phys.Rev. C 80, 044301 (2009)

T.Inakura, T.Nakatsukasa, K.Yabana

Self-consistent calculation of nuclear photoabsorption cross sections: Finite amplitude method with Skyrme functionals in the three-dimensional real space

NUCLEAR REACTIONS 16O(γ, X), E=0-50 MeV; 24Mg, 40Ca(γ, X), E=10-35 MeV; 90Zr, 120Sn, 208Pb(γ, X), E=5-25 MeV; calculated photoabsorption σ, transition density contour maps, GDR energies and widths using Finite Amplitude method with different Skyrme energy functionals in the 3-dimensional real space. Comparison with experimental data.

doi: 10.1103/PhysRevC.80.044301
Citations: PlumX Metrics


2009IN04      Int.J.Mod.Phys. E18, 2088 (2009)

T.Inakura, T.Nakatsukasa, K.Yabana

Response functions in the continuum of deformed nuclei studied with the time-dependent density-functional calculations

NUCLEAR REACTIONS 16O, 24Mg, 28Si, 90Zr, 208Pb(γ, X), E<35 MeV; calculated photoabsorption σ, giant dipole resonance (GDR) peaks. Time-dependent density-functional theory (TDDFT).

doi: 10.1142/S0218301309014342
Citations: PlumX Metrics


2009IN05      Eur.Phys.J. A 42, 591 (2009)

T.Inakura, T.Nakatsukasa, K.Yabana

Systematic study of electric-dipole excitations with fully self-consistent Skyrme HF plus RPA from light-to-medium-mass deformed nuclei

NUCLEAR REACTIONS 16O, 24Mg, 28Si, 40Ca, 90Zr, 208Pb(γ, X), E<35MeV; calculated photoabsorption σ; analyzed deformation parameter. Finite amplitude method.

doi: 10.1140/epja/i2009-10811-9
Citations: PlumX Metrics


2008NA08      Eur.Phys.J. Special Topics 156, 249 (2008)

T.Nakatsukasa, K.Yabana, M.Ito

Time-dependent approaches for reaction and response in unstable nuclei

doi: 10.1140\epjst/e2008-00622-2
Citations: PlumX Metrics


2007IT05      Nucl.Phys. A787, 267c (2007)

M.Ito, K.Yabana, T.Nakatsukasa, M.Ueda

Fusion reaction of halo nuclei : A real-time wave-packet method for three-body tunneling dynamics

NUCLEAR REACTIONS 209Bi(10Be, X), (11Be, X), E(cm)=36-50 MeV; 238U(α, X), (6He, X), E(cm)=14-32 MeV; calculated fusion σ. Three-body model, time-dependent wave-packet method to solve Schroedinger equation. Comparison with data.

doi: 10.1016/j.nuclphysa.2006.12.042
Citations: PlumX Metrics


2007NA19      Phys.Rev. C 76, 024318 (2007)

T.Nakatsukasa, T.Inakura, K.Yabana

Finite amplitude method for the solution of the random-phase approximation

doi: 10.1103/PhysRevC.76.024318
Citations: PlumX Metrics


2007NA23      Nucl.Phys. A788, 349c (2007)

T.Nakatsukasa, K.Yabana

Real-time Skyrme TDHF dynamics of giant resonances

NUCLEAR STRUCTURE 8,14Be; calculated E1 strength distribution.

doi: 10.1016/j.nuclphysa.2007.01.064
Citations: PlumX Metrics


2006IT04      Phys.Lett. B 637, 53 (2006)

M.Ito, K.Yabana, T.Nakatsukasa, M.Ueda

Suppressed fusion cross section for neutron halo nuclei

NUCLEAR REACTIONS 209Bi(10B, X), (11B, X), E(cm)=30-50 MeV; 238U(α, X), (6He, X), E(cm)=14-32 MeV; calculated fusion σ. Three-body time-dependent wave-packet model, comparison with data.

doi: 10.1016/j.physletb.2006.03.027
Citations: PlumX Metrics


2006SH22      Phys.Rev. C 74, 054315 (2006)

S.Shinohara, H.Ohta, T.Nakatsukasa, K.Yabana

Configuration mixing calculation for complete low-lying spectra with a mean-field Hamiltonian

NUCLEAR STRUCTURE 12C, 16O, 20Ne; calculated levels, J, π, configurations. Extended mean-field approach, configuration mixing.

doi: 10.1103/PhysRevC.74.054315
Citations: PlumX Metrics


2005IT03      Prog.Theor.Phys.(Kyoto) 113, 1047 (2005)

M.Ito, K.Yabana

Absorbing Kernels to Study Resonances in the Generator Coordinate Method

NUCLEAR REACTIONS 6He(α, X), E(cm)=0-40 MeV; calculated total reaction σ, resonance parameters. Absorbing kernels, generator coordinate method.

doi: 10.1143/PTP.113.1047
Citations: PlumX Metrics


2005NA06      Phys.Rev. C 71, 024301 (2005)

T.Nakatsukasa, K.Yabana

Linear response theory in the continuum for deformed nuclei: Green's function vs time-dependent Hartree-Fock with the absorbing boundary condition

NUCLEAR STRUCTURE 16O, 20Ne; calculated continuum strength functions. 16O; calculated continuum isovector GDR energies, energy-weighted sum rule. 8,10,12,14Be; calculated quadrupole deformation, electric dipole strength functions, energy-weighted sum rule. Linear response theory, continuum RPA, time-dependent Hartree-Fock.

doi: 10.1103/PhysRevC.71.024301
Citations: PlumX Metrics


2005NA42      Eur.Phys.J. A 25, Supplement 1, 527 (2005)

T.Nakatsukasa, K.Yabana

Unrestricted TDHF studies of nuclear response in the continuum

NUCLEAR STRUCTURE 16O; calculated octupole strength distribution. 12,14Be; calculated dipole states energies, B(E1). Time-dependent Hartree-Fock theory.

doi: 10.1140/epjad/i2005-06-052-x
Citations: PlumX Metrics


2005OH09      Eur.Phys.J. A 25, Supplement 1, 549 (2005)

H.Ohta, T.Nakatsukasa, K.Yabana

Light exotic nuclei studied with the parity-projected Hartree-Fock method

NUCLEAR STRUCTURE 30,32,34Mg; calculated levels, J, π, deformation. Variation after projection.

doi: 10.1140/epjad/i2005-06-055-7
Citations: PlumX Metrics


2004NA13      Eur.Phys.J. A 20, 163 (2004)

T.Nakatsukasa, K.Yabana

Giant resonances in the deformed continuum

NUCLEAR STRUCTURE 24Mg; calculated GDR features. Time-dependent Hartree-Fock theory, continuum effect.

doi: 10.1140/epja/i2002-10344-9
Citations: PlumX Metrics


2004NA27      Prog.Theor.Phys.(Kyoto), Suppl. 154, 85 (2004)

T.Nakatsukasa, K.Yabana, M.Ito, M.Kobayashi, M.Ueda

Fusion Reaction of Halo Nuclei: Proton Halo versus Neutron Halo

doi: 10.1143/PTPS.154.85
Citations: PlumX Metrics


2004OH06      Phys.Rev. C 70, 014301 (2004)

H.Ohta, K.Yabana, T.Nakatsukasa

Variation after parity projection calculation with the Skyrme interaction for light nuclei

NUCLEAR STRUCTURE 12C, 20Ne; calculated levels, J, π, B(E2), matter density distributions; deduced cluster correlations. Self-consistent approach, Skyrme interaction, variation after parity projection.

doi: 10.1103/PhysRevC.70.014301
Citations: PlumX Metrics


2004UE04      Nucl.Phys. A738, 288 (2004)

M.Ueda, K.Yabana, T.Nakatsukasa

Absorbing Boundary Condition Approach to Breakup Reactions of One-Neutron Halo Nuclei

NUCLEAR REACTIONS 12C(11Be, n10Be), E=50, 67 MeV/nucleon; calculated fragments relative energy, σ(θ). Absorbing boundary condition method, comparison with data.

doi: 10.1016/j.nuclphysa.2004.04.047
Citations: PlumX Metrics


2004YA19      Nucl.Phys. A738, 303 (2004)

K.Yabana, M.Ito, M.Kobayashi, M.Ueda, T.Nakatsukasa

Fusion reaction of halo nuclei: a time-dependent approach

doi: 10.1016/j.nuclphysa.2004.04.050
Citations: PlumX Metrics


2003UE01      Phys.Rev. C 67, 014606 (2003)

M.Ueda, K.Yabana, T.Nakatsukasa

Application of an absorbing boundary condition to nuclear breakup reactions

NUCLEAR REACTIONS 12C(16O, 16O), E=139.2 MeV; calculated elastic scattering matrix elements. 58Ni(d, np), E=80 MeV; calculated deuteron breakup matrix elements. Absorbing boundary condition method, comparison with coupled discretized continuum channels approach.

doi: 10.1103/PhysRevC.67.014606
Citations: PlumX Metrics


2003YA17      Nucl.Phys. A722, 261c (2003)

K.Yabana, M.Ueda, T.Nakatsukasa

Time-dependent wave-packet approach for fusion reactions of halo nuclei

NUCLEAR REACTIONS 208Pb(11Be, X), E=30-45 MeV; calculated wave-packet dynamics, fusion probability.

doi: 10.1016/S0375-9474(03)01375-7
Citations: PlumX Metrics


2002MU20      Prog.Theor.Phys.(Kyoto) 108, 1065 (2002)

A.Muta, J.-I.Iwata, Y.Hashimoto, K.Yabana

Solving the RPA Eigenvalue Equation in Real-Space

NUCLEAR STRUCTURE 16O, 20Ne; calculated level energies. Computational method for solution of RPA eigenvalue equation.

doi: 10.1143/PTP.108.1065
Citations: PlumX Metrics


2002NA30      Prog.Theor.Phys.(Kyoto), Suppl. 146, 447 (2002)

T.Nakatsukasa, K.Yabana

3D Real-Space Calculation of the Continuum Response

NUCLEAR STRUCTURE 8,10,12,14Be, 16O; calculated giant resonance strength functions.

doi: 10.1143/PTPS.146.447
Citations: PlumX Metrics


2002YA19      Prog.Theor.Phys.(Kyoto), Suppl. 146, 329 (2002)

K.Yabana, M.Ueda, T.Nakatsukasa

Absorbing Boundary Condition Approach for Breakup Reactions of Halo Nuclei

NUCLEAR REACTIONS 58Ni(d, d), E=80 MeV; calculated σ(θ). 12C(n, n), E=5-100 MeV; calculated σ. 12C(11Be, X), E=5-100 MeV/nucleon; calculated elastic breakup σ. Absorbing boundary condition approach, comparison with Eikonal approximation.

doi: 10.1143/PTPS.146.329
Citations: PlumX Metrics


2001OG10      Prog.Theor.Phys.(Kyoto), Suppl. 142, 157 (2001)

Y.Ogawa, T.Kido, K.Yabana, Y.Suzuki

Microscopic Theories for the Reactions in Halo Nuclei

NUCLEAR REACTIONS 1H, Be, C, 27Al, Cu, Pb(11Li, X), E=800 MeV/nucleon; calculated interaction σ, two-neutron removal σ. 12C(11Li, 9Li), E=800 MeV/nucleon; C(8B, 7BeX), E=1471 MeV/nucleon; calculated fragment longitudinal momentum distributions. 12C(11Li, X), E=10-200 MeV/nucleon; calculated reaction σ, breakup σ. Comparisons with data.

doi: 10.1143/PTPS.142.157
Citations: PlumX Metrics


1999BE27      Nucl.Phys. A649, 423c (1999)

G.F.Bertsch, K.Yabana

Atomic Cluster with Nuclear Methods

doi: 10.1016/S0375-9474(99)00092-5
Citations: PlumX Metrics


1998TA14      Phys.Lett. 431B, 242 (1998)

S.Takami, K.Yabana, M.Matsuo

Tetrahedral and Triangular Deformation of Z = N Nuclei in Mass Region A ∼ 60-80

NUCLEAR STRUCTURE 64Ge, 68Se, 72Kr, 76Sr, 80Zr, 84Mo; calculated non-axial deformation parameters, single-particle levels. Skyrme Hartree-Fock plus BCS method.

doi: 10.1016/S0370-2693(98)00545-0
Citations: PlumX Metrics


1997YA07      Prog.Theor.Phys.(Kyoto) 97, 437 (1997)

K.Yabana

Low Energy Reactions of Halo Nuclei in a Three-Body Model

NUCLEAR REACTIONS 40Ca(11Be, X), E=6-16 MeV; calculated transfer, breakup, fusion reaction probabilities; deduced neutron binding energy dependence. Three-body model.

doi: 10.1143/PTP.97.437
Citations: PlumX Metrics


1996KI04      Phys.Rev. C53, 2296 (1996)

T.Kido, K.Yabana, Y.Suzuki

Coulomb Breakup Mechanism of Neutron-Halo Nuclei in a Time-Dependent Method

NUCLEAR REACTIONS 208Pb(11Be, X), E=72 MeV/nucleon; analyzed projectile Coulomb breakup data. Time-dependent Schrodinger equation.

doi: 10.1103/PhysRevC.53.2296
Citations: PlumX Metrics


1996TA24      Prog.Theor.Phys.(Kyoto) 96, 407 (1996)

S.Takami, K.Yabana, K.Ikeda

Alpha Clustering of Light Nuclei in the Parity Projected Mean Field Method

NUCLEAR STRUCTURE 20Ne, 4He, 8Be, 12C, 16O; calculated binding energies. 20Ne, 12C, 16O; calculated density distributions. Variation after parity projection approach.

doi: 10.1143/PTP.96.407
Citations: PlumX Metrics


1995OG04      Nucl.Phys. A588, 77c (1995)

Y.Ogawa, Y.Suzuki, K.Yabana

Transverse Momentum Distributions of a 9Li Fragment in the (11Li, 9Li) Reaction and Neutron Correlations

NUCLEAR REACTIONS 12C(11Li, 9Li), E=800 MeV/nucleon; calculated 9Li transverse, longitudinal momentum distributions; deduced halo neutron motion features. Glauber model, hybrid model wave function.

doi: 10.1016/0375-9474(95)00102-7
Citations: PlumX Metrics


1995TA32      Prog.Theor.Phys.(Kyoto) 94, 1011 (1995)

S.Takami, K.Yabana, K.Ikeda

Deformations of Be Isotopes Studied with Skyrme Hartree-Fock Method

NUCLEAR STRUCTURE 8,9,10,11,12,13,14Be; calculated binding energy, levels in some cases. 8,10,12,14Be; calculated density distribution; deduced deformation characteristics. Skyrme Hartee-Fock method.

doi: 10.1143/PTP.94.1011
Citations: PlumX Metrics


1995YA09      Nucl.Phys. A588, 99c (1995)

K.Yabana, Y.Suzuki

One Dimensional Three-Body Model for Low Energy Reactions of Halo Nuclei

doi: 10.1016/0375-9474(95)00106-B
Citations: PlumX Metrics


1994KI12      Phys.Rev. C50, R1276 (1994)

T.Kido, K.Yabana, Y.Suzuki

Coulomb Breakup Mechanism of Neutron Drip-Line Nuclei

NUCLEAR REACTIONS 208Pb(11Be, X), E=72 MeV/nucleon; analyzed projectile Coulomb breakup σ vs E(relative) data; deduced projectile halo features. Time-dependent Schrodinger equation, three-dimensional space.

doi: 10.1103/PhysRevC.50.R1276
Citations: PlumX Metrics


1994OG01      Nucl.Phys. A571, 784 (1994)

Y.Ogawa, Y.Suzuki, K.Yabana

Momentum Distributions of a 9Li Fragment Arising from the (11Li, 9Li) Reaction and Neutron Correlations

NUCLEAR REACTIONS 12C(11Li, 9Li), E=800 MeV/nucleon; calculated 9Li longitudinal momentum distributions. Shell model plus di-neutron cluster model wave functions, Glauber theory.

doi: 10.1016/0375-9474(94)90720-X
Citations: PlumX Metrics


1994SU02      Nucl.Phys. A567, 957 (1994)

Y.Suzuki, T.Kido, Y.Ogawa, K.Yabana, D.Baye

Fragmentation Cross Sections of He Isotopes and Neutron Correlations

NUCLEAR REACTIONS 12C(6He, α), E=400 MeV/nucleon; calculated α-fragment momentum distribution. 9Be, C, 27Al, Cu, Pb(α, X), (6He, X), (8He, X), E=800 MeV/nucleon; calculated interaction, neutron removal σ. Glauber theory, projectile fragmentation.

doi: 10.1016/0375-9474(94)90336-0
Citations: PlumX Metrics


1993SU04      Phys.Rev. C47, 1317 (1993)

Y.Suzuki, K.Yabana, Y.Ogawa

11Li + p Elastic Scatterings in a Four-Body Model with the Eikonal Approximation

NUCLEAR REACTIONS 11Li(p, p), E=62 MeV/nucleon; analyzed σ(θ); deduced target breakup, n-p interaction exchange force role. Four-body model, 11Li halo structure.

doi: 10.1103/PhysRevC.47.1317
Citations: PlumX Metrics


1992OG02      Nucl.Phys. A543, 722 (1992)

Y.Ogawa, K.Yabana, Y.Suzuki

Glauber Model Analysis of the Fragmentation Reaction Cross Sections of 11Li

NUCLEAR STRUCTURE 11Li, 9Be, 12C, 27Al, 63Cu, 208Pb; calculated point nucleon densities. Gaussian functions sum fitting.

NUCLEAR REACTIONS 9Be, 12C, 27Al, Cu, Pb(11Li, X), E=800 MeV/nucleon; calculated reaction, two-neutron removal σ. Glauber model.

doi: 10.1016/0375-9474(92)90556-Y
Citations: PlumX Metrics


1992YA02      Nucl.Phys. A539, 295 (1992)

K.Yabana, Y.Ogawa, Y.Suzuki

Reaction Mechanism of 11Li at Intermediate Energy

NUCLEAR REACTIONS 58Ni(d, d), (d, X), E=80 MeV; calculated elastic, breakup σ. Eikonal, coupled-discretized continuum channels models. 9Li, 12C(11Li, X), E ≈ 25-200 MeV/nucleon; calculated reaction σ(E).

doi: 10.1016/0375-9474(92)90272-L
Citations: PlumX Metrics


1992YA04      Phys.Rev. C45, 2909 (1992)

K.Yabana, Y.Ogawa, Y.Suzuki

Break-Up Effect on the Elastic Scattering and the Optical Potential of 11Li

NUCLEAR REACTIONS 58Ni(d, d), E=80 MeV; analyzed σ(θ). 12C(11Li, 11Li), E=60 MeV/nucleon; calculated σ(θ); deduced parameters, 11Li breakup role. Eikonal approximation, optical model with dynamic polarization potential.

doi: 10.1103/PhysRevC.45.2909
Citations: PlumX Metrics


1991SU16      Phys.Lett. 272B, 173 (1991)

Y.Suzuki, K.Yabana

Isobaric Analogue Halo States

NUCLEAR STRUCTURE A=6, 8, 11, 12; calculated isospin multiplet level energies. 11Be; calculated level decay Γ into 9Li+p+n. Isobaric analog halo states.

doi: 10.1016/0370-2693(91)91814-C
Citations: PlumX Metrics


1989YA10      Prog.Theor.Phys.(Kyoto) 82, 86 (1989)

K.Yabana, H.Horiuchi

Effect of the Nucleus-Nucleus Potential on the High Energy Photon Production in the Intermediate Energy Heavy Ion Collision

NUCLEAR REACTIONS 16O(α, X), E=40-100 MeV/nucleon; calculated high energy σ(Eγ, θγ). First chance nucleon-nucleon collision model.

doi: 10.1143/PTP.82.86
Citations: PlumX Metrics


1989YA11      Prog.Theor.Phys.(Kyoto) 82, 75 (1989)

S.Yamaguchi, K.Yabana, H.Horiuchi

Microscopic Study of the Nucleus-Nucleus Interaction on the Basis of the Realistic Effective Interaction. II - Physical Consideration on the Effective Interaction and Comparison with Experiments in the α-α System -

NUCLEAR REACTIONS 4He(α, α), E(cm) ≈ 0-60 MeV; calculated phase shifts vs E. Microscopic method, realistic effective interactions.

doi: 10.1143/PTP.82.75
Citations: PlumX Metrics


1989YA15      Prog.Theor.Phys.(Kyoto) 82, 217 (1989)

S.Yamaguchi, K.Yabana, H.Horiuchi

Microscopic Study of the α-16O Interaction on the Basis of the Realistic Effective Interaction

NUCLEAR REACTIONS 16O(α, α), E ≤ 100 MeV/nucleon; calculated complex potential parameters. Microscopic approach, effective interaction.


1989YA19      Prog.Theor.Phys.(Kyoto) 82, 1106 (1989)

K.Yabana

Microscopic Analysis of the Nucleus-Nucleus Optical Potential Based on the Feshbach Projection Operator Formalism. I - Formulation and Analysis of α-16O System -

NUCLEAR REACTIONS 16O(α, α), E=20 MeV/nucleon; calculated potential parameters vs internuclear distance. Feshbach projection method, optical potential.

doi: 10.1143/PTP.82.1106
Citations: PlumX Metrics


1988YA02      Prog.Theor.Phys.(Kyoto) 79, 19 (1988)

K.Yabana, T.Wada, H.Horiuchi

Microscopic Derivation of the Nucleus-Nucleus Potential by the Use of the Density-Dependent Effective Interaction

NUCLEAR REACTIONS 4He(α, α), E=20, 60 MeV; calculated potential parameters. Microscopic model, density dependent interactions.

doi: 10.1143/PTP.79.19
Citations: PlumX Metrics


1986HO33      Prog.Theor.Phys.(Kyoto) 76, 837 (1986)

H.Horiuchi, T.Wada, K.Yabana

Cranked Cluster Wave Function for Molecular States

NUCLEAR REACTIONS 16O, 4He(α, α), 16O(16O, 16O), E not given; calculated potential energy vs ion-ion distance, critical angular momenta. Cranked cluster wave functions.

NUCLEAR STRUCTURE 8Be, 32S, 20Ne; calculated rotational spectra. Cranked cluster wave function.

doi: 10.1143/PTP.76.837
Citations: PlumX Metrics


1986YA15      Prog.Theor.Phys.(Kyoto) 76, 1071 (1986)

K.Yabana, H.Horiuchi

Microscopic Analysis of Inelastic Coupling Potential Based on the Coupled Channel Resonating Group Method. I - Formulation and Study of 6Li-α System -

NUCLEAR STRUCTURE 10B; calculated levels, J. Coupled-channel resonating group method, 6Li+α channel.

NUCLEAR REACTIONS 6Li(α, α'), E(cm)=60, 100 MeV; calculated equivalent diagonal, coupling potentials, scattering matrix elements. Coupled-channel resonating group method.

doi: 10.1143/PTP.76.1071
Citations: PlumX Metrics


Back to query form