ADOPTED LEVELS, GAMMAS for 48Ti

Author: Jun Chen |  Citation: Nucl. Data Sheets 179, 1 (2022) |  Cutoff date: 30-Nov-2021 

 Full ENSDF file | Adopted Levels (PDF version) 


Q(β-)=-4014.9 keV 10S(n)= 11626.66 keV 3S(p)= 11445.1 keV 19Q(α)= -9449.1 keV 3
Reference: 2021WA16

References:
  A  48Sc β- decay  B  48V ε decay
  C  48Ca 2β- decay  D  9Be(49V,xγ)
  E  27Al(24Mg,3PG)  F  36S(14C,2nγ)
  G  44Ca(6Li,d), 52Cr(d,6Li)  H  44Ca(7Li,p2nγ)
  I  45Sc(α,p)  J  45Sc(α,pγ)
  K  46Ti(t,p)  L  47Ti(n,γ) E=THERMAL
  M  47Ti(d,p)  N  48Ca(π+-)
  O  48Ca(3He,3nγ)  P  48Ti(γ,γ),(γ,γ’)
  Q  48Ti(E,E’)  R  48Ti(π++’),(π--’)
  S  48Ti(n,n’)  T  48Ti(n,n’γ)
  U  48Ti(p,p’),(pol p,p’)  V  48Ti(p,p’γ)
  W  48Ti(d,d’),(pol d,d’)  X  48Ti(3He,3He’)
  Y  48Ti(α,α’)  Z  49Ti(p,d)
  a  49Ti(d,t)  b  49Ti(3He,α)
  c  50Ti(p,t)  d  50V(d,α)
  e  50Cr(14C,16O)  f  51V(p,α)
  g  Coulomb Excitation  h  Inelastic scattering:GIANT RES

General Comments:

Mass measurements: 2017Ka53, 2014Kw04, 2013Bu12, 2012Na15, 1979Ko10, 1972De39

Measurements of hyperfine structure: 2004Ga34, 2002Ca47, 1996Fu23, 1996Lu12, 1995Ga44, 1994An35, 1994GaZZ, 1994Lu18, 1992Az03

Levels: B(M1)|^, B(E2)|^ and B(M3)|^ under comments are from model-independent PWBA in (e,e’), unless otherwise noted.

Q-value: S(2n)=20507.32 6, S(2p)=19931.3 22 (2021Wa16)










E(level)
(keV)
XREFJπ(level) T1/2(level)E(γ)
(keV)
I(γ)M(γ)Final Levels
      0.0AB DEFGHIJKLMNOPQR TUVWXYZabcdefg  0+ STABLE      
    983.531 4 AB DEFGHIJKLM OPQRSTUVWXYZabcdefg  2+ 4.5 ps 4     983.521 4 
  100
E2
      0.0
0+
   2295.648 7 AB DEFGHIJ LM OP R TUVW YZabcd fg  4+ 0.87 ps 13    1312.104 6 
  100
E2
    983.531
2+
   2421.053 10  BCD    IJ LM  PQR TUVW YZa cd fg  2+ 30.4 fs 23    1437.493 13 
  2420.91 4 
  100.0 10 
    5.43 25 
M1+E2
E2
    983.531
      0.0
2+
0+
   2465 5                     U                     
   2997.31 17         IJKL    Q  TUVWXY a c  f   0+ 80 fs 14    2013.79 17 
  100
(E2)
    983.531
2+
   3062 5                 Q   U              2+        
   3223.971 9  B D    IJ LM   Q  TUV   Za  d f   3+ 33 fs 6     802.88 6 
   928.316 16 
  2240.391 10 
    5.0 3 
   33.56 13 
  100.0 6 
[M1,E2]
(M1(+E2))
M1+E2
   2421.053
   2295.648
    983.531
2+
4+
2+
   3239.771 13  B D  G IJ L     R TUVW YZa cd f   4+ 46 fs 11     944.118 12 
  100
M1+E2
   2295.648
4+
   3333.187 13 A  DEFGHIJ LM O    T V  YZabcd f   6+ 8.9 ps 8    1037.536 18 
  100
E2
   2295.648
4+
   3358.823 17  B D    IJ L    QR TUVW Y a  d f   3- 186 fs +38-34     938.0
  1063.7 3 
  2375.209 19 
    1.7 6 
   15.2 4 
  100.0 8 
[E1]
[E1]
(E1(+M2))
   2421.053
   2295.648
    983.531
2+
4+
2+
   3370.87 3          J LM  PQR TUVW Y a cd f   2+ 11.2 fs 14    2387.25 3 
  3370.96 13 
  100.0 12 
   16.6 11 
(M1+E2)
[E2]
    983.531
      0.0
2+
0+
   3508.548 12 A  DEFGHIJ  M O    TU   YZa cd f   6+ 1.9 ps 5     175.361 5 
  1212.880 12 
  100.0 12 
   31.8 6 
[M1]
E2
   3333.187
   2295.648
6+
4+
   3616.812 21         IJKLM   QR TUV  Y a cd f   2+ 43 fs 13    1195.83 6 
  2633.20 3 
  3616.8 8 
    8.1 6 
  100 4 
    2.2 12 
[M1,E2]
M1+E2
[E2]
   2421.053
    983.531
      0.0
2+
2+
0+
   3699.52 8          J LM  PQ  TUV       d f   1(-) 11.3 fs 21    2715.81 13 
  3699.11 12 
  100 3 
   58 4 
(E1)
(E1)
    983.531
      0.0
2+
0+
   3711.6 10 ?         J  M       U        d f       2728?
  100

    983.531
2+
   3738.60 11         IJ LM  PQ  TUV    a cd f   1+ 3.1 fs 18    1317.2?
  2756.0 7 
  3738.35 24 
   12 3 
   45 8 
  100 8 

(M1(+E2))
M1
   2421.053
    983.531
      0.0
2+
2+
0+
   3782.459 18    D    IJ LM      TUV    a  d     3-,4- 1.2 ps +11-6     423.629 10 
   558.6
  1486.82 3 
  100 5 
    4.1 14 
   40 3 
[M1+E2]
[E1]
[E1]
   3358.823
   3223.971
   2295.648
3-
3+
4+
E(level)
(keV)
XREFJπ(level) T1/2(level)E(γ)
(keV)
I(γ)M(γ)Final Levels
   3802.73 11            L    Q            d f   2-     2819.08 13 
  100

    983.531
2+
   3850.9 10 ?                            c      0+        
   3852.24 4    D    IJ LM   QR TUV  Y a  d f   3- 32 fs 6    1432
  1556.57 5 
  2868.59 6 
    6.7 13 
   24.8 19 
  100 4 
[E1]
[E1]
(E1(+M2))
   2421.053
   2295.648
    983.531
2+
4+
2+
   4035.153 15         IJKLM    R T V  Y a cd     2+ 22 fs 13     811.198 17 
  1614.041 19 
   44.7 25 
  100 6 
[M1+E2]
[M1,E2]
   3223.971
   2421.053
3+
2+
   4046.6 3    D    IJ          U    Z   d     5(-) 0.37 ps 11     714
   807
  1750.1 12 
    7.1 12 
   10.6 24 
  100 4 
[E1]
[E1]
(E1(+M2))
   3333.187
   3239.771
   2295.648
6+
4+
4+
   4074.511 21          J LM    R TU   YZab d     2+ 35 fs 11     834.736 17 
  1779?
  3090.82 6 
  4075.1 5 
   69 4 
   19 4 
  100 6 
   16 4 
[E2]
[E2]
[M1,E2]
[E2]
   3239.771
   2295.648
    983.531
      0.0
4+
4+
2+
0+
   4077 3       G     M      TU    Zabcd     4+        
   4102                Q            d     1+        
   4157 5       G          R  U                     
   4196.90 3          J LM    R                 (2+)      346
   458.45 16 
   496
   972.91 3 
  4196.63 13 
   22 5 
   24 5 
   13 3 
  100 7 
   63 5 





   3850.9
   3738.60
   3699.52
   3223.971
      0.0
0+
1+
1(-)
3+
0+
   4204.9 5            LM    R  U        d     (1,2+)     4204.7 5 
  100

      0.0
0+
   4210 8             M   Q  T         d     2-     3226 8 
  100
[E1]
    983.531
2+
   4254.5 10          JK     Q   U              1+      555
  100
[E1]
   3699.52
1(-)
   4311.3 5          J  M  P   TU        d     1+ 3.8 fs +39-17    1891
  3328
  4310 2 
   19 4 
   52 10 
  100 12 


M1
   2421.053
    983.531
      0.0
2+
2+
0+
   4346.7 6          J  M    R TU        d     (2+)      645
   989
  3364
   53 9 
   79 23 
  100 19 



   3699.52
   3358.823
    983.531
1(-)
3-
2+
E(level)
(keV)
XREFJπ(level) T1/2(level)E(γ)
(keV)
I(γ)M(γ)Final Levels
   4381.4 3         IJK M    R T    YZab       (3,4,5-) 25 fs 14    1142.3
  2086
   45 7 
  100 7 


   3239.771
   2295.648
4+
4+
   4387.691 20         IJKLM    R TU   YZabc      4+ 37 fs 14    1164.9
  2092.007 19 
  3403.83 7 
   98 15 
   85 5 
  100 6 
[M1,E2]
[M1,E2]
[E2]
   3223.971
   2295.648
    983.531
3+
4+
2+
   4398.7 4         IJ                a  d     6+ 45 fs 14     890
  2103
  100 7 
   33 7 
(M1(+E2))
[E2]
   3508.548
   2295.648
6+
4+
   4404.8 4         IJ               Za  d     5(+) < 42 fs   1072
  2109
   89 15 
  100 15 
(M1(+E2))
[M1,E2]
   3333.187
   2295.648
6+
4+
   4407        I               Y a  d     (2+)        
   4457.455 11       G  J LM             a  d     3+ 49 fs 24     840.66 3 
  1086.51 8 
  1233.33 12 
  2036.349 13 
  2161.759 14 
  3473.90 9 
    8.0 5 
    4.9 4 
    2.61 25 
   86 5 
  100 7 
   55 5 





(M1+E2)
   3616.812
   3370.87
   3223.971
   2421.053
   2295.648
    983.531
2+
2+
3+
2+
4+
2+
   4472 5                     U        d     3-        
   4530 15                     U    Z         3-,4-        
   4535 3                     U       c      0+        
   4564.8 3    DEF H J    O              d     8(+) > 3.5 ps   1056.2 10 
  1231.6 5 
   11.1 22 
  100.0 22 
[E2]
(E2)
   3508.548
   3333.187
6+
6+
   4567        I                 a cd     (-)        
   4580.69 7         IJ LM   QR TU   Y a cd     3- 38 fs 16    1221.81 8 
  2162
  2285.41 19 
  3596.76 17 
   76 6 
   21 5 
   65 21 
  100 10 
[M1,E2]
[E1]
[E1]
[E1]
   3358.823
   2421.053
   2295.648
    983.531
3-
2+
4+
2+
   4589 3           K M    R          cd     0+        
   4719.137 22         IJ LM      TU   Y a cd     4+ 66 fs 18    1479.339 18 
  1495.53 21 
  100 6 
   45 3 
[M1,E2]
[M1,E2]
   3239.771
   3223.971
4+
3+
   4757.73 10            L             Z         (3-)     1140.94 10 
  3774.8 6 
  100 12 
   20 5 


   3616.812
    983.531
2+
2+
E(level)
(keV)
XREFJπ(level) T1/2(level)E(γ)
(keV)
I(γ)M(γ)Final Levels
   4783.27 12         I KLM    R                 (2+,3,4+)     2486.4 5 
  3799.64 12 
   50 13 
  100 7 


   2295.648
    983.531
4+
2+
   4792.31 5         IJKLM    R      YZa cd     (1-,2,3-) 28 fs 14    1092.3 3 
  1421
  2371.18 8 
  3808.58 7 
    9.5 16 
   12.5 25 
   82 6 
  100 6 




   3699.52
   3370.87
   2421.053
    983.531
1(-)
2+
2+
2+
   4794.11 13           KLM    R  U   Y    d     (2+)     2498.44 14 
  4793.5 4 
  100 10 
   14.7 25 


   2295.648
      0.0
4+
0+
   4795.1 4         IJ  M       U    Za cd     (3-,4) 70 fs 35     749
   942
  1012
  1556
  1571
  2500
   41 7 
   62 17 
   34 7 
  100 17 
   38 7 
   69 14 






   4046.6
   3852.24
   3782.459
   3239.771
   3223.971
   2295.648
5(-)
3-
3-,4-
4+
3+
4+
   4861.0 6       G IJ  M                      2+,3+,4+ 21 fs 11    1622
  2566
  100 15 
   92 15 


   3239.771
   2295.648
4+
4+
   4885.0 7       G  J               Za  d     (2+,3+,4+)     1526
  2464
   75 18 
  100 18 


   3358.823
   2421.053
3-
2+
   4910.57 5          J LM   QR  U              (1+,2+)     1293.71 6 
  1539.63 18 
  1686.63 9 
  2489.7 4 
  4911.8 8 
  100 6 
   53 7 
   67 5 
   57 11 
   14 4 





   3616.812
   3370.87
   3223.971
   2421.053
      0.0
2+
2+
3+
2+
0+
   4916.3 5         IJ       R      Y a cd     5- 0.19 ps 11     870
  1133
  1408
   56 8 
  100 14 
   44 8 
[M1,E2]
[M1,E2]
[E1]
   4046.6
   3782.459
   3508.548
5(-)
3-,4-
6+
   4924.92 14         IJ LM   QR        a  d     (2,3,4)+ 21 fs 11     544
   851
  1686
  1700.89 16 
  2629.1 3 
    6.8 17 
    8.5 17 
   32 5 
   39 17 
  100 12 

[M1,E2]
[M1,E2]
[M1,E2]
[M1,E2]
   4381.4
   4074.511
   3239.771
   3223.971
   2295.648
(3,4,5-)
2+
4+
3+
4+
E(level)
(keV)
XREFJπ(level) T1/2(level)E(γ)
(keV)
I(γ)M(γ)Final Levels
   4939.93 15         IJ LM      T      a  d     (2,3,4)+     1157
  1701
  2644.5 4 
  3956.17 16 
   12 4 
   43 8 
   47 11 
  100 9 




   3782.459
   3239.771
   2295.648
    983.531
3-,4-
4+
4+
2+
   4956.6 4         IJ                   d     (4+,5,6-) > 1.0 ps    910
  1173
  1448
  1624
   36 7 
  100 16 
   45 7 
   45 7 




   4046.6
   3782.459
   3508.548
   3333.187
5(-)
3-,4-
6+
6+
   4966        I               Y   cd     2+        
   4970.7 7         IJK     Q   U       cd     0+     1231
  3988
  100 18 
   82 18 


   3738.60
    983.531
1+
2+
   4992.0 5          J  M       U   Y a cd     5-      946
  1139
  1209
  1484
  100 10 
   18 3 
   21 3 
   23 5 




   4046.6
   3852.24
   3782.459
   3508.548
5(-)
3-
3-,4-
6+
   5063 12                              d            
   5145.85 7       G IJ LM    R T    Y a c      4+ 50 fs 28    1073
  1906.08 9 
  1921.63 22 
  2725.7 5 
  2850.01 12 
   88 25 
   52 4 
  100 18 
   22 5 
   87 7 
[E2]
[M1,E2]
[M1,E2]
[E2]
[M1,E2]
   4074.511
   3239.771
   3223.971
   2421.053
   2295.648
2+
4+
3+
2+
4+
   5155.7 7          J                a  d     5(+) < 7 fs    751
  1647
   32 5 
  100 5 
[M1]
(M1(+E2))
   4404.8
   3508.548
5(+)
6+
   5158.0 3       G  J LM    R  U     a cd     4+ < 25 fs   1919
  1933.9 3 
  2863
  4174
   70 12 
  100 18 
  100 18 
   33 9 
[M1,E2]
[M1,E2]
[M1,E2]
[E2]
   3239.771
   3223.971
   2295.648
    983.531
4+
3+
4+
2+
   5169.8 4          J                   d     7+ 28 fs 12     605
  1661
  1837
    7.7 15 
   46 6 
  100 8 
[M1+E2]
M1+E2
M1+E2
   4564.8
   3508.548
   3333.187
8(+)
6+
6+
E(level)
(keV)
XREFJπ(level) T1/2(level)E(γ)
(keV)
I(γ)M(γ)Final Levels
   5170                          a  d     (2,3,4,5)+        
   5197.9 4     EF HIJ                a  d     8+ 76 fs 24     632.7 10 
  1689
  1865
  100 4 
   16.9 24 
    3.6 12 
(M1(+E2))
[E2]
[E2]
   4564.8
   3508.548
   3333.187
8(+)
6+
6+
   5241            M   Q                  1+        
   5251.8 6          J  M                d     (2+,3,4,5-) 49 fs +20-24    1399
  1469
  2957
  100 8 
   13 4 
   13 4 



   3852.24
   3782.459
   2295.648
3-
3-,4-
4+
   5273.0 5          J          U        d     (1-,2)      962
  1571
  1915
  2853
   26 7 
   20 5 
  100 20 
   72 13 




   4311.3
   3699.52
   3358.823
   2421.053
1+
1(-)
3-
2+
   5300.9 6          J  M                      (4+,5,6) < 35 fs    896
  1792
  1968
   68 10 
  100 15 
   83 15 



   4404.8
   3508.548
   3333.187
5(+)
6+
6+
   5312.8 4         IJ  M             a  d     (5-) 69 fs 28    1266
  1804
  1980
   42 5 
   25 4 
  100 7 
M1,E2
[E1]
(E1(+M2))
   4046.6
   3508.548
   3333.187
5(-)
6+
6+
   5313.3 6          J  M   Q  T    Y    d     2+     2892
  4330
   41 10 
  100 10 


   2421.053
    983.531
2+
2+
   5340 3                P    U              1(-)     5340 3 
 
(E1)
      0.0
0+
   5356.23 13          J L     R           d     (2+,3,4+)     1158.7 3 
  1504
  1998
  2118
  3062
  4372.56 15 
   62 12 
   32 6 
   43 9 
   23 6 
   31 9 
  100 9 






   4196.90
   3852.24
   3358.823
   3239.771
   2295.648
    983.531
(2+)
3-
3-
4+
4+
2+
   5383.8 7         IJ       R      Y a  d     (3)-     2144
  3088
   79 13 
  100 13 


   3239.771
   2295.648
4+
4+
   5391 9             M       U        d     4+        
E(level)
(keV)
XREFJπ(level) T1/2(level)E(γ)
(keV)
I(γ)M(γ)Final Levels
   5461                          a c      2+,3+,4+,5+        
   5490.95 21         IJKLM               c      2+     1790.7 3 
  2267
  3070.4 3 
  4508
   68 14 
   64 12 
  100 18 
   36 10 




   3699.52
   3223.971
   2421.053
    983.531
1(-)
3+
2+
2+
   5500.8 4         IJ  M               cd     4+ 26 fs 12    1096
  1102
  1426
  1454
  2168
  3205
   14 4 
   41 6 
    7.8 20 
    5.9 20 
   27 8 
  100 18 
[M1,E2]
[E2]
[E2]
[E1]
[E2]
[M1,E2]
   4404.8
   4398.7
   4074.511
   4046.6
   3333.187
   2295.648
5(+)
6+
2+
5(-)
6+
4+
   5521.7 6         IJ  M           Y a cd     3-     1739
  2163
  4538
  100 14 
   92 25 
   86 14 



   3782.459
   3358.823
    983.531
3-,4-
3-
2+
   5526 3         I   M  P            cd     1     5526 3 
 
D
      0.0
0+
   5545.9 7         IJ  M               cd     (4+:8+)     2037
  2213
   28 5 
  100 5 


   3508.548
   3333.187
6+
6+
   5545.9 5         IJ  M    R  U     a cd     3-     1165
  1693
  2187
  2322
  4562
  100 22 
   38 9 
   41 9 
   47 13 
   88 19 





   4381.4
   3852.24
   3358.823
   3223.971
    983.531
(3,4,5-)
3-
3-
3+
2+
   5562                Q   U        d     (3-)        
   5567.9 6          J      Q            d     2+     1257
  1866
  4586
   36 9 
  100 22 
   87 20 



   4311.3
   3699.52
    983.531
1+
1(-)
2+
   5615.8 5          J                a        (3)-      821?
  1833
  2257
  4632
   20 4 
  100 16 
   20 8 
   60 12 




   4795.1
   3782.459
   3358.823
    983.531
(3-,4)
3-,4-
3-
2+
E(level)
(keV)
XREFJπ(level) T1/2(level)E(γ)
(keV)
I(γ)M(γ)Final Levels
   5619.65 10         IJ LM   QR  U   Y          2+     2381
  2395.62 11 
  3198.44 20 
  100 24 
   78 14 
   92 19 



   3239.771
   3223.971
   2421.053
4+
3+
2+
   5630.9 4         IJ                   d     7 24 fs 14    1066
  2122
  2298
   78 10 
   22 4 
  100 12 
D(+Q)

D+Q
   4564.8
   3508.548
   3333.187
8(+)
6+
6+
   5640.03 5         IJ LM  PQ            d     1+ < 0.96 fs   1182.56 5 
  4655.8 6 
  5639.9 10 
  100 6 
   35 8 
    8E1 10 
[E2]
M1
M1
   4457.455
    983.531
      0.0
3+
2+
0+
   5641.5 4          J                a  d     3- 24 fs 11     923
  1261
  1789
  1939
  2418
  3347
   24 4 
   22 4 
   14 4 
   22 4 
   20 4 
  100 16 
[E1]

[M1,E2]
[E2]
[E1]
[E1]
   4719.137
   4381.4
   3852.24
   3699.52
   3223.971
   2295.648
4+
(3,4,5-)
3-
1(-)
3+
4+
   5657            M   Q            d     1+        
   5760        I   M           Y          (3-)        
   5762.8 5         IJ  M       U        d     (4+,5,6+)     1716
  2254
  2430
  2523
  3467
   15 3 
  100 21 
   41 9 
   91 18 
   47 12 





   4046.6
   3508.548
   3333.187
   3239.771
   2295.648
5(-)
6+
6+
4+
4+
   5764        I   M   Q   U        d     2+        
   5805.2 7          J                a        3-,4- 21 fs 12    1759
  2446
    4.2 21 
  100.0 21 
[M1,E2]
[M1,E2]
   4046.6
   3358.823
5(-)
3-
   5827.1 5         IJ      Q       Y a        3-     2044
  2468
  3406
  4844
   57 11 
  100 19 
   84 14 
   30 8 




   3782.459
   3358.823
   2421.053
    983.531
3-,4-
3-
2+
2+
   5846.5 6         IJ       R  U   Y          3- < 21 fs   2607
  3551
  4862
   53 9 
  100 12 
   19 5 
[E1]
[E1]
[E1]
   3239.771
   2295.648
    983.531
4+
4+
2+
E(level)
(keV)
XREFJπ(level) T1/2(level)E(γ)
(keV)
I(γ)M(γ)Final Levels
   5884?        I       QR        a        (3-)        
   5885?        I   M    R      Y          2+        
   5886.7 7         IJ  M                      (4+:8+)     1488
  2378
   37 10 
  100 10 


   4398.7
   3508.548
6+
6+
   5888.41 10         I  LM    R                 (1,2,3)     2085.67 16 
  2517.62 24 
  3467.36 21 
  4904.42 17 
  100 18 
   48 8 
   96 14 
   34 3 




   3802.73
   3370.87
   2421.053
    983.531
2-
2+
2+
2+
   5892.1 5          J  M                      (1-,2+)     2533
  3471
  4908
  5892
   39 9 
   79 18 
   85 21 
  100 24 




   3358.823
   2421.053
    983.531
      0.0
3-
2+
2+
0+
   5917.8 10          J      Q   U   Y          2+     4934
  100

    983.531
2+
   5974.8 5         IJ                         (4+,5,6)      662
  1018
  1570
  2466
  2642
   65 12 
   88 15 
  100 19 
   85 15 
   46 12 





   5312.8
   4956.6
   4404.8
   3508.548
   3333.187
(5-)
(4+,5,6-)
5(+)
6+
6+
   5988        I   M   Q       Y a        1+,3+        
   5990.8 6         IJ  M             a        (4+,5,6+)     1586
  1592
  2751
  100 22 
   76 19 
   95 16 



   4404.8
   4398.7
   3239.771
5(+)
6+
4+
   5993.6 6         IJ  M   Q       Y a        (2)+     3572
  3698
  5010
  100 14 
   33 7 
   42 11 



   2421.053
   2295.648
    983.531
2+
4+
2+
   6022 10           K     Q   U              (3-)        
   6034.9 6      F  IJ                         9+,7+ < 21 fs    837
  1470
   54 8 
  100 8 
M1(+E2)
M1+E2
   5197.9
   4564.8
8+
8(+)
   6036.8 10         IJ  M           Y a c      4+     3741
  100

   2295.648
4+
   6039.7 5         IJ                         6 25 fs 17     870
  1641
  2531
   16 4 
  100 6 
    8.8 25 

D(+Q)

   5169.8
   4398.7
   3508.548
7+
6+
6+
E(level)
(keV)
XREFJπ(level) T1/2(level)E(γ)
(keV)
I(γ)M(γ)Final Levels
   6040.4 10         IJ  M             a        (1,2)     6040
  100

      0.0
0+
   6042.40 11         IJ LM             a        (2,3)     1183
  1967.78 23 
  5058.58 13 
   32 7 
  100 7 
   53 4 



   4861.0
   4074.511
    983.531
2+,3+,4+
2+
2+
   6050.5 10         IJ  M   Q           c          2268
  100

   3782.459
3-,4-
   6054.47 22         IJ L    Q           c      (0+:4+)     3633.38 25 
  5070.2 5 
  100 13 
   53 8 


   2421.053
    983.531
2+
2+
   6065                QR  U   Y a        3-        
   6084.3 6          J                  c      (4+,5,6-)     1680
  2301
  2576
  100 11 
   21 5 
   40 8 



   4404.8
   3782.459
   3508.548
5(+)
3-,4-
6+
   6086 4                P                   1     6086 4 
 
D
      0.0
0+
   6103.2 7     EF HIJ                         10(+),8 > 1.4 ps   1538.8 10 
  100

   4564.8
8(+)
   6115            M           Y          2+        
   6119.6 5          J  M                      (4+,5)     2336
  2611
  2787
  3824
   30 5 
   29 5 
   20 4 
  100 11 




   3782.459
   3508.548
   3333.187
   2295.648
3-,4-
6+
6+
4+
   6122            M   Q                  0+        
   6126 3          J  M  P                   1     6126 3 
  100
D
      0.0
0+
   6138 4             M  P    U              1(+)     6138 4 
 
(M1)
      0.0
0+
   6147.8 11          J  M                      (4+:8+)     1749
  100

   4398.7
6+
   6153.8 6          J                         (4+:7-)     2107
  2645
  2821
   28 10 
   45 9 
  100 16 



   4046.6
   3508.548
   3333.187
5(-)
6+
6+
   6168?                          a        3-,4-        
   6172.9 6          J                         8+,6+ 35 fs 28     975
  1003
  1608
   10 3 
   37 5 
  100 7 

M1+E2

   5197.9
   5169.8
   4564.8
8+
7+
8(+)
   6176.4 7          J         T    Y          (2+,3,4,5-)     2817
  3881
  100 40 
  100 40 


   3358.823
   2295.648
3-
4+
E(level)
(keV)
XREFJπ(level) T1/2(level)E(γ)
(keV)
I(γ)M(γ)Final Levels
   6183.8 7          J          U   Y          (2+:6+)     2944
  3888
   82 27 
  100 27 


   3239.771
   2295.648
4+
4+
   6203                Q                  2-        
   6223.8 10          J          U       c      (0+:4+)     5240
  100

    983.531
2+
   6233.6 6          J              Y   c      3-     2616
  3813
  5250
   88 18 
   63 15 
  100 25 



   3616.812
   2421.053
    983.531
2+
2+
2+
   6236 3                P            c      2+     6236 3 
 
Q
      0.0
0+
   6241.0 4            L              a        (4+,5-)     2907.7 4 
  100

   3333.187
6+
   6243.8 7          J                a        (0+:3+)     2505
  2873
   67 13 
  100 13 


   3738.60
   3370.87
1+
2+
   6253.7 6          J      Q   U              3-     1873
  2180
  2881
   78 15 
  100 22 
   66 15 



   4381.4
   4074.511
   3370.87
(3,4,5-)
2+
2+
   6267.8 10          J      Q   U              (3-)     5284
  100

    983.531
2+
   6313.7 3            LM                      (4+,5-)     2980.4 3 
  100

   3333.187
6+
   6315.4 5          J  M                      (2+,3,4+)     2698
  2943
  4021
  5332
   25 6 
   94 16 
   94 16 
  100 22 




   3616.812
   3370.87
   2295.648
    983.531
2+
2+
4+
2+
   6322.0 7          J  M       U     a        (2,3,4)     2963
  3098
  100 16 
  100 16 


   3358.823
   3223.971
3-
3+
   6331.1 10          J          U     a        (1+:5+)     3107
  100

   3223.971
3+
   6336.5 10          J          U   Y a        3-     2554
  100

   3782.459
3-,4-
   6363.8 7          J  M                      (3,4)+     1959
  3124
  100 17 
   89 17 


   4404.8
   3239.771
5(+)
4+
   6365.16 9            L     R  U              3-     1572.41 17 
  4069.47 10 
   25 3 
  100 7 


   4792.31
   2295.648
(1-,2,3-)
4+
   6394.8 6         IJ                         (6+,7-)      764
  1082
  1197
  1438
   17 3 
   14 3 
   11 3 
  100 9 




   5630.9
   5312.8
   5197.9
   4956.6
7
(5-)
8+
(4+,5,6-)
E(level)
(keV)
XREFJπ(level) T1/2(level)E(γ)
(keV)
I(γ)M(γ)Final Levels
   6400.9 6          J                         (4+:8+)     2002
  2892
  3068
  100 20 
   44 13 
   56 5 



   4398.7
   3508.548
   3333.187
6+
6+
6+
   6406.0 3            L              a        (1-:5-)     2553.7 3 
  100

   3852.24
3-
   6414.8 10          J      Q         a        (2+:6+)     4119
  100

   2295.648
4+
   6434.6 10          J      Q                  (3-:7-)     2388
  100

   4046.6
5(-)
   6451.1 6          J       R                 (2+,3,4)     2598
  3212
  3227
   61 13 
  100 22 
   57 13 



   3852.24
   3239.771
   3223.971
3-
4+
3+
   6461.3 10          J                         (4+:8+)     3128
  100

   3333.187
6+
   6475.3 10          J       R  U   Y          3-     2623
  100

   3852.24
3-
   6490.36 15         I  LM    R                 (2+,3)     2687.52 11 
  3252.4 8 
  5506.4 7 
  100 8 
   16 6 
   33 10 



   3802.73
   3239.771
    983.531
2-
4+
2+
   6491.6 7         IJ  M    R  U              (0+:4+)     4070
  5508
  100 33 
   67 33 


   2421.053
    983.531
2+
2+
   6493.5 6         IJ  M       U              (4+,5,6,7-)     1577
  2447
  2985
   43 9 
  100 14 
   29 5 



   4916.3
   4046.6
   3508.548
5-
5(-)
6+
   6507.8 5          J                         (6+,7-)     1551
  1943
  2461
  2999
  3175
   82 29 
   25 7 
   79 14 
  100 18 
   71 14 





   4956.6
   4564.8
   4046.6
   3508.548
   3333.187
(4+,5,6-)
8(+)
5(-)
6+
6+
   6518.5 7          J          U   Y          4+     3279
  3294
  100 16 
   75 16 


   3239.771
   3223.971
4+
3+
   6524.6 10          J                         (4+:8+)     3016
  100

   3508.548
6+
   6529.5 10          J                         (1-:6-)     2747
  100

   3782.459
3-,4-
   6537.0 7          J          U              (4+:7-)     2490
  3204
   59 10 
  100 10 


   4046.6
   3333.187
5(-)
6+
E(level)
(keV)
XREFJπ(level) T1/2(level)E(γ)
(keV)
I(γ)M(γ)Final Levels
   6538.9 10          J          U                  1614
  100

   4924.92
(2,3,4)+
   6542.0 3            L        U              (0+:4+)     5558.1 3 
  100

    983.531
2+
   6544.8 10          J          U              (2+:6+)     4249
  100

   2295.648
4+
   6573.9 5          J                         (5,6,7+)      943
  2169
  2175
  3065
  3241
   52 15 
   30 12 
   67 18 
  100 18 
   55 12 





   5630.9
   4404.8
   4398.7
   3508.548
   3333.187
7
5(+)
6+
6+
6+
   6584.4 7          J              Y          (3-)     4289
  5600
   79 14 
  100 14 


   2295.648
    983.531
4+
2+
   6604.3 24          J     P    U              1- 0.86 eV 20    5620 4 
  6604 3 
   33
  100
E1
E1
    983.531
      0.0
2+
0+
   6617.7 10          J                a c      (4+:8+)     3109
  100

   3508.548
6+
   6627.6 4            LM             a        (0-,1,2,3)     2888.9 4 
  100

   3738.60
1+
   6634.3 6          J  M       U     a c      (3-,4,5-)     2588
  2781
  3395
   89 16 
  100 21 
   74 13 



   4046.6
   3852.24
   3239.771
5(-)
3-
4+
   6652.6 10          J      Q   U       c      (1-:6-)     2870
  100

   3782.459
3-,4-
   6661.6 10         IJ      Q           c      (3-:7-)     2615
  100

   4046.6
5(-)
   6672.6 10          J  M       U              (2,3,4)+     2890
  100

   3782.459
3-,4-
   6707.29 21         I  L    QR      Y a        (2+,3,4)     3483.5 3 
  4411.1 3 
  100 14 
   99 12 


   3223.971
   2295.648
3+
4+
   6707.4 6         IJ      QR      Y a        (2+,3,4+)     2854
  4412
  5724
  100 15 
   42 10 
   50 12 



   3852.24
   2295.648
    983.531
3-
4+
2+
   6711.6 6         IJ      QR      Y          (4+,5,6,7-)      672
  1795
  2665
  3203
   75 17 
  100 22 
   39 11 
   64 14 




   6039.7
   4916.3
   4046.6
   3508.548
6
5-
5(-)
6+
   6722                    U              3-        
E(level)
(keV)
XREFJπ(level) T1/2(level)E(γ)
(keV)
I(γ)M(γ)Final Levels
   6740 5             M           Y          (2+,3-)        
   6744.9 5          J  M                      (4+,5,6+)     2698
  3236
  3412
  4449
   49 9 
   40 9 
  100 20 
   97 17 




   4046.6
   3508.548
   3333.187
   2295.648
5(-)
6+
6+
4+
   6755            M   Q                  3+        
   6757.9 6         IJ          U              (6+,7,8,9)      723
  1127
  1560
   29 6 
   14 4 
  100 7 



   6034.9
   5630.9
   5197.9
9+,7+
7
8+
   6771.3 10          J                         (4+:8+)     3438
  100

   3333.187
6+
   6798.0 6            L            Y a        (1+,2,3,4)     3573.9 6 
  100

   3223.971
3+
   6808.5 11          J       R  U   Y a            2427
  100

   4381.4
(3,4,5-)
   6814.9 10          J          U              (3-)     3575
  100

   3239.771
4+
   6825.7 7          J       R                 (4+:8+)     2427
  3317
  100 17 
   67 17 


   4398.7
   3508.548
6+
6+
   6827.8 3            L     R                 (2+,3,4+)     2108.7 3 
  5843.7 5 
  100 22 
   20 4 


   4719.137
    983.531
4+
2+
   6831.6 7          J       R                 (0+:4+)     4410
  5848
  100 17 
   67 17 


   2421.053
    983.531
2+
2+
   6841.9 7          J       R  U   Y          3-     3602
  4546
   67 12 
  100 12 


   3239.771
   2295.648
4+
4+
   6869.0 10         IJ                         (1-:5-)     3510
  100

   3358.823
3-
   6878.3 10         IJ                         (0+:4+)     4457
  100

   2421.053
2+
   6880.9 8         IJ                         (6+,7-) 125 fs +69-56    1568
  2316
  100 3 
   11 3 


   5312.8
   4564.8
(5-)
8(+)
   6886.0 7         IJ                         (4+:8+)     3377
  3553
  100 18 
   82 18 


   3508.548
   3333.187
6+
6+
   6898.0 6            L                       (1,2+)     3901.4 7 
  5912.3 10 
  100 29 
   73 23 


   2997.31
    983.531
0+
2+
   6907.0 8      F   J                         10,8,6 97 fs +76-63     872
  100
D+Q
   6034.9
9+,7+
E(level)
(keV)
XREFJπ(level) T1/2(level)E(γ)
(keV)
I(γ)M(γ)Final Levels
   6916.7 10          J                  c      (3-:7-)     2870
  100

   4046.6
5(-)
   6944.7 7          J                  c      (4+,5,6,7-)     2898
  3436
  100 14 
   43 14 


   4046.6
   3508.548
5(-)
6+
   6955.8 7          J                  c      (5+:8+)     1786
  3447
   43 7 
  100 7 


   5169.8
   3508.548
7+
6+
   6957.0 3            L     R  U   Y   c      (1-,2,3,4+)     3104.4 4 
  4536.0 4 
  100 24 
   51 11 


   3852.24
   2421.053
3-
2+
   6966.9 10          J       R  U   Y   c      (2+:6+)     4671
  100

   2295.648
4+
   6971.9 10          J                  c      (0+:4+)     5988
  100

    983.531
2+
   6975.4 8          J                  c      (3-:7-)     1983
  2019
   52 9 
  100 9 


   4992.0
   4956.6
5-
(4+,5,6-)
   6976.30 20            L                c      (1,2,3,4+)     1620.05 18 
  2941.0 4 
   86 10 
  100 26 


   5356.23
   4035.153
(2+,3,4+)
2+
   6979 3                P            c      1-     6978 3 
 
E1
      0.0
0+
   6983.4 10          J                  c      (1-:5-)     3131
  100

   3852.24
3-
   6985.8 5          J                  c      (6+,7)     1816
  2029
  2421
  3477
   41 9 
   94 19 
   78 16 
  100 22 




   5169.8
   4956.6
   4564.8
   3508.548
7+
(4+,5,6-)
8(+)
6+
   7033.5 11          J          U              (4+)     2652
  100

   4381.4
(3,4,5-)
   7040.9 8         IJ                         (6+,7,8,9+)      467
  2476
   11.1 22 
  100 11 


   6573.9
   4564.8
(5,6,7+)
8(+)
   7041 4         I      P                   1,2     7040 4 
 
D,Q
      0.0
0+
   7054.0 10          J              Y a        (3-)     3695
  100

   3358.823
3-
   7060.80 22            L                       (0-,1,2,3-)     3361.16 20 
  100

   3699.52
1(-)
   7067.0 10          J          U              (3-,4+)     2870
  100

   4196.90
(2+)
   7071 4 ?               PQ                  1+     7070 4 ?
 
M1
      0.0
0+
   7076.0 6          J                         (6+:10+)      973
  1878
  2511
  100 25 
   75 15 
   75 15 



   6103.2
   5197.9
   4564.8
10(+),8
8+
8(+)
E(level)
(keV)
XREFJπ(level) T1/2(level)E(γ)
(keV)
I(γ)M(γ)Final Levels
   7094.1 7          J                         (5+:8+)     1924
  3761
   25 13 
  100 13 


   5169.8
   3333.187
7+
6+
   7100.9 10          J                         (2+:6+)     4805
  100

   2295.648
4+
   7110 5                P    U              1     7109 5 
 
D
      0.0
0+
   7111.9 11          J          U              (5:9)     1481
  100

   5630.9
7
   7118.9 4          J          U              (6+,7-)     1806
  1921
  2554
  2720
  3610
  3786
  100 23 
   64 9 
   64 9 
   82 14 
   45 9 
  100 18 






   5312.8
   5197.9
   4564.8
   4398.7
   3508.548
   3333.187
(5-)
8+
8(+)
6+
6+
6+
   7124 3                P    U              1-     7123 3 
 
E1
      0.0
0+
   7129 10 ?                    U              (2+)        
   7149.8 11          J          U              (4+:8+)     2751
  100

   4398.7
6+
   7162.7 10          J          U              (4+:8+)     3654
  100

   3508.548
6+
   7183.6 7          J                         (0+:4+)     4762
  6200
   67 17 
  100 17 


   2421.053
    983.531
2+
2+
   7199.3 10          J          U              (0+:4+)     4778
  100

   2421.053
2+
   7221.6 7          J          U              (1,2,3,4+)     2840
  3147
  100 12 
   67 12 


   4381.4
   4074.511
(3,4,5-)
2+
   7221.6 20             M  PQ                  1+     7221 2 
 
M1
      0.0
0+
   7256.8 7          J  M       U              (4)+     3210
  4017
  100 15 
   67 15 


   4046.6
   3239.771
5(-)
4+
   7275.1 6          J                         (4+)     1962
  3766
  3942
   51 10 
  100 16 
   45 10 



   5313.3
   3508.548
   3333.187
2+
6+
6+
   7290.0 10          J      Q                  3+     6306
  100

    983.531
2+
   7323.0 10          J          U              3-     6339
  100

    983.531
2+
   7326.9 8          J                         (6+:10+)     2129
  2762
  100 11 
   54 11 


   5197.9
   4564.8
8+
8(+)
E(level)
(keV)
XREFJπ(level) T1/2(level)E(γ)
(keV)
I(γ)M(γ)Final Levels
   7344.8 11          J  M                      (4+:8+)     2946
  100

   4398.7
6+
   7353.9 11         IJ          U              (5:9)     1723
  100

   5630.9
7
   7358.98 16         I  LM   Q   U              2+     3620.3 3 
  4134.85 23 
  4937.6 4 
  6374.7 5 
   84 11 
  100 14 
   73 14 
   51 8 




   3738.60
   3223.971
   2421.053
    983.531
1+
3+
2+
2+
   7375.1 10      F   J                         11,9,7 28 fs +42-28     468
  1272
   11.1 22 
  100.0 22 

D+Q
   6907.0
   6103.2
10,8,6
10(+),8
   7387.9 11          J          U                   814
  100

   6573.9
(5,6,7+)
   7427.9 7         IJ                         9,7 > 0.7 ps   1393
  2230
  2863
  100 9 
   21 5 
   30 8 



   6034.9
   5197.9
   4564.8
9+,7+
8+
8(+)
   7431.9 10         IJ  M                      (2,3,4)+     5136
  100

   2295.648
4+
   7442.9 7          J                         (4+,5,6+)     3044
  5147
   54 12 
  100 12 


   4398.7
   2295.648
6+
4+
   7450 3                P                   1-     7449 3 
 
E1
      0.0
0+
   7476.8 8          J  M                      (3+:7+)     2520
  3072
  100 12 
   47 12 


   4956.6
   4404.8
(4+,5,6-)
5(+)
   7484.0 10          J  M                      (0+:4+)     6500
  100

    983.531
2+
   7484 4             M  P                   1     7483 4 
 
D
      0.0
0+
   7497.9 11          J          U              (4+)     2185
  100

   5312.8
(5-)
   7531.9 6         IJ                  c      (6+,7,8+)     1901
  2334
  3133
   43 7 
  100 16 
   84 14 



   5630.9
   5197.9
   4398.7
7
8+
6+
   7536.0 7         IJ                  c           460
   629
   778
  1433
   29 14 
   86 14 
   71 14 
  100 14 




   7076.0
   6907.0
   6757.9
   6103.2
(6+:10+)
10,8,6
(6+,7,8,9)
10(+),8
   7541.71 9            L        U       c      (2+,3,4+)     3344.66 9 
  4184.5 15 
  4302.6 4 
  4316.8 5 
  100 7 
    3.7 22 
   13.8 27 
   12.4 27 




   4196.90
   3358.823
   3239.771
   3223.971
(2+)
3-
4+
3+
E(level)
(keV)
XREFJπ(level) T1/2(level)E(γ)
(keV)
I(γ)M(γ)Final Levels
   7557.0 10          J  M       U       c      (2+:6+)     5261
  100

   2295.648
4+
   7572.4 10          J                  c      (4+:8+)     4239
  100

   3333.187
6+
   7574.15 22            L                c      (2+,3,4,5-)     3186.35 22 
  100

   4387.691
4+
   7586 4                P            c      1(-)     7585 4 
 
(E1)
      0.0
0+
   7588.1 6          J                  c      (5,6,7,8+)     1415
  1957
  4255
   50 10 
   88 14 
  100 19 



   6172.9
   5630.9
   3333.187
8+,6+
7
6+
   7616.13 17         I  L        U              (1-,2)     2858.8 3 
  3763.7 3 
  3876.8 3 
  3916.8 6 
  100 16 
   55 10 
  100 16 
   42 10 




   4757.73
   3852.24
   3738.60
   3699.52
(3-)
3-
1+
1(-)
   7623.9 8         IJ                         (6+,7-)     2311
  3059
  100 20 
  100 20 


   5312.8
   4564.8
(5-)
8(+)
   7656.9 11          J                         (6+:10+)     3092
  100

   4564.8
8(+)
   7669.2 12          J                         10,8     1566
  100
D+Q
   6103.2
10(+),8
   7683 10                     U              (2+,3-)        
   7692 10             M       U                     
   7709.7 10          J  M               c      (3-:7-)     3663
  100

   4046.6
5(-)
   7728 10                     U              (3-)        
   7765 10             M       U       c      1+,2+,3+,4+        
   7845 10             M   Q   U       c      1+,3+        
   7876 10                 Q   U       c      3+        
   7905 10                 Q   U       c      1+        
   7969 4                P                   1     7968 4 
 
D
      0.0
0+
   7986            M           Y          2+        
   7999 10                     U              3-        
   8010 4             M  P                   1     8009 4 
 
D
      0.0
0+
   8052 10             M   Q   U              1+,3+        
   8090 10 ?            M       U                     
   8092.1 14      F   J  M       U              12,10,8,6 0.21 ps 7     717
  100
D+Q
   7375.1
11,9,7
E(level)
(keV)
XREFJπ(level) T1/2(level)E(γ)
(keV)
I(γ)M(γ)Final Levels
   8199 4                PQ   U              1+     8198 4 
 
(M1)
      0.0
0+
   8212 10                     U              3-        
   8246 10                     U              (2+)        
   8255 4                P    U              1     8254 4 
 
D
      0.0
0+
   8323.9 12         IJ                         10,8,6      896
  100
D+Q
   7427.9
9,7
   8572 4                P                   1(-)     8571 4 
 
(E1)
      0.0
0+
   8592 4                P                   1     8591 4 
 
D
      0.0
0+
   8672 5                P                   1     8671 5 
 
D
      0.0
0+
   8933 5                P                   1     8932 5 
 
D
      0.0
0+
   8996 5                P                   1(+)     8995 5 
 
(M1)
      0.0
0+
   9025 5                P                   1     9024 5 
 
D
      0.0
0+
   9260                    U                     
   9910                    U                     
   9977 6                P                   1-     9976 6 
 
E1
      0.0
0+
  10460                    U                     
      1.060E4 5                             c             
  10726 6 ?                            c      (6+)        
  10982 6                             c      (4+)        
      1.68E4 3                                  h (1-) 7.27 MeV +22-24       
     16.96E3 16                                  h (2+) 3.72 MeV +60-46       
  17379 12              N              c      (0+)        
      1.89E4 3                                  h (0+) 4.5 MeV +13-2       
      2.48E4 3                                  h (3-) 7.25 MeV 20       
     28.9E3 8                                  h (1-) 12.44 MeV +56-68       

E(level): From a least-squares fit to γ-ray energies for levels connected with γ transitions, assuming ΔEγ=0.5 keV and 1.0 keV for Eγ values quoted to nearest tenth keV and keV, respectively, where ΔEγ not given, and from transfer reactions in other cases, unless otherwise noted.

T1/2(level): From DSAM in (α,pγ) (1979Gl07), unless otherwise noted..

Back to top

Back to top

Additional Gamma Data:















E(level)
(keV)
Jπ(level)T1/2(level)E(γ)
(keV)
MultipolarityMixing
Ratio
Conversion
Coefficient
Additional Data
    983.531 2+ 4.5 ps 4     983.521 4 E2 0.0001261B(E2)(W.u.)=13.2 +13-11, α=0.0001261 18, α(K)=0.0001145 16, α(L)=1.025E-5 14, α(M)=1.311E-6 18, α(N)=7.10E-8 10
   2295.648 4+ 0.87 ps 13    1312.104 6 E2 9.66×10-5B(E2)(W.u.)=16.1 +28-21, α=9.66E-5 14, α(K)=5.89E-5 8, α(L)=5.26E-6 7, α(M)=6.73E-7 9, α(N)=3.65E-8 5
   2421.053 2+ 30.4 fs 23    1437.493 13 M1+E2+0.15 39.50×10-5B(E2)(W.u.)=6.1 +27-22, B(M1)(W.u.)=0.226 +19-16, α=9.50E-5 14, α(K)=4.22E-5 6, α(L)=3.76E-6 5, α(M)=4.82E-7 7, α(N)=2.62E-8 4
2+ 30.4 fs 23    2420.91 4 E2 0.000539B(E2)(W.u.)=1.12 10, α=0.000539 8, α(K)=1.821E-5 25, α(L)=1.620E-6 23, α(M)=2.073E-7 29, α(N)=1.130E-8 16
   2997.31 0+ 80 fs 14    2013.79 17 (E2) 0.000348B(E2)(W.u.)=20.6 +44-32, α=0.000348 5, α(K)=2.519E-5 35, α(L)=2.244E-6 31, α(M)=2.87E-7 4, α(N)=1.563E-8 22
   3223.971 3+ 33 fs 6     802.88 6 [M1,E2] 0.000177B(E2)(W.u.)=179 +41-29 (<a href= "http://www.nndc.bnl.gov/nsr/nsrlink.jsp?if pure E2 ">if pure E2</a>), B(M1)(W.u.)=0.047 +11-8 (<a href= "http://www.nndc.bnl.gov/nsr/nsrlink.jsp?if pure M1 ">if pure M1</a>), α=0.000177 35, α(K)=0.000161 32, α(L)=1.44E-5 29, α(M)=1.8E-6 4, α(N)=1.00E-7 20
3+ 33 fs 6     928.316 16 (M1(+E2))-0.02 20.0001061B(E2)(W.u.)<1.2, B(M1)(W.u.)=0.202 +47-33, α=0.0001061 15, α(K)=9.64E-5 13, α(L)=8.61E-6 12, α(M)=1.102E-6 15, α(N)=5.99E-8 8
3+ 33 fs 6    2240.391 10 M1+E2+0.26 30.000379B(E2)(W.u.)=1.34 +46-33, B(M1)(W.u.)=0.040 +9-6, α=0.000379 5, α(K)=1.961E-5 28, α(L)=1.745E-6 24, α(M)=2.232E-7 31, α(N)=1.217E-8 17
   3239.771 4+ 46 fs 11     944.118 12 M1+E2-0.30 50.0001057B(E2)(W.u.)=131 +64-43, B(M1)(W.u.)=0.52 +17-10, α=0.0001057 18, α(K)=9.60E-5 16, α(L)=8.58E-6 14, α(M)=1.097E-6 18, α(N)=5.97E-8 10
   3333.187 6+ 8.9 ps 8    1037.536 18 E2 0.0001108B(E2)(W.u.)=5.1 +5-4, α=0.0001108 16, α(K)=0.0001006 14, α(L)=9.00E-6 13, α(M)=1.151E-6 16, α(N)=6.23E-8 9
   3358.823 3- 186 fs +38-34     938.0[E1] 5.98×10-5B(E1)(W.u.)=4.8E-5 +21-18, α=5.98E-5 8, α(K)=5.43E-5 8, α(L)=4.84E-6 7, α(M)=6.19E-7 9, α(N)=3.36E-8 5
3- 186 fs +38-34    1063.7 3 [E1] 4.69×10-5B(E1)(W.u.)=3.0E-4 +7-5, α=4.69E-5 7, α(K)=4.26E-5 6, α(L)=3.80E-6 5, α(M)=4.85E-7 7, α(N)=2.64E-8 4
3- 186 fs +38-34    2375.209 19 (E1(+M2))0.00 30.000902B(E1)(W.u.)=1.76E-4 +40-30, B(M2)(W.u.)<0.26, α=0.000902 13, α(K)=1.174E-5 16, α(L)=1.043E-6 15, α(M)=1.334E-7 19, α(N)=7.27E-9 10
   3370.87 2+ 11.2 fs 14    2387.25 3 (M1+E2)-0.2 10.000438B(E2)(W.u.)=2.1 +26-15, B(M1)(W.u.)=0.120 16, α=0.000438 7, α(K)=1.764E-5 25, α(L)=1.569E-6 22, α(M)=2.008E-7 29, α(N)=1.095E-8 16
2+ 11.2 fs 14    3370.96 13 [E2] 0.000950B(E2)(W.u.)=1.59 +24-20, α=0.000950 13, α(K)=1.064E-5 15, α(L)=9.46E-7 13, α(M)=1.210E-7 17, α(N)=6.60E-9 9
   3508.548 6+ 1.9 ps 5     175.361 5 [M1] 0.00449B(M1)(W.u.)=1.6 +6-4, α=0.00449 6, α(K)=0.00407 6, α(L)=0.000371 5, α(M)=4.74×10-5 7, α(N)=2.54E-6 4
6+ 1.9 ps 5    1212.880 12 E2 8.83×10-5B(E2)(W.u.)=2.6 +9-6, α=8.83E-5 12, α(K)=7.00E-5 10, α(L)=6.26E-6 9, α(M)=8.00E-7 11, α(N)=4.34E-8 6
   3616.812 2+ 43 fs 13    1195.83 6 [M1,E2] 8.0×10-5B(E2)(W.u.)=38 +16-9 (<a href= "http://www.nndc.bnl.gov/nsr/nsrlink.jsp?if pure E2 ">if pure E2</a>), B(M1)(W.u.)=0.022 +9-5 (<a href= "http://www.nndc.bnl.gov/nsr/nsrlink.jsp?if pure M1 ">if pure M1</a>), α=8.0E-5 9, α(K)=6.6E-5 7, α(L)=5.9E-6 6, α(M)=7.5E-7 8, α(N)=4.1E-8 4
2+ 43 fs 13    2633.20 3 M1+E2-0.15 40.000540B(E2)(W.u.)=0.20 +16-10, B(M1)(W.u.)=0.025 +11-6, α=0.000540 8, α(K)=1.505E-5 21, α(L)=1.339E-6 19, α(M)=1.713E-7 24, α(N)=9.34E-9 13
2+ 43 fs 13    3616.8 8 [E2] 1.04×10-3B(E2)(W.u.)=0.041 +32-20, α=1.04E-3 2, α(K)=9.55E-6 13, α(L)=8.49E-7 12, α(M)=1.086E-7 15, α(N)=5.93E-9 8
   3699.52 1(-) 11.3 fs 21    2715.81 13 (E1) 1.10×10-3B(E1)(W.u.)=0.00143 +33-23, α=1.10E-3 2, α(K)=9.78E-6 14, α(L)=8.69E-7 12, α(M)=1.111E-7 16, α(N)=6.06E-9 8
1(-) 11.3 fs 21    3699.11 12 (E1) 1.57×10-3B(E1)(W.u.)=3.3E-4 +8-6, α=1.57E-3 2, α(K)=6.57E-6 9, α(L)=5.83E-7 8, α(M)=7.46E-8 10, α(N)=4.07E-9 6
   3738.60 1+ 3.1 fs 18    2756.0 7 (M1(+E2))-0.4 +5-170.00060B(E2)(W.u.)<74, B(M1)(W.u.)=0.08 +20-8, α=0.00060 7, α(K)=1.41E-5 5, α(L)=1.25E-6 4, α(M)=1.60E-7 6, α(N)=8.74E-9 30
1+ 3.1 fs 18    3738.35 24 M1 0.000961B(M1)(W.u.)=0.09 +9-3, α=0.000961 13, α(K)=8.80×10-6 12, α(L)=7.82E-7 11, α(M)=1.000E-7 14, α(N)=5.46E-9 8
   3782.459 3-,4- 1.2 ps +11-6     423.629 10 [M1+E2] 1.0×10-3B(M1)(W.u.)=0.17 +16-8 (<a href= "http://www.nndc.bnl.gov/nsr/nsrlink.jsp?if pure M1 ">if pure M1</a>), α=1.0×10-3 5, α(K)=9.E-4 4, α(L)=8.E-5 4, α(M)=1.1E-5 5, α(N)=5.8E-7 26
3-,4- 1.2 ps +11-6     558.6[E1] 0.0001887B(E1)(W.u.)=7E-5 +8-4, α=0.0001887 26, α(K)=0.0001713 24, α(L)=1.532E-5 21, α(M)=1.958E-6 27, α(N)=1.059E-7 15
3-,4- 1.2 ps +11-6    1486.82 3 [E1] 0.000278B(E1)(W.u.)=3.6E-5 +36-17, α=0.000278 4, α(K)=2.369E-5 33, α(L)=2.109E-6 30, α(M)=2.70E-7 4, α(N)=1.467E-8 21
E(level)
(keV)
Jπ(level)T1/2(level)E(γ)
(keV)
MultipolarityMixing
Ratio
Conversion
Coefficient
Additional Data
   3852.24 3- 32 fs 6    1432[E1] 0.0002389B(E1)(W.u.)=2.8E-4 +9-7, α=0.0002389 33, α(K)=2.520E-5 35, α(L)=2.244E-6 31, α(M)=2.87E-7 4, α(N)=1.561E-8 22
3- 32 fs 6    1556.57 5 [E1] 0.000331B(E1)(W.u.)=0.00080 +19-14, α=0.000331 5, α(K)=2.200E-5 31, α(L)=1.958E-6 27, α(M)=2.504E-7 35, α(N)=1.363E-8 19
3- 32 fs 6    2868.59 6 (E1(+M2))0.00 21.18×10-3B(E1)(W.u.)=0.00052 +12-8, B(M2)(W.u.)<0.23, α=1.18E-3 2, α(K)=9.10E-6 13, α(L)=8.08E-7 11, α(M)=1.033E-7 14, α(N)=5.63E-9 8
   4035.153 2+ 22 fs 13     811.198 17 [M1+E2] 0.000173B(M1)(W.u.)=0.58 +56-23 (<a href= "http://www.nndc.bnl.gov/nsr/nsrlink.jsp?if pure M1 ">if pure M1</a>), α=0.000173 34, α(K)=0.000157 31, α(L)=1.41×10-5 28, α(M)=1.8E-6 4, α(N)=9.7E-8 19
2+ 22 fs 13    1614.041 19 [M1,E2] 0.000158B(E2)(W.u.)=1.6E2 +15-6 (<a href= "http://www.nndc.bnl.gov/nsr/nsrlink.jsp?if pure E2 ">if pure E2</a>), B(M1)(W.u.)=0.16 +16-6 (<a href= "http://www.nndc.bnl.gov/nsr/nsrlink.jsp?if pure M1 ">if pure M1</a>), α=0.000158 19, α(K)=3.63E-5 21, α(L)=3.23E-6 19, α(M)=4.14E-7 25, α(N)=2.25E-8 13
   4046.6 5(-) 0.37 ps 11     714[E1] 0.0001062B(E1)(W.u.)=0.00023 +11-6, α=0.0001062 15, α(K)=9.65E-5 14, α(L)=8.61E-6 12, α(M)=1.101E-6 15, α(N)=5.97E-8 8
5(-) 0.37 ps 11     807[E1] 8.14×10-5B(E1)(W.u.)=0.00024 +11-7, α=8.14E-5 11, α(K)=7.39E-5 10, α(L)=6.60E-6 9, α(M)=8.43E-7 12, α(N)=4.57E-8 6
5(-) 0.37 ps 11    1750.1 12 (E1(+M2))-0.04 70.000477B(E1)(W.u.)=0.00022 +11-6, α=0.000477 8, α(K)=1.84E-5 4, α(L)=1.63E-6 4, α(M)=2.09E-7 5, α(N)=1.138E-8 27
   4074.511 2+ 35 fs 11     834.736 17 [E2] 0.0001917α=0.0001917 27, α(K)=0.0001740 24, α(L)=1.561×10-5 22, α(M)=1.995E-6 28, α(N)=1.077E-7 15
2+ 35 fs 11    1779[E2] 0.0002431B(E2)(W.u.)=8.2 +42-24, α=0.0002431 34, α(K)=3.17E-5 4, α(L)=2.83E-6 4, α(M)=3.62E-7 5, α(N)=1.969E-8 28
2+ 35 fs 11    3090.82 6 [M1,E2] 0.00078B(E2)(W.u.)=2.7 +13-7 (<a href= "http://www.nndc.bnl.gov/nsr/nsrlink.jsp?if pure E2 ">if pure E2</a>), B(M1)(W.u.)=0.0104 +48-25 (<a href= "http://www.nndc.bnl.gov/nsr/nsrlink.jsp?if pure M1 ">if pure M1</a>), α=0.00078 6, α(K)=1.195E-5 29, α(L)=1.062E-6 26, α(M)=1.359E-7 33, α(N)=7.41E-9 18
2+ 35 fs 11    4075.1 5 [E2] 1.21×10-3B(E2)(W.u.)=0.11 +6-4, α=1.21E-3 2, α(K)=8.00E-6 11, α(L)=7.11E-7 10, α(M)=9.09E-8 13, α(N)=4.96E-9 7
   4210 2-     3226 8 [E1] 1.36×10-3α=1.36×10-3 2, α(K)=7.81E-6 11, α(L)=6.93E-7 10, α(M)=8.87E-8 13, α(N)=4.84E-9 7
   4254.5 1+      555[E1] 0.0001917α=0.0001917 27, α(K)=0.0001741 24, α(L)=1.556×10-5 22, α(M)=1.989E-6 28, α(N)=1.076E-7 15
   4311.3 1+ 3.8 fs +39-17    4310 2 M1 1.15×10-3B(M1)(W.u.)=0.042 +35-21, α=1.15×10-3 2, α(K)=7.16E-6 10, α(L)=6.36E-7 9, α(M)=8.14E-8 11, α(N)=4.44E-9 6
   4387.691 4+ 37 fs 14    1164.9[M1,E2] 8.0×10-5B(E2)(W.u.)=2.4E2 +14-7 (<a href= "http://www.nndc.bnl.gov/nsr/nsrlink.jsp?if pure E2 ">if pure E2</a>), B(M1)(W.u.)=0.13 +8-4 (<a href= "http://www.nndc.bnl.gov/nsr/nsrlink.jsp?if pure M1 ">if pure M1</a>), α=8.0E-5 9, α(K)=6.9E-5 7, α(L)=6.2E-6 7, α(M)=7.9E-7 8, α(N)=4.3E-8 5
4+ 37 fs 14    2092.007 19 [M1,E2] 0.00035B(E2)(W.u.)=11 +7-3 (<a href= "http://www.nndc.bnl.gov/nsr/nsrlink.jsp?if pure E2 ">if pure E2</a>), B(M1)(W.u.)=0.020 +12-6 (<a href= "http://www.nndc.bnl.gov/nsr/nsrlink.jsp?if pure M1 ">if pure M1</a>), α=0.00035 4, α(K)=2.27E-5 9, α(L)=2.02E-6 8, α(M)=2.59E-7 10, α(N)=1.41E-8 5
4+ 37 fs 14    3403.83 7 [E2] 0.000963B(E2)(W.u.)=1.1 +7-3, α=0.000963 13, α(K)=1.048E-5 15, α(L)=9.32E-7 13, α(M)=1.192E-7 17, α(N)=6.50E-9 9
   4398.7 6+ 45 fs 14     890(M1(+E2))-0.1 30.000116B(M1)(W.u.)=0.52 +30-20, α=0.000116 6, α(K)=0.000105 6, α(L)=9.4×10-6 5, α(M)=1.20E-6 6, α(N)=6.54E-8 35
6+ 45 fs 14    2103[E2] 0.000390B(E2)(W.u.)=7.3 +35-21, α=0.000390 5, α(K)=2.329E-5 33, α(L)=2.075E-6 29, α(M)=2.65E-7 4, α(N)=1.445E-8 20
   4404.8 5(+) < 42 fs   1072(M1(+E2))-0.04 88.02×10-5B(M1)(W.u.)>0.16, α=8.02×10-5 12, α(K)=7.28E-5 11, α(L)=6.50E-6 9, α(M)=8.32E-7 12, α(N)=4.53E-8 7
5(+) < 42 fs   2109[M1,E2] 0.00036α=0.00036 4, α(K)=2.24×10-5 9, α(L)=1.99E-6 8, α(M)=2.55E-7 10, α(N)=1.39E-8 5
   4457.455 3+ 49 fs 24    3473.90 9 (M1+E2)0.12 20.000868B(E2)(W.u.)=0.007 +7-3, B(M1)(W.u.)=0.0023 +19-8, α=0.000868 12, α(K)=9.81E-6 14, α(L)=8.72E-7 12, α(M)=1.116E-7 16, α(N)=6.09E-9 9
   4564.8 8(+) > 3.5 ps   1056.2 10 [E2] 0.0001061B(E2)(W.u.)<1.4, α=0.0001061 15, α(K)=9.64E-5 14, α(L)=8.62E-6 12, α(M)=1.103E-6 16, α(N)=5.97E-8 8
8(+) > 3.5 ps   1231.6 5 (E2) 8.90×10-5B(E2)(W.u.)<5, α=8.90E-5 12, α(K)=6.77E-5 9, α(L)=6.05E-6 8, α(M)=7.73E-7 11, α(N)=4.20E-8 6
E(level)
(keV)
Jπ(level)T1/2(level)E(γ)
(keV)
MultipolarityMixing
Ratio
Conversion
Coefficient
Additional Data
   4580.69 3- 38 fs 16    1221.81 8 [M1,E2] 8.0×10-5B(E2)(W.u.)=1.5E2 +11-5 (<a href= "http://www.nndc.bnl.gov/nsr/nsrlink.jsp?if pure E2 ">if pure E2</a>), B(M1)(W.u.)=0.09 +7-3 (<a href= "http://www.nndc.bnl.gov/nsr/nsrlink.jsp?if pure M1 ">if pure M1</a>), α=8.0E-5 9, α(K)=6.3E-5 6, α(L)=5.6E-6 6, α(M)=7.2E-7 7, α(N)=3.9E-8 4
3- 38 fs 16    2162[E1] 0.000766B(E1)(W.u.)=1.1E-4 +8-4, α=0.000766 11, α(K)=1.339E-5 19, α(L)=1.191E-6 17, α(M)=1.523E-7 21, α(N)=8.30E-9 12
3- 38 fs 16    2285.41 19 [E1] 0.000846B(E1)(W.u.)=0.00028 +20-11, α=0.000846 12, α(K)=1.238E-5 17, α(L)=1.101E-6 15, α(M)=1.408E-7 20, α(N)=7.67E-9 11
3- 38 fs 16    3596.76 17 [E1] 1.52×10-3B(E1)(W.u.)=1.1E-4 +8-4, α=1.52E-3 2, α(K)=6.81E-6 10, α(L)=6.04E-7 8, α(M)=7.73E-8 11, α(N)=4.21E-9 6
   4719.137 4+ 66 fs 18    1479.339 18 [M1,E2] 0.000117B(E2)(W.u.)=81 +30-18 (<a href= "http://www.nndc.bnl.gov/nsr/nsrlink.jsp?if pure E2 ">if pure E2</a>), B(M1)(W.u.)=0.071 +26-16 (<a href= "http://www.nndc.bnl.gov/nsr/nsrlink.jsp?if pure M1 ">if pure M1</a>), α=0.000117 14, α(K)=4.28E-5 30, α(L)=3.82E-6 27, α(M)=4.89E-7 34, α(N)=2.66E-8 18
4+ 66 fs 18    1495.53 21 [M1,E2] 0.000121B(E2)(W.u.)=34 +13-8 (<a href= "http://www.nndc.bnl.gov/nsr/nsrlink.jsp?if pure E2 ">if pure E2</a>), B(M1)(W.u.)=0.031 +12-7 (<a href= "http://www.nndc.bnl.gov/nsr/nsrlink.jsp?if pure M1 ">if pure M1</a>), α=0.000121 14, α(K)=4.20E-5 28, α(L)=3.74E-6 26, α(M)=4.79E-7 33, α(N)=2.60E-8 17
   4916.3 5- 0.19 ps 11     870[M1,E2] 0.000146B(E2)(W.u.)=1.6E2 +16-6 (<a href= "http://www.nndc.bnl.gov/nsr/nsrlink.jsp?if pure E2 ">if pure E2</a>), B(M1)(W.u.)=0.049 +49-20 (<a href= "http://www.nndc.bnl.gov/nsr/nsrlink.jsp?if pure M1 ">if pure M1</a>), α=0.000146 26, α(K)=0.000133 23, α(L)=1.19E-5 21, α(M)=1.52E-6 27, α(N)=8.2E-8 14
5- 0.19 ps 11    1133[M1,E2] 8.3×10-5B(E2)(W.u.)=8E1 +8-3 (<a href= "http://www.nndc.bnl.gov/nsr/nsrlink.jsp?if pure E2 ">if pure E2</a>), B(M1)(W.u.)=0.040 +39-16 (<a href= "http://www.nndc.bnl.gov/nsr/nsrlink.jsp?if pure M1 ">if pure M1</a>), α=8.3E-5 9, α(K)=7.4E-5 8, α(L)=6.6E-6 7, α(M)=8.4E-7 9, α(N)=4.6E-8 5
5- 0.19 ps 11    1408[E1] 0.0002227B(E1)(W.u.)=0.00021 +23-9, α=0.0002227 31, α(K)=2.59E-5 4, α(L)=2.308E-6 32, α(M)=2.95E-7 4, α(N)=1.605E-8 22
   4924.92 (2,3,4)+ 21 fs 11     851[M1,E2] 0.000154B(E2)(W.u.)=2.7E2 +25-11 (<a href= "http://www.nndc.bnl.gov/nsr/nsrlink.jsp?if pure E2 ">if pure E2</a>), B(M1)(W.u.)=0.08 +7-3 (<a href= "http://www.nndc.bnl.gov/nsr/nsrlink.jsp?if pure M1 ">if pure M1</a>), α=0.000154 28, α(K)=0.000140 25, α(L)=1.25E-5 23, α(M)=1.60E-6 29, α(N)=8.7E-8 16
(2,3,4)+ 21 fs 11    1686[M1,E2] 0.000183B(E2)(W.u.)=33 +30-12 (<a href= "http://www.nndc.bnl.gov/nsr/nsrlink.jsp?if pure E2 ">if pure E2</a>), B(M1)(W.u.)=0.038 +35-14 (<a href= "http://www.nndc.bnl.gov/nsr/nsrlink.jsp?if pure M1 ">if pure M1</a>), α=0.000183 22, α(K)=3.34E-5 18, α(L)=2.98E-6 16, α(M)=3.81E-7 21, α(N)=2.08E-8 11
(2,3,4)+ 21 fs 11    1700.89 16 [M1,E2] 0.000189B(E2)(W.u.)=38 +37-18 (<a href= "http://www.nndc.bnl.gov/nsr/nsrlink.jsp?if pure E2 ">if pure E2</a>), B(M1)(W.u.)=0.045 +43-21 (<a href= "http://www.nndc.bnl.gov/nsr/nsrlink.jsp?if pure M1 ">if pure M1</a>), α=0.000189 22, α(K)=3.29E-5 18, α(L)=2.93E-6 16, α(M)=3.75E-7 20, α(N)=2.04E-8 11
(2,3,4)+ 21 fs 11    2629.1 3 [M1,E2] 0.00059B(E2)(W.u.)=11 +10-4 (<a href= "http://www.nndc.bnl.gov/nsr/nsrlink.jsp?if pure E2 ">if pure E2</a>), B(M1)(W.u.)=0.031 +28-11 (<a href= "http://www.nndc.bnl.gov/nsr/nsrlink.jsp?if pure M1 ">if pure M1</a>), α=0.00059 5, α(K)=1.55E-5 4, α(L)=1.37E-6 4, α(M)=1.76E-7 5, α(N)=9.59E-9 27
   5145.85 4+ 50 fs 28    1073[E2] 0.0001022B(E2)(W.u.)=1.9E2 +19-8, α=0.0001022 14, α(K)=9.28E-5 13, α(L)=8.31E-6 12, α(M)=1.062E-6 15, α(N)=5.75E-8 8
4+ 50 fs 28    1906.08 9 [M1,E2] 0.000269B(E2)(W.u.)=6.5 +64-24 (<a href= "http://www.nndc.bnl.gov/nsr/nsrlink.jsp?if pure E2 ">if pure E2</a>), B(M1)(W.u.)=0.010 +9-4 (<a href= "http://www.nndc.bnl.gov/nsr/nsrlink.jsp?if pure M1 ">if pure M1</a>), α=0.000269 30, α(K)=2.67E-5 12, α(L)=2.38E-6 11, α(M)=3.05E-7 14, α(N)=1.66E-8 7
4+ 50 fs 28    1921.63 22 [M1,E2] 0.000276B(E2)(W.u.)=12 +12-5 (<a href= "http://www.nndc.bnl.gov/nsr/nsrlink.jsp?if pure E2 ">if pure E2</a>), B(M1)(W.u.)=0.018 +17-7 (<a href= "http://www.nndc.bnl.gov/nsr/nsrlink.jsp?if pure M1 ">if pure M1</a>), α=0.000276 30, α(K)=2.64E-5 12, α(L)=2.35E-6 10, α(M)=3.00E-7 13, α(N)=1.64E-8 7
4+ 50 fs 28    2725.7 5 [E2] 0.000678B(E2)(W.u.)=0.46 +46-19, α=0.000678 9, α(K)=1.493E-5 21, α(L)=1.328E-6 19, α(M)=1.699E-7 24, α(N)=9.26E-9 13
4+ 50 fs 28    2850.01 12 [M1,E2] 0.00068B(E2)(W.u.)=1.5 +14-6 (<a href= "http://www.nndc.bnl.gov/nsr/nsrlink.jsp?if pure E2 ">if pure E2</a>), B(M1)(W.u.)=0.0047 +45-18 (<a href= "http://www.nndc.bnl.gov/nsr/nsrlink.jsp?if pure M1 ">if pure M1</a>), α=0.00068 5, α(K)=1.36E-5 4, α(L)=1.207E-6 32, α(M)=1.54E-7 4, α(N)=8.42E-9 22
   5155.7 5(+) < 7 fs    751[M1] 0.0001626B(M1)(W.u.)>1.5, α=0.0001626 23, α(K)=0.0001476 21, α(L)=1.321×10-5 18, α(M)=1.690E-6 24, α(N)=9.18E-8 13
5(+) < 7 fs   1647(M1(+E2))-0.04 80.0001494B(M1)(W.u.)>0.5, α=0.0001494 22, α(K)=3.30×10-5 5, α(L)=2.94E-6 4, α(M)=3.76E-7 5, α(N)=2.050E-8 29
   5158.0 4+ < 25 fs   1919[M1,E2] 0.000275α=0.000275 30, α(K)=2.64×10-5 12, α(L)=2.35E-6 10, α(M)=3.01E-7 13, α(N)=1.64E-8 7
4+ < 25 fs   1933.9 3 [M1,E2] 0.000281α=0.000281 31, α(K)=2.61×10-5 11, α(L)=2.32E-6 10, α(M)=2.97E-7 13, α(N)=1.62E-8 7
4+ < 25 fs   2863[M1,E2] 0.00068α=0.00068 5, α(K)=1.348×10-5 35, α(L)=1.199E-6 32, α(M)=1.53E-7 4, α(N)=8.36E-9 22
4+ < 25 fs   4174[E2] 1.24×10-3B(E2)(W.u.)>0.12, α=1.24E-3 2, α(K)=7.72E-6 11, α(L)=6.86E-7 10, α(M)=8.78E-8 12, α(N)=4.79E-9 7
   5169.8 7+ 28 fs 12     605[M1+E2] 3.7×10-4B(E2)(W.u.)=1.2E3 +9-4 (<a href= "http://www.nndc.bnl.gov/nsr/nsrlink.jsp?if pure E2 ">if pure E2</a>), B(M1)(W.u.)=0.18 +13-6 (<a href= "http://www.nndc.bnl.gov/nsr/nsrlink.jsp?if pure M1 ">if pure M1</a>), α=3.7E-4 11, α(K)=3.3E-4 10, α(L)=3.0E-5 9, α(M)=3.8E-6 12, α(N)=2.1E-7 6
7+ 28 fs 12    1661M1+E2+0.11 +9-40.0001542B(E2)(W.u.)=0.6 +17-4, B(M1)(W.u.)=0.051 +34-17, α=0.0001542 24, α(K)=3.26E-5 5, α(L)=2.90E-6 4, α(M)=3.71E-7 5, α(N)=2.022E-8 29
7+ 28 fs 12    1837M1+E2+0.09 70.0002139B(E2)(W.u.)=0.5 +14-4, B(M1)(W.u.)=0.08 +6-3, α=0.0002139 31, α(K)=2.73E-5 4, α(L)=2.431E-6 34, α(M)=3.11E-7 4, α(N)=1.696E-8 24
E(level)
(keV)
Jπ(level)T1/2(level)E(γ)
(keV)
MultipolarityMixing
Ratio
Conversion
Coefficient
Additional Data
   5197.9 8+ 76 fs 24     632.7 10 (M1(+E2))-0.03 +25-350.000232B(M1)(W.u.)=0.95 +50-35, α=0.000232 23, α(K)=0.000211 21, α(L)=1.89×10-5 19, α(M)=2.42E-6 24, α(N)=1.31E-7 13
8+ 76 fs 24    1689[E2] 0.0002062B(E2)(W.u.)=7.3 +35-20, α=0.0002062 29, α(K)=3.51E-5 5, α(L)=3.13E-6 4, α(M)=4.00E-7 6, α(N)=2.176E-8 30
8+ 76 fs 24    1865[E2] 0.000280B(E2)(W.u.)=1.0 +6-4, α=0.000280 4, α(K)=2.90E-5 4, α(L)=2.59E-6 4, α(M)=3.31E-7 5, α(N)=1.801E-8 25
   5312.8 (5-) 69 fs 28    1266M1,E2 8.2×10-5B(E2)(W.u.)=61 +41-19 (<a href= "http://www.nndc.bnl.gov/nsr/nsrlink.jsp?if pure E2 ">if pure E2</a>), B(M1)(W.u.)=0.040 +26-12 (<a href= "http://www.nndc.bnl.gov/nsr/nsrlink.jsp?if pure M1 ">if pure M1</a>), α=8.2E-5 9, α(K)=5.8E-5 5, α(L)=5.2E-6 5, α(M)=6.7E-7 6, α(N)=3.63E-8 33
(5-) 69 fs 28    1804[E1] 0.000517B(E1)(W.u.)=0.00019 +13-6, α=0.000517 7, α(K)=1.748E-5 24, α(L)=1.555E-6 22, α(M)=1.989E-7 28, α(N)=1.083E-8 15
(5-) 69 fs 28    1980(E1(+M2))-0.07 +7-90.000640B(E1)(W.u.)=0.00057 +48-21, α=0.000640 13, α(K)=1.53E-5 6, α(L)=1.36E-6 5, α(M)=1.74E-7 6, α(N)=9.50E-9 34
   5340 1(-)     5340 3 (E1) 2.13×10-3α=2.13×10-3 3, α(K)=4.23E-6 6, α(L)=3.75E-7 5, α(M)=4.80E-8 7, α(N)=2.62E-9 4
   5500.8 4+ 26 fs 12    1096[M1,E2] 8.7×10-5B(E2)(W.u.)=1.0E2 +8-4 (<a href= "http://www.nndc.bnl.gov/nsr/nsrlink.jsp?if pure E2 ">if pure E2</a>), B(M1)(W.u.)=0.046 +38-18 (<a href= "http://www.nndc.bnl.gov/nsr/nsrlink.jsp?if pure M1 ">if pure M1</a>), α=8.7E-5 10, α(K)=7.9E-5 9, α(L)=7.1E-6 8, α(M)=9.0E-7 11, α(N)=4.9E-8 6
4+ 26 fs 12    1102[E2] 9.70×10-5B(E2)(W.u.)=2.7E2 +22-9, α=9.70E-5 14, α(K)=8.72E-5 12, α(L)=7.80E-6 11, α(M)=9.97E-7 14, α(N)=5.41E-8 8
4+ 26 fs 12    1426[E2] 0.0001167B(E2)(W.u.)=14 +12-6, α=0.0001167 16, α(K)=4.93E-5 7, α(L)=4.41E-6 6, α(M)=5.63E-7 8, α(N)=3.06E-8 4
4+ 26 fs 12    1454[E1] 0.000254B(E1)(W.u.)=0.00019 +17-9, α=0.000254 4, α(K)=2.457E-5 34, α(L)=2.188E-6 31, α(M)=2.80E-7 4, α(N)=1.522E-8 21
4+ 26 fs 12    2168[E2] 0.000420B(E2)(W.u.)=6.0 +50-24, α=0.000420 6, α(K)=2.206E-5 31, α(L)=1.965E-6 28, α(M)=2.513E-7 35, α(N)=1.369E-8 19
4+ 26 fs 12    3205[M1,E2] 0.00082B(E2)(W.u.)=3.2 +24-10 (<a href= "http://www.nndc.bnl.gov/nsr/nsrlink.jsp?if pure E2 ">if pure E2</a>), B(M1)(W.u.)=0.013 +10-4 (<a href= "http://www.nndc.bnl.gov/nsr/nsrlink.jsp?if pure M1 ">if pure M1</a>), α=0.00082 6, α(K)=1.129E-5 27, α(L)=1.004E-6 24, α(M)=1.284E-7 31, α(N)=7.01E-9 17
   5630.9 7 24 fs 14    1066D(+Q)-0.03 5 
7 24 fs 14    2298D+Q+0.06 4 
   5640.03 1+ < 0.96 fs   1182.56 5 [E2] 8.84×10-5α=8.84×10-5 12, α(K)=7.41E-5 10, α(L)=6.63E-6 9, α(M)=8.47E-7 12, α(N)=4.60E-8 6
1+ < 0.96 fs   4655.8 6 M1 1.26×10-3B(M1)(W.u.)>0.02, α=1.26×10-3 2, α(K)=6.42E-6 9, α(L)=5.70E-7 8, α(M)=7.30E-8 10, α(N)=3.98E-9 6
1+ < 0.96 fs   5639.9 10 M1 1.52×10-3α=1.52×10-3 2, α(K)=4.93E-6 7, α(L)=4.38E-7 6, α(M)=5.60E-8 8, α(N)=3.06E-9 4
   5641.5 3- 24 fs 11     923[E1] 6.17×10-5B(E1)(W.u.)=0.0032 +25-11, α=6.17E-5 9, α(K)=5.61E-5 8, α(L)=5.00E-6 7, α(M)=6.39E-7 9, α(N)=3.47E-8 5
3- 24 fs 11    1789[M1,E2] 0.000222B(E2)(W.u.)=9 +7-4 (<a href= "http://www.nndc.bnl.gov/nsr/nsrlink.jsp?if pure E2 ">if pure E2</a>), B(M1)(W.u.)=0.011 +10-5 (<a href= "http://www.nndc.bnl.gov/nsr/nsrlink.jsp?if pure M1 ">if pure M1</a>), α=0.000222 26, α(K)=3.00E-5 15, α(L)=2.67E-6 13, α(M)=3.42E-7 17, α(N)=1.86E-8 9
3- 24 fs 11    1939[E2] 0.000314B(E2)(W.u.)=9 +7-3, α=0.000314 4, α(K)=2.70E-5 4, α(L)=2.406E-6 34, α(M)=3.08E-7 4, α(N)=1.675E-8 23
3- 24 fs 11    2418[E1] 0.000927B(E1)(W.u.)=0.00015 +12-5, α=0.000927 13, α(K)=1.145E-5 16, α(L)=1.018E-6 14, α(M)=1.301E-7 18, α(N)=7.09E-9 10
3- 24 fs 11    3347[E1] 1.41×10-3B(E1)(W.u.)=0.00028 +20-10, α=1.41E-3 2, α(K)=7.45E-6 10, α(L)=6.62E-7 9, α(M)=8.46E-8 12, α(N)=4.61E-9 6
   5805.2 3-,4- 21 fs 12    1759[M1,E2] 0.000210B(E2)(W.u.)=6 +8-3 (<a href= "http://www.nndc.bnl.gov/nsr/nsrlink.jsp?if pure E2 ">if pure E2</a>), B(M1)(W.u.)=0.008 +10-4 (<a href= "http://www.nndc.bnl.gov/nsr/nsrlink.jsp?if pure M1 ">if pure M1</a>), α=0.000210 25, α(K)=3.09E-5 16, α(L)=2.76E-6 14, α(M)=3.52E-7 18, α(N)=1.92E-8 10
3-,4- 21 fs 12    2446[M1,E2] 0.00050B(E2)(W.u.)=29 +30-11 (<a href= "http://www.nndc.bnl.gov/nsr/nsrlink.jsp?if pure E2 ">if pure E2</a>), B(M1)(W.u.)=0.07 +7-3 (<a href= "http://www.nndc.bnl.gov/nsr/nsrlink.jsp?if pure M1 ">if pure M1</a>), α=0.00050 5, α(K)=1.74E-5 5, α(L)=1.55E-6 5, α(M)=1.98E-7 6, α(N)=1.080E-8 33
E(level)
(keV)
Jπ(level)T1/2(level)E(γ)
(keV)
MultipolarityMixing
Ratio
Conversion
Coefficient
Additional Data
   5846.5 3- < 21 fs   2607[E1] 1.04×10-3α=1.04×10-3 1, α(K)=1.033E-5 14, α(L)=9.18E-7 13, α(M)=1.174E-7 16, α(N)=6.40E-9 9
3- < 21 fs   3551[E1] 1.50×10-3α=1.50×10-3 2, α(K)=6.92E-6 10, α(L)=6.14E-7 9, α(M)=7.85E-8 11, α(N)=4.28E-9 6
3- < 21 fs   4862[E1] 1.98×10-3α=1.98×10-3 3, α(K)=4.72E-6 7, α(L)=4.19E-7 6, α(M)=5.36E-8 7, α(N)=2.92E-9 4
   6034.9 9+,7+ < 21 fs    837M1(+E2) 0.000160α=0.000160 30, α(K)=0.000146 27, α(L)=1.30×10-5 25, α(M)=1.67E-6 31, α(N)=9.0E-8 17
9+,7+ < 21 fs   1470M1+E2 0.000115α=0.000115 14, α(K)=4.34×10-5 30, α(L)=3.87E-6 27, α(M)=4.95E-7 35, α(N)=2.69E-8 19
   6039.7 6 25 fs 17    1641D(+Q)0.0 +2-3 
   6172.9 8+,6+ 35 fs 28    1003M1+E2 0.000106B(E2)(W.u.)=3.9E2 +42-19 (<a href= "http://www.nndc.bnl.gov/nsr/nsrlink.jsp?if pure E2 ">if pure E2</a>), B(M1)(W.u.)=0.16 +18-8 (<a href= "http://www.nndc.bnl.gov/nsr/nsrlink.jsp?if pure M1 ">if pure M1</a>), α=0.000106 15, α(K)=9.6E-5 13, α(L)=8.6E-6 12, α(M)=1.10E-6 15, α(N)=6.0E-8 8
   6604.3 1- 0.86 eV 20    5620 4 E1 2.20×10-3B(E1)(W.u.)=0.00135, α=2.20E-3 3, α(K)=3.98E-6 6, α(L)=3.53E-7 5, α(M)=4.52E-8 6, α(N)=2.467E-9 35
1- 0.86 eV 20    6604 3 E1 B(E1)(W.u.)=0.00251

Back to top

Additional Level Data and Comments:

E(level)Jπ(level)T1/2(level)Comments
      0.00+ STABLE Nuclear rms charge radius=3.5921 fm 17 (2013An02).
E(level): Nuclear rms charge radius=3.5921 fm 17 (2013An02).
    983.5312+ 4.5 ps 4  Q=-0.177 8 (1972Li12), μ=+0.78 4 (2000Er06)
B(E2)|^=0.0613 56, unweighted average of 0.0537 36 in (e,e’), 0.050 15 in (p,p’), 0.0694 52 in (π+-), 0.072 4 in Coulomb excitation. Other: 0.0069 from (α,α’) (1970Br07) is discrepant, lower than other values by one order of magnitude.
E(level): B(E2)|^=0.0613 56, unweighted average of 0.0537 36 in (e,e’), 0.050 15 in (p,p’), 0.0694 52 in (π+-), 0.072 4 in Coulomb excitation. Other: 0.0069 from (α,α’) (1970Br07) is discrepant, lower than other values by one order of magnitude.
   2295.6484+ 0.87 ps 13  μ=+2.2 5 (2000Er06)
XREF: R(2400)b(2310).
   30622+   B(E2)|^=0.00112 20 (1990Gu09) from (e,e’).
E(level): B(E2)|^=0.00112 20 (1990Gu09) from (e,e’).
   3223.9713+ 33 fs 6  B(M3)|^=0.50 10 (1990Gu09) in (e,e’).
E(level): B(M3)|^=0.50 10 (1990Gu09) in (e,e’).
   3239.7714+ 46 fs 11  XREF: γ(3200).
   3333.1876+ 8.9 ps 8  XREF: γ(3400)V(?).
   3358.8233- 186 fs +38-34  B(E3)|^=0.0080 16 from model-dependent analysis in (e,e’).
E(level): B(E3)|^=0.0080 16 from model-dependent analysis in (e,e’).
   3370.872+ 11.2 fs 14  XREF: c(3363).
   3616.8122+ 43 fs 13  XREF: f(3631).
   3738.601+ 3.1 fs 18  XREF: I(?).
Jπ(level): From γ(θ) and azimuthal asymmetries in (γ,γ’).
   3802.732-   XREF: Q(3787)f(3797).
   3852.243- 32 fs 6  XREF: I(3842)Q(3871)R(3870)f(3868).
   4035.1532+ 22 fs 13  XREF: t(?)Y(4045)c(4044).
   40774+   XREF: γ(4200).
   41021+   B(M1)|^=0.17 7 (1990Gu09) in (e,e’).
E(level): B(M1)|^=0.17 7 (1990Gu09) in (e,e’).
   4254.51+   B(M1)|^=0.14 10 (1990Gu09) in (e,e’).
E(level): B(M1)|^=0.14 10 (1990Gu09) in (e,e’).
   4311.31+ 3.8 fs +39-17  XREF: t(?)d(4328).
Jπ(level): From γ(θ) and azimuthal asymmetries in (γ,γ’).
   4346.7(2+)   XREF: d(4358).
   4387.6914+ 37 fs 14  XREF: U(4392)c(4393).
   4407(2+)   XREF: d(4417).
   4457.4553+ 49 fs 24  XREF: γ(4500).
   4580.693- 38 fs 16  XREF: Q(4596)U(4591).
   4719.1374+ 66 fs 18  XREF: U(4726)c(4725).
   4861.02+,3+,4+ 21 fs 11  XREF: M(4852).
E(level)Jπ(level)T1/2(level)Comments
   4885.0(2+,3+,4+)   XREF: Z(4890)d(4879).
   4924.92(2,3,4)+ 21 fs 11  XREF: a(4930).
   4939.93(2,3,4)+   XREF: t(?).
   4970.70+   XREF: Q(4997).
   4992.05-   XREF: M(5000)U(5000)d(5005).
   5145.854+ 50 fs 28  XREF: t(?)a(5150).
   5170(2,3,4,5)+   XREF: d(5184).
   5197.98+ 76 fs 24  XREF: a(5199)d(5205).
   52411+   B(M1)|^=0.11 3 from (e,e’).
E(level): B(M1)|^=0.11 3 from (e,e’).
   5312.8(5-) 69 fs 28  spin=5,6,7 from pγ(θ) in (α,pγ); 1266γ M1,E2 to 5(-); 2185γ from (4+).
E(level): spin=5,6,7 from pγ(θ) in (α,pγ); 1266γ M1,E2 to 5(-); 2185γ from (4+).
   5313.32+   B(E2)|^=0.00164 28 (1990Gu09) from (e,e’).
E(level): B(E2)|^=0.00164 28 (1990Gu09) from (e,e’).
   53401(-)   XREF: U(5329).
Jπ(level): From γ(θ) and azimuthal asymmetries in (γ,γ’).
   5356.23(2+,3,4+)   XREF: d(5371).
   5383.8(3)-   XREF: I(5378).
   53914+   XREF: M(5382)U(5400).
   5490.952+   XREF: K(5499).
   55261   XREF: d(5530).
Jπ(level): From γ(θ) and azimuthal asymmetries in (γ,γ’).
   5545.93-   XREF: R(5540)U(5537).
   5562(3-)   XREF: U(5578).
   5567.92+   B(E2)|^=0.00093 20 (1990Gu09) from (e,e’).
E(level): B(E2)|^=0.00093 20 (1990Gu09) from (e,e’).
   5619.652+   B(E2)|^=0.0019 5 (1990Gu09) from (e,e’).
E(level): B(E2)|^=0.0019 5 (1990Gu09) from (e,e’).
   5640.031+ < 0.96 fs B(M1)|^=0.47 8 (1990Gu09) from (e,e’).
E(level): B(M1)|^=0.47 8 (1990Gu09) from (e,e’).
Jπ(level): From γ(θ) and azimuthal asymmetries in (γ,γ’).
   56571+   B(M1)|^=0.25 4 (1990Gu09) from (e,e’).
E(level): B(M1)|^=0.25 4 (1990Gu09) from (e,e’).
   57642+   B(E2)|^=0.00031 10 (1990Gu09) from (e,e’).
E(level): B(E2)|^=0.00031 10 (1990Gu09) from (e,e’).
   5827.13-   XREF: Q(5835).
E(level)Jπ(level)T1/2(level)Comments
   5888.41(1,2,3)   One of the 5884, (3-) and 5885, 2+ levels could correspond to this level, and the other one is a separate level.
E(level): One of the 5884, (3-) and 5885, 2+ levels could correspond to this level, and the other one is a separate level.
   5917.82+   XREF: Q(5940)U(5928).
   59881+,3+   B(M1)|^=0.08 3, B(M3)|^=0.236 59 from (e,e’) (1990Gu09).
E(level): B(M1)|^=0.08 3, B(M3)|^=0.236 59 from (e,e’) (1990Gu09).
   5993.6(2)+   B(E2)=0.00051 12 (1990Gu09) from (e,e’).
E(level): B(E2)=0.00051 12 (1990Gu09) from (e,e’).
   6034.99+,7+ < 21 fs Jπ(level): If J(8091)=12 then J(7374)=11, J(7668,6906,6102)=10, and J(7427,6034)=9.
   60653-   XREF: Q(6077)U(6083).
   60861   Jπ(level): From γ(θ) and azimuthal asymmetries in (γ,γ’).
   6103.210(+),8 > 1.4 ps Jπ(level): If J(8091)=12 then J(7374)=11, J(7668,6906,6102)=10, and J(7427,6034)=9.
   61261   Jπ(level): From γ(θ) and azimuthal asymmetries in (γ,γ’).
   61381(+)   Jπ(level): From γ(θ) and azimuthal asymmetries in (γ,γ’).
   6176.4(2+,3,4,5-)   XREF: t(?).
   62362+   Jπ(level): From γ(θ) and azimuthal asymmetries in (γ,γ’).
   6253.73-   B(E3)|^=0.0035 4 from (e,e’).
E(level): B(E3)|^=0.0035 4 from (e,e’).
   6336.53-   XREF: Y(6342).
   6365.163-   XREF: R(6360).
   6475.33-   XREF: U(6484)Y(6462).
   6518.54+   XREF: Y(6509).
   6672.6(2,3,4)+   XREF: M(6681)U(6687).
   6707.4(2+,3,4+)   XREF: Y(6701).
   67553+   B(M3)|^=0.327 69 from in (e,e’).
E(level): B(M3)|^=0.327 69 from in (e,e’).
   6841.93-   XREF: U(6839)Y(6831).
   6907.010,8,6 97 fs +76-63  Jπ(level): If J(8091)=12 then J(7374)=11, J(7668,6906,6102)=10, and J(7427,6034)=9.
   69791-   Jπ(level): From γ(θ) and azimuthal asymmetries in (γ,γ’).
   7033.5(4+)   XREF: U(7036).
   70411,2   Jπ(level): From γ(θ) and azimuthal asymmetries in (γ,γ’).
E(level)Jπ(level)T1/2(level)Comments
   7054.0(3-)   XREF: a(7042).
   7067.0(3-,4+)   XREF: U(7082).
   70711+   B(M1)|^=0.18 7, B(M3)|^=0.186 99 from (e,e’) (1990Gu09).
Jπ(level): From γ(θ) and azimuthal asymmetries in (γ,γ’).
   71101   Jπ(level): From γ(θ) and azimuthal asymmetries in (γ,γ’).
   71241-   Jπ(level): From γ(θ) and azimuthal asymmetries in (γ,γ’).
   7221.61+   XREF: M(7228).
   7290.03+   B(M3)|^=0.41 16 from (e,e’) (1990Gu09).
E(level): B(M3)|^=0.41 16 from (e,e’) (1990Gu09).
   7358.982+   B(E2)|^=0.00085 19 from (e,e’) (1990Gu09).
E(level): B(E2)|^=0.00085 19 from (e,e’) (1990Gu09).
   7375.111,9,7 28 fs +42-28  Jπ(level): If J(8091)=12 then J(7374)=11, J(7668,6906,6102)=10, and J(7427,6034)=9.
   7387.9   XREF: U(7400).
   7427.99,7 > 0.7 ps Jπ(level): If J(8091)=12 then J(7374)=11, J(7668,6906,6102)=10, and J(7427,6034)=9.
   7431.9(2,3,4)+   XREF: M(7428).
   74501-   Jπ(level): From γ(θ) and azimuthal asymmetries in (γ,γ’).
   74841   Jπ(level): From γ(θ) and azimuthal asymmetries in (γ,γ’).
   75861(-)   Jπ(level): From γ(θ) and azimuthal asymmetries in (γ,γ’).
   7616.13(1-,2)   XREF: U(?).
   7669.210,8   Jπ(level): If J(8091)=12 then J(7374)=11, J(7668,6906,6102)=10, and J(7427,6034)=9.
   78451+,3+   B(M3)|^=0.038 11 from (e,e’) (1990Gu09).
E(level): B(M3)|^=0.038 11 from (e,e’) (1990Gu09).
   78763+   B(M3)|^=0.30 9 from (e,e’) (1990Gu09).
E(level): B(M3)|^=0.30 9 from (e,e’) (1990Gu09).
   79051+   B(M1)|^=0.08 3 from (e,e’) (1990Gu09).
E(level): B(M1)|^=0.08 3 from (e,e’) (1990Gu09).
   79691   Jπ(level): From γ(θ) and azimuthal asymmetries in (γ,γ’).
   79862+   XREF: M(7996)Y(7986).
   80101   Jπ(level): From γ(θ) and azimuthal asymmetries in (γ,γ’).
   80521+,3+   B(M1)|^=0.09 3, B(M3)|^=0.084 19 from (e,e’).
E(level): B(M1)|^=0.09 3, B(M3)|^=0.084 19 from (e,e’).
   81991+   B(M1)|^=0.24 9 from model-dependent PWBA in (e,e’) (1990Gu09).
E(level): B(M1)|^=0.24 9 from model-dependent PWBA in (e,e’) (1990Gu09).
E(level)Jπ(level)T1/2(level)Comments
   82551   Jπ(level): From γ(θ) and azimuthal asymmetries in (γ,γ’).
   85721(-)   Jπ(level): From γ(θ) and azimuthal asymmetries in (γ,γ’).
   85921   Jπ(level): From γ(θ) and azimuthal asymmetries in (γ,γ’).
   86721   Jπ(level): From γ(θ) and azimuthal asymmetries in (γ,γ’).
   89331   Jπ(level): From γ(θ) and azimuthal asymmetries in (γ,γ’).
   89961(+)   Jπ(level): From γ(θ) and azimuthal asymmetries in (γ,γ’).
   90251   Jπ(level): From γ(θ) and azimuthal asymmetries in (γ,γ’).
   99771-   Jπ(level): From γ(θ) and azimuthal asymmetries in (γ,γ’).

Back to top

Additional Gamma Comments:

E(level)E(gamma)Comments
    983.531    983.521E(γ): weighted average of 983.526 12 from 48Sc β- decay, 983.525 4 from 48V ε decay, and 983.517 4 from (n,γ) E=thermal. Others: 983.4 3 from (14C,2nγ), 983.7 5 from (7Li,p2nγ), 983.1 3 from (α,pγ), 983.50 15 from (p,p’γ), and 983.1 15 from Coulomb excitation.
M(γ): from ce data in ε and β- decay, γ(θ,pol) in (p,p’γ), and γγ(θ) in (n,γ) E=thermal.
   2295.648   1312.104E(γ): weighted average of 1312.120 12 from 48Sc β- decay, 1312.105 6 from 48V ε decay, and 1312.096 7 from (n,γ) E=thermal. Others: 1312.1 6 from (14C,2nγ), 1312.5 7 from (7Li,p2nγ), 1311.7 3 from (α,pγ), and 1312.20 10 from (p,p’γ).
M(γ): from ce data in ε and β- decay, γ(θ) in (p,p’γ), and γγ(θ) in (n,γ) E=thermal.
   2421.053   1437.493E(γ): weighted average of 1437.521 21 from 48V ε decay and 1437.487 10 from (n,γ) E=thermal. Others: 1436.9 5 from (α,pγ) and 1436.80 10 from (p,p’γ).
I(γ): from (p,p’γ). Others: 100.0 25 from 48V ε decay, 100 6 from (n,γ) E=thermal, 100 5 from (n,n’γ), and 100.0 2 from (α,pγ).
M(γ): D+Q from γγ(θ) in (p,p’γ) and (n,γ) E=thermal, and γ(θ) in (n,n’γ); E1+M2 ruled out by RUL.
   2420.91E(γ): weighted average of 2420.94 5 from 48V ε decay, 2420.90 4 from (n,γ) E=thermal, and 2420.70 20 from (p,p’γ).
I(γ): weighted average of 5.58 25 from 48V ε decay, 5.42 36 from (n,γ) E=thermal, 5.0 12 from (n,n’γ), and 3.5 10 from (p,p’γ). Other: 1.0 2 from (α,pγ) is discrepant.
M(γ): Q from pγ(θ) and γ(θ) in (p,p’γ); M2 ruled out by RUL.
   2997.31   2013.79E(γ): weighted average of 2013.66 16 from (n,γ) E=thermal and 2014.00 20 from (p,p’γ).
M(γ): isotropic pγ(θ) in (p,p’γ); M2 ruled out by RUL.
   3223.971    802.88E(γ): weighted average of 803.05 25 from 48V ε decay, 802.87 6 from (n,γ) E=thermal, and 804.0 12 from (p,p’γ).
I(γ): weighted average of 5.83 52 from 48V ε decay, 5.5 14 from (α,pγ), 4.55 33 from (n,γ) E=thermal, and 5.1 11 from (p,p’γ). Other: 9.0 50 from (n,n’γ).
    928.316E(γ): unweighted average of 928.326 6 from 48V ε decay and 928.290 10 from (n,γ) E=thermal. Others: 928.4 6 from (p,p’γ); 927.4 7 from (α,pγ) is discrepant.
I(γ): from 48V ε decay. Others: 31.5 41 from (α,pγ), 31.8 17 from (n,γ) E=thermal, 35.0 60 from (n,n’γ), and 33.8 24 from (p,p’γ).
   2240.391E(γ): weighted average of 2240.396 10 from 48V ε decay and 2240.375 19 from (n,γ) E=thermal. Others: 2240.2 7 from (α,pγ) and 2240.0 3 from (p,p’γ).
I(γ): from 48V ε decay. Others: 100 6 from (α,pγ), 100 6 from (n,γ) E=thermal, 100 15 from (n,n’γ), and 100 3 from (p,p’γ).
M(γ): D+Q from γ(θ) in (n,n’γ) and pγ(θ) in (p,p’γ); E1+M2 ruled out by RUL.
   3239.771    944.118E(γ): unweighted average of 944.129 6 from 48V ε decay and 944.104 7 from (n,γ) E=thermal. Others: 943.6 5 from (α,pγ) and 945.1 5 from (p,p’γ) are discrepant.
M(γ): D+Q from γ(θ) in (n,n’γ); E1+M2 ruled out by RUL.
   3333.187   1037.536E(γ): weighted average of 1037.522 12 from 48Sc β- decay, 1037.0 5 from (14C,2nγ), 1037.9 5 from (7Li,p2nγ), 1037.1 4 from (α,pγ), and 1037.599 25 from (n,γ) E=thermal.
M(γ): Q from pγ(θ) in (α,pγ); M2 ruled out by RUL.
   3358.823    938.0E(γ): from (n,n’γ) and (α,pγ).
I(γ): from (α,pγ). Other: 8 3 from (n,n’γ) is discrepant. Note that this transition is not seen in ε decay, (p,p’γ) and (n,γ) E=thermal, indicating a weak intensity.
   1063.7E(γ): unweighted average of 1063.9 1 from 48V ε decay, 1063.19 5 from (n,γ) E=thermal, and 1064.0 10 from (p,p’γ).
I(γ): unweighted average of 8.2 17 from (α,pγ), 10.3 8 from (n,γ) E=thermal, 23 8 from (n,n’γ), and 17.4 8 from (p,p’γ). Other: 57 12 from 48V ε decay is strongly discrepant with other values.
   2375.209E(γ): weighted average of 2375.20 4 from 48V ε decay and 2375.211 19 from (n,γ) E=thermal. Others: 2374.7 4 from (α,pγ) and 2374.8 8 from (p,p’γ).
I(γ): from (p,p’γ). Others: 100.0 35 from 48V ε decay, 100.0 22 from (α,pγ), 100 6 from (n,γ) E=thermal, and 100 23 from (n,n’γ).
   3370.87   2387.25E(γ): from (n,γ) E=thermal. Others: 2387.6 5 from (α,pγ) and 2387.3 3 from (p,p’γ).
I(γ): from (p,p’γ). Others: 100.0 34 from (α,pγ), 100 6 from (n,γ) E=thermal, and 100 15 from (n,n’γ).
M(γ): D+Q from γγ(θ) in (n,γ) E=thermal, γ(θ) in (γ,γ’) and pγ(θ) in (p,p’γ); Δπ=no from level scheme.
   3370.96E(γ): from (n,γ) E=thermal. Others: 3369.6 14 from (α,pγ) and 3371.5 12 from (p,p’γ).
I(γ): weighted average of 12.4 34 from (α,pγ), 19.0 15 from (n,γ) E=thermal, 20 5 from (n,n’γ), and 15.6 11 from (p,p’γ).
   3508.548    175.361E(γ): from 48Sc β- decay. Others: 175.3 3 from (14C,2nγ) and 175.9 5 from (7Li,p2nγ).
I(γ): from 48Sc β- decay. Others: 100 11 from (24Mg,3pγ), 100 4 from (α,pγ), and 100 5 from (3He,3nγ).
M(γ): assumed based on comparions with RUL
   1212.880E(γ): from 48Sc β- decay. Others: 1212.4 10 from (7Li,p2nγ) and 1212.3 6 from (α,pγ).
I(γ): weighted average of 31.86 54 from 48Sc β- decay, 29.9 39 from (α,pγ), and 27 10 from (3He,3nγ). Others: 20.1 30 from (24Mg,3pγ) is discrepant.
M(γ): Q from pγ(θ) in (α,pγ); M2 ruled out by RUL.
   3616.812   1195.83E(γ): from (n,γ) E=thermal.
I(γ): weighted average of 10.2 23 from (α,pγ) and 7.96 54 from (n,γ) E=thermal.
   2633.20E(γ): from (n,γ) E=thermal. Other: 2632.5 8 from (α,pγ).
I(γ): from (α,pγ). Other: 100 7 from (n,γ) E=thermal.
M(γ): D+Q from γγ(θ) in (n,γ) E=thermal and pγ(θ) in (p,p’γ); E1+M2 ruled out by RUL.
   3616.8E(γ): from (n,γ) E=thermal.
I(γ): unweighted average of 3.4 11 from (α,pγ) and 1.08 43 from (n,γ) E=thermal.
   3699.52   2715.81E(γ): from (n,γ) E=thermal. Other: 2716 1 from (γ,γ), 2714.9 from (p,p’γ).
I(γ): from (p,p’γ). Others: 100 13 from (α,pγ), 100 8 from (n,γ) E=thermal, 100 6 from (γ,γ), and 100 15 from (n,n’γ).
M(γ): from γ(θ) and azimuthal asymmetries in (γ,γ’). Other: M1+E2 with δ=+0.9 +14-5 from pγ(θ) and comparison to RUL in (p,p’γ) is discrepant.. From γ(θ) and azimuthal asymmetries in (γ,γ’)
   3699.11E(γ): from (n,γ) E=thermal. Other: 3700 1 from (γ,γ), 3698.3 from (p,p’γ).
I(γ): weighted average of 61 13 from (α,pγ), 67 5 from (n,γ) E=thermal, 54 8 from (n,n’γ), and 53.8 31 from (p,p’γ). Other: 92 6 from (γ,γ’) is discrepant.
M(γ): From γ(θ) and azimuthal asymmetries in (γ,γ’)
   3711.6   2728E(γ): from (α,pγ) only. 1993Ko57 in (n,n’γ) suggest that this γ is the same as the 2726γ from the 5146 state in their work.
   3738.60   2756.0E(γ): weighted average of 2756.5 7 from (n,γ) E=thermal and 2755 1 from (γ,γ). Other: 2757.2 from (p,p’γ).
I(γ): weighted average of 63 15 from (n,γ) E=thermal, 42 10 from (n,n’γ), and 42 8 from (p,p’γ). Other: I(2756γ)/3738γ)=257 22/100 22 is discrepant.
   3738.35E(γ): from (n,γ) E=thermal. Others: 3737.8 13 from (α,pγ), 3739 1 from (γ,γ), 3740.5 from (p,p’γ).
I(γ): from (p,p’γ). Others: 100 12 from (n,γ) E=thermal, 100 16 from (n,n’γ).
M(γ): From γ(θ) and azimuthal asymmetries in (γ,γ’)
E(level)E(gamma)Comments
   3782.459    423.629E(γ): weighted average of 423.2 4 from (α,pγ) and 423.629 9 from (n,γ) E=thermal.
I(γ): from (n,γ) E=thermal. Other: 100 6 from (α,pγ); I(424γ)/I(1487γ)=≈50/100 25 in (n,n’γ) and 23 5/100 5 in (p,p’γ) are discrepant.
    558.6E(γ): from (n,n’γ).
I(γ): from (α,pγ). Other: I(559γ)/I(1487γ)=50 15/100 25 in (n,n’γ) is discrepant.
   1486.82E(γ): from (n,γ) E=thermal. Other: 1486.8 17 from (α,pγ).
I(γ): weighted average of 33 6 from (α,pγ) and 41.5 24 from (n,γ) E=thermal.
   3802.73   2819.08E(γ): from (n,γ) E=thermal only.
   3852.24   1432E(γ): from (α,pγ) and (n,n’γ).. Those γ branches are reported by 1979Gl07 in (α,pγ), but not confirmed in (n,γ) E=thermal by 1984Ru06, which constructs the (n,γ) level scheme with the aid of the Ritz combination and previous experiments. This method in 1984Ru06 is, perhaps, more rigorous than those employed by other authors for the placement of transitions. Therefore, if for states observed in (n,γ) there are transitions assigned in other experiments which are not confirmed, the placements of these transitions are probably questionable.
I(γ): from (α,pγ). Other: ≈2.5 from (n,n’γ).
   1556.57E(γ): from (n,γ) E=thermal. Other: 1556.6 in (n,n’γ), 1556.3 in (p,p’γ).
I(γ): weighted average of 26.7 40 from (α,pγ), 24.0 15 from (n,γ) E=thermal, and 37.0 69 from (p,p’γ).
   2868.59E(γ): weighted average of 2866.7 13 from (α,pγ) and 2868.59 4 from (n,γ) E=thermal.
I(γ): from (α,pγ). Others: 100 6 from (n,γ) E=thermal and 100 7 from (p,p’γ).
   4035.153    811.198E(γ): from (n,γ) E=thermal. Other: 811 3 from (n,n’γ).
I(γ): weighted average of 56.3 94 from (α,pγ), 44.2 25 from (n,γ) E=thermal, and 41.0 90 from (n,n’γ).
M(γ): pure E2 ruled out by RUL
   1614.041E(γ): from (n,γ) E=thermal. Others: 1614.3 13 from (α,pγ), 1614 4 from (n,n’γ), and 1615.1 11 from (p,p’γ).
I(γ): from (n,γ) E=thermal. Others: 100 10 from (α,pγ) and 100 15 from (n,n’γ).
   4074.511    834.736E(γ): from (n,γ) E=thermal. Other: 834.0 8 from (α,pγ).
I(γ): weighted average of 73.1 96 from (α,pγ) and 68.2 39 from (n,γ) E=thermal.
   1779E(γ): Those γ branches are reported by 1979Gl07 in (α,pγ), but not confirmed in (n,γ) E=thermal by 1984Ru06, which constructs the (n,γ) level scheme with the aid of the Ritz combination and previous experiments. This method in 1984Ru06 is, perhaps, more rigorous than those employed by other authors for the placement of transitions. Therefore, if for states observed in (n,γ) there are transitions assigned in other experiments which are not confirmed, the placements of these transitions are probably questionable.
   3090.82E(γ): from (n,γ) E=thermal. Others: 3090.1 11 from (α,pγ) and 3088 7 from (n,n’γ).
I(γ): from (n,γ) E=thermal. Other: 100 12 from (α,pγ).
   4196.90    346E(γ): Those γ branches are reported by 1979Gl07 in (α,pγ), but not confirmed in (n,γ) E=thermal by 1984Ru06, which constructs the (n,γ) level scheme with the aid of the Ritz combination and previous experiments. This method in 1984Ru06 is, perhaps, more rigorous than those employed by other authors for the placement of transitions. Therefore, if for states observed in (n,γ) there are transitions assigned in other experiments which are not confirmed, the placements of these transitions are probably questionable.
    458.45E(γ): from (n,γ) E=thermal.
I(γ): weighted average of 22 5 from (α,pγ) and 27 5 from (n,γ) E=thermal.
    496E(γ): Those γ branches are reported by 1979Gl07 in (α,pγ), but not confirmed in (n,γ) E=thermal by 1984Ru06, which constructs the (n,γ) level scheme with the aid of the Ritz combination and previous experiments. This method in 1984Ru06 is, perhaps, more rigorous than those employed by other authors for the placement of transitions. Therefore, if for states observed in (n,γ) there are transitions assigned in other experiments which are not confirmed, the placements of these transitions are probably questionable.
    972.91E(γ): from (n,γ) E=thermal.
I(γ): from (n,γ) E=thermal. Other: 100 10 from (α,pγ).
   4210   3226E(γ): from (n,n’γ).
   4311.3   3328E(γ): other: 3332 8 from (n,n’γ).
I(γ): weighted average of 53 10 from (α,pγ) and 45 22 from (n,n’γ).
   4310E(γ): from (γ,γ). Other: 4314 9 from (n,n’γ), 4312 from (α,pγ).. From (γ,γ’)
I(γ): from (α,pγ). Other: 100 22 from (n,n’γ).
M(γ): From γ(θ) and azimuthal asymmetries in (γ,γ’)
   4346.7   3364E(γ): other: 3372 8 from (n,n’γ).
   4381.4   1142.3E(γ): from (n,n’γ).
I(γ): from (α,pγ).
M(γ): not pure E2 from comparison with RUL.
   4387.691   1164.9E(γ): from (n,n’γ). Other: 1165 from (α,pγ); not seen in (n,γ) E=thermal.. Those γ branches are reported by 1979Gl07 in (α,pγ), but not confirmed in (n,γ) E=thermal by 1984Ru06, which constructs the (n,γ) level scheme with the aid of the Ritz combination and previous experiments. This method in 1984Ru06 is, perhaps, more rigorous than those employed by other authors for the placement of transitions. Therefore, if for states observed in (n,γ) there are transitions assigned in other experiments which are not confirmed, the placements of these transitions are probably questionable.
I(γ): from (α,pγ) only.
   2092.007E(γ): from (n,γ) E=thermal. Other: 2094 from (α,pγ); not seen in (n,n’γ).
I(γ): from (n,γ) E=thermal. Other: 20 4 from (α,pγ) is discrepant.
   3403.83E(γ): from (n,γ) E=thermal. Other: 3401 8 from (n,n’γ), 3406 from (α,pγ).
I(γ): from (n,γ) E=thermal. Other: 100 13 from (α,pγ).
   4457.455   2036.349I(γ): weighted average of 100 15 from (α,pγ) and 84 5 from (n,γ) E=thermal.
   2161.759I(γ): from (n,γ) E=thermal. Other: 100 15 from (α,pγ).
   3473.90I(γ): weighted average of 50 10 from (α,pγ) and 56 5 from (n,γ) E=thermal.
M(γ): D+Q from γγ(θ) in (n,γ) E=thermal; Δπ=no from level scheme.
E(level)E(gamma)Comments
   4564.8   1056.2E(γ): from 44Ca(7Li,p2nγ).
I(γ): from (α,pγ).
   1231.6E(γ): weighted average of 1231.4 6 from (14C,2nγ) and 1231.8 5 from (7Li,p2nγ).
I(γ): from (α,pγ). Others: 100 20 from (24Mg,3pγ) and 100 8 from (7Li,p2nγ).
M(γ): Q from pγ(θ) in (α,pγ). ΔJπ=2,no from the level scheme.
   4580.69   1221.81I(γ): weighted average of 67 14 from (α,pγ) and 77.1 56 from (n,γ) E=thermal.
   2162E(γ): other: 2162 5 from (n,n’γ).. Those γ branches are reported by 1979Gl07 in (α,pγ), but not confirmed in (n,γ) E=thermal by 1984Ru06, which constructs the (n,γ) level scheme with the aid of the Ritz combination and previous experiments. This method in 1984Ru06 is, perhaps, more rigorous than those employed by other authors for the placement of transitions. Therefore, if for states observed in (n,γ) there are transitions assigned in other experiments which are not confirmed, the placements of these transitions are probably questionable.
   2285.41I(γ): unweighted average of 44 9 from (α,pγ) and 85 10 from (n,γ) E=thermal.
   3596.76E(γ): from (n,γ) E=thermal. Other: 3600 8 from (n,n’γ).
I(γ): from (n,γ) E=thermal. Other: 100 19 from (α,pγ).
   4719.137   1479.339I(γ): from (α,pγ). Other: 100.0 58 from (n,γ) E=thermal.
   1495.53I(γ): weighted average of 43 6 from (α,pγ) and 45.8 26 from (n,γ) E=thermal.
   4792.31   1421E(γ): Those γ branches are reported by 1979Gl07 in (α,pγ), but not confirmed in (n,γ) E=thermal by 1984Ru06, which constructs the (n,γ) level scheme with the aid of the Ritz combination and previous experiments. This method in 1984Ru06 is, perhaps, more rigorous than those employed by other authors for the placement of transitions. Therefore, if for states observed in (n,γ) there are transitions assigned in other experiments which are not confirmed, the placements of these transitions are probably questionable.
   2371.18I(γ): from (n,γ) E=thermal. Other: 137 18 from (α,pγ) is discrepant.
   3808.58I(γ): from (n,γ) E=thermal. Other: 100 15 from (α,pγ).
   4910.57   1293.71I(γ): from (n,γ) E=thermal. Other: 100 18 from (α,pγ).
   1539.63I(γ): weighted average of 70 14 from (α,pγ) and 50 6 from (n,γ) E=thermal.
   2489.7I(γ): from (α,pγ). Other: 60 14 from (n,γ) E=thermal.
   4924.92    544E(γ): Those γ branches are reported by 1979Gl07 in (α,pγ), but not confirmed in (n,γ) E=thermal by 1984Ru06, which constructs the (n,γ) level scheme with the aid of the Ritz combination and previous experiments. This method in 1984Ru06 is, perhaps, more rigorous than those employed by other authors for the placement of transitions. Therefore, if for states observed in (n,γ) there are transitions assigned in other experiments which are not confirmed, the placements of these transitions are probably questionable.
    851E(γ): Those γ branches are reported by 1979Gl07 in (α,pγ), but not confirmed in (n,γ) E=thermal by 1984Ru06, which constructs the (n,γ) level scheme with the aid of the Ritz combination and previous experiments. This method in 1984Ru06 is, perhaps, more rigorous than those employed by other authors for the placement of transitions. Therefore, if for states observed in (n,γ) there are transitions assigned in other experiments which are not confirmed, the placements of these transitions are probably questionable.
   1686E(γ): Those γ branches are reported by 1979Gl07 in (α,pγ), but not confirmed in (n,γ) E=thermal by 1984Ru06, which constructs the (n,γ) level scheme with the aid of the Ritz combination and previous experiments. This method in 1984Ru06 is, perhaps, more rigorous than those employed by other authors for the placement of transitions. Therefore, if for states observed in (n,γ) there are transitions assigned in other experiments which are not confirmed, the placements of these transitions are probably questionable.
   1700.89I(γ): unweighted average of 22.0 51 from (α,pγ) and 55.6 56 from (n,γ) E=thermal.
   2629.1I(γ): from (α,pγ). Other: 100 17 from (n,γ) E=thermal.
   4939.93   1157E(γ): Those γ branches are reported by 1979Gl07 in (α,pγ), but not confirmed in (n,γ) E=thermal by 1984Ru06, which constructs the (n,γ) level scheme with the aid of the Ritz combination and previous experiments. This method in 1984Ru06 is, perhaps, more rigorous than those employed by other authors for the placement of transitions. Therefore, if for states observed in (n,γ) there are transitions assigned in other experiments which are not confirmed, the placements of these transitions are probably questionable.
   1701E(γ): Those γ branches are reported by 1979Gl07 in (α,pγ), but not confirmed in (n,γ) E=thermal by 1984Ru06, which constructs the (n,γ) level scheme with the aid of the Ritz combination and previous experiments. This method in 1984Ru06 is, perhaps, more rigorous than those employed by other authors for the placement of transitions. Therefore, if for states observed in (n,γ) there are transitions assigned in other experiments which are not confirmed, the placements of these transitions are probably questionable.
   2644.5I(γ): weighted average of 41 8 from (α,pγ) and 68 15 from (n,γ) E=thermal.
   3956.17I(γ): from (n,γ) E=thermal. Other: 100 18 from (α,pγ).
   5145.85   1073E(γ): Those γ branches are reported by 1979Gl07 in (α,pγ), but not confirmed in (n,γ) E=thermal by 1984Ru06, which constructs the (n,γ) level scheme with the aid of the Ritz combination and previous experiments. This method in 1984Ru06 is, perhaps, more rigorous than those employed by other authors for the placement of transitions. Therefore, if for states observed in (n,γ) there are transitions assigned in other experiments which are not confirmed, the placements of these transitions are probably questionable.
   1921.63I(γ): from (n,γ) E=thermal. Other: 100 16 from (α,pγ).
   2850.01I(γ): from (n,γ) E=thermal. Other: 125 21 from (α,pγ).
E(level)E(gamma)Comments
   5155.7    751M(γ): M1 from comparison with RUL for T1/2<7 fs.
   5158.0   1919E(γ): Those γ branches are reported by 1979Gl07 in (α,pγ), but not confirmed in (n,γ) E=thermal by 1984Ru06, which constructs the (n,γ) level scheme with the aid of the Ritz combination and previous experiments. This method in 1984Ru06 is, perhaps, more rigorous than those employed by other authors for the placement of transitions. Therefore, if for states observed in (n,γ) there are transitions assigned in other experiments which are not confirmed, the placements of these transitions are probably questionable.
   2863E(γ): Those γ branches are reported by 1979Gl07 in (α,pγ), but not confirmed in (n,γ) E=thermal by 1984Ru06, which constructs the (n,γ) level scheme with the aid of the Ritz combination and previous experiments. This method in 1984Ru06 is, perhaps, more rigorous than those employed by other authors for the placement of transitions. Therefore, if for states observed in (n,γ) there are transitions assigned in other experiments which are not confirmed, the placements of these transitions are probably questionable.
   4174E(γ): Those γ branches are reported by 1979Gl07 in (α,pγ), but not confirmed in (n,γ) E=thermal by 1984Ru06, which constructs the (n,γ) level scheme with the aid of the Ritz combination and previous experiments. This method in 1984Ru06 is, perhaps, more rigorous than those employed by other authors for the placement of transitions. Therefore, if for states observed in (n,γ) there are transitions assigned in other experiments which are not confirmed, the placements of these transitions are probably questionable.
   5169.8    605M(γ): pure E2 ruled out by RUL
   1661M(γ): D+Q from pγ(θ) in (α,pγ); E1+M2 ruled out by RUL.
   1837M(γ): D+Q from pγ(θ) in (α,pγ); E1+M2 ruled out by RUL.
   5197.9    632.7E(γ): from (7Li,p2nγ).
I(γ): from (α,pγ).
M(γ): d(+Q) from pγ(θ) in (α,pγ); Δπ=no from level scheme .
   5300.9    896M(γ): not pure M2 or E2 from RUL.
   5313.3   2892E(γ): other: 2890 5 from (n,n’γ).
I(γ): other: I(2890γ)/I(4332γ)=100 28/12 6 is discrepant.
   4330E(γ): other: 4332 9 from (n,n’γ).
   5340   5340E(γ): From (γ,γ’)
M(γ): From γ(θ) and azimuthal asymmetries in (γ,γ’)
   5356.23   1158.7I(γ): weighted average of 57 14 from (α,pγ) and 65 12 from (n,γ) E=thermal.
   1504E(γ): Those γ branches are reported by 1979Gl07 in (α,pγ), but not confirmed in (n,γ) E=thermal by 1984Ru06, which constructs the (n,γ) level scheme with the aid of the Ritz combination and previous experiments. This method in 1984Ru06 is, perhaps, more rigorous than those employed by other authors for the placement of transitions. Therefore, if for states observed in (n,γ) there are transitions assigned in other experiments which are not confirmed, the placements of these transitions are probably questionable.
   1998E(γ): Those γ branches are reported by 1979Gl07 in (α,pγ), but not confirmed in (n,γ) E=thermal by 1984Ru06, which constructs the (n,γ) level scheme with the aid of the Ritz combination and previous experiments. This method in 1984Ru06 is, perhaps, more rigorous than those employed by other authors for the placement of transitions. Therefore, if for states observed in (n,γ) there are transitions assigned in other experiments which are not confirmed, the placements of these transitions are probably questionable.
   2118E(γ): Those γ branches are reported by 1979Gl07 in (α,pγ), but not confirmed in (n,γ) E=thermal by 1984Ru06, which constructs the (n,γ) level scheme with the aid of the Ritz combination and previous experiments. This method in 1984Ru06 is, perhaps, more rigorous than those employed by other authors for the placement of transitions. Therefore, if for states observed in (n,γ) there are transitions assigned in other experiments which are not confirmed, the placements of these transitions are probably questionable.
   3062E(γ): Those γ branches are reported by 1979Gl07 in (α,pγ), but not confirmed in (n,γ) E=thermal by 1984Ru06, which constructs the (n,γ) level scheme with the aid of the Ritz combination and previous experiments. This method in 1984Ru06 is, perhaps, more rigorous than those employed by other authors for the placement of transitions. Therefore, if for states observed in (n,γ) there are transitions assigned in other experiments which are not confirmed, the placements of these transitions are probably questionable.
   4372.56I(γ): from (n,γ) E=thermal. Other: 100 20 from (α,pγ).
   5490.95   2267E(γ): Those γ branches are reported by 1979Gl07 in (α,pγ), but not confirmed in (n,γ) E=thermal by 1984Ru06, which constructs the (n,γ) level scheme with the aid of the Ritz combination and previous experiments. This method in 1984Ru06 is, perhaps, more rigorous than those employed by other authors for the placement of transitions. Therefore, if for states observed in (n,γ) there are transitions assigned in other experiments which are not confirmed, the placements of these transitions are probably questionable.
   4508E(γ): Those γ branches are reported by 1979Gl07 in (α,pγ), but not confirmed in (n,γ) E=thermal by 1984Ru06, which constructs the (n,γ) level scheme with the aid of the Ritz combination and previous experiments. This method in 1984Ru06 is, perhaps, more rigorous than those employed by other authors for the placement of transitions. Therefore, if for states observed in (n,γ) there are transitions assigned in other experiments which are not confirmed, the placements of these transitions are probably questionable.
   5526   5526E(γ): from (γ,γ’).. From (γ,γ’)
M(γ): From γ(θ) and azimuthal asymmetries in (γ,γ’)
   5619.65   2381E(γ): Those γ branches are reported by 1979Gl07 in (α,pγ), but not confirmed in (n,γ) E=thermal by 1984Ru06, which constructs the (n,γ) level scheme with the aid of the Ritz combination and previous experiments. This method in 1984Ru06 is, perhaps, more rigorous than those employed by other authors for the placement of transitions. Therefore, if for states observed in (n,γ) there are transitions assigned in other experiments which are not confirmed, the placements of these transitions are probably questionable.
   2395.62E(γ): from (n,γ) E=thermal.
I(γ): from (α,pγ). Other: I(2396γ)/I(3198γ)=100 8/97 3 from (n,γ) E=thermal is discrepant.
   3198.44I(γ): other: see comment for 2396γ.
   5640.03   4655.8E(γ): from (n,γ) E=thermal. Other: 4655 3 from (γ,γ).
M(γ): From γ(θ) and azimuthal asymmetries in (γ,γ’)
   5639.9E(γ): from (n,γ) E=thermal. Other: 5640 2 from (γ,γ).
I(γ): from 82 +103-82 in (n,γ) E=thermal.
M(γ): From γ(θ) and azimuthal asymmetries in (γ,γ’)
E(level)E(gamma)Comments
   6034.9    837M(γ): d(+Q) from pγ(θ) in (α,pγ); E1(+M2) ruled out by RUL.
   1470M(γ): D+Q from pγ(θ) in (α,pγ); E1+M2 ruled out by RUL.
   6042.40   1183E(γ): Those γ branches are reported by 1979Gl07 in (α,pγ), but not confirmed in (n,γ) E=thermal by 1984Ru06, which constructs the (n,γ) level scheme with the aid of the Ritz combination and previous experiments. This method in 1984Ru06 is, perhaps, more rigorous than those employed by other authors for the placement of transitions. Therefore, if for states observed in (n,γ) there are transitions assigned in other experiments which are not confirmed, the placements of these transitions are probably questionable.
   1967.78I(γ): from (α,pγ). Other: 100 18 from (n,γ) E=thermal.
   6086   6086E(γ): From (γ,γ’)
M(γ): From γ(θ) and azimuthal asymmetries in (γ,γ’)
   6103.2   1538.8E(γ): from (7Li,p2nγ). Other: 1538 from (α,pγ).
   6126   6126E(γ): From (γ,γ’)
M(γ): From γ(θ) and azimuthal asymmetries in (γ,γ’)
   6138   6138E(γ): From (γ,γ’)
M(γ): From γ(θ) and azimuthal asymmetries in (γ,γ’)
   6172.9   1003M(γ): D+Q from pγ(θ) in (α,pγ); E1+M2 ruled out by RUL.
   6236   6236E(γ): From (γ,γ’)
M(γ): From γ(θ) and azimuthal asymmetries in (γ,γ’)
   6604.3   5620E(γ): From (γ,γ’)
I(γ): From (γ,γ’)
M(γ): From γ(θ) and azimuthal asymmetries in (γ,γ’)
   6604E(γ): From (γ,γ’)
I(γ): From (γ,γ’)
M(γ): From γ(θ) and azimuthal asymmetries in (γ,γ’)
   6979   6978E(γ): From (γ,γ’)
M(γ): From γ(θ) and azimuthal asymmetries in (γ,γ’)
   7041   7040E(γ): From (γ,γ’)
M(γ): From γ(θ) and azimuthal asymmetries in (γ,γ’)
   7071   7070E(γ): From (γ,γ’)
M(γ): From γ(θ) and azimuthal asymmetries in (γ,γ’)
   7110   7109E(γ): From (γ,γ’)
M(γ): From γ(θ) and azimuthal asymmetries in (γ,γ’)
   7124   7123E(γ): From (γ,γ’)
M(γ): From γ(θ) and azimuthal asymmetries in (γ,γ’)
   7221.6   7221E(γ): From (γ,γ’)
M(γ): From γ(θ) and azimuthal asymmetries in (γ,γ’)
   7375.1    468M(γ): not pure E2 or M2 (ΔJ=2) from comparison to RUL.
   7450   7449E(γ): From (γ,γ’)
M(γ): From γ(θ) and azimuthal asymmetries in (γ,γ’)
   7484   7483E(γ): From (γ,γ’)
M(γ): From γ(θ) and azimuthal asymmetries in (γ,γ’)
   7586   7585E(γ): From (γ,γ’)
M(γ): From γ(θ) and azimuthal asymmetries in (γ,γ’)
   7969   7968E(γ): From (γ,γ’)
M(γ): From γ(θ) and azimuthal asymmetries in (γ,γ’)
   8010   8009E(γ): From (γ,γ’)
M(γ): From γ(θ) and azimuthal asymmetries in (γ,γ’)
   8199   8198E(γ): From (γ,γ’)
M(γ): d,Q from γ(θ) and azimuthal asymmetries in (γ,γ); Δπ=no from level scheme
E(level)E(gamma)Comments
   8255   8254E(γ): From (γ,γ’)
M(γ): From γ(θ) and azimuthal asymmetries in (γ,γ’)
   8572   8571E(γ): From (γ,γ’)
M(γ): From γ(θ) and azimuthal asymmetries in (γ,γ’)
   8592   8591E(γ): From (γ,γ’)
M(γ): From γ(θ) and azimuthal asymmetries in (γ,γ’)
   8672   8671E(γ): From (γ,γ’)
M(γ): From γ(θ) and azimuthal asymmetries in (γ,γ’)
   8933   8932E(γ): From (γ,γ’)
M(γ): From γ(θ) and azimuthal asymmetries in (γ,γ’)
   8996   8995E(γ): From (γ,γ’)
M(γ): From γ(θ) and azimuthal asymmetries in (γ,γ’)
   9025   9024E(γ): From (γ,γ’)
M(γ): From γ(θ) and azimuthal asymmetries in (γ,γ’)
   9977   9976E(γ): From (γ,γ’)
M(γ): From γ(θ) and azimuthal asymmetries in (γ,γ’)

Back to top