48 Ca $2\beta^-$ decay 2016Ar19,2002Bb03,2000Br63

History								
Туре	Author	Citation	Literature Cutoff Date					
Full Evaluation	Jun Chen	NDS 179, 1 (2022)	30-Nov-2021					

Parent: ⁴⁸Ca: E=0.0; $J^{\pi}=0^+$; $T_{1/2}=2.9\times10^{19}$ y +42-11; Q(2 β^-)=4268.08 8; %2 β^- decay=74 26

⁴⁸Ca-T_{1/2}: From ⁴⁸Ca Adopted Levels. $T_{1/2}(2\beta^{-})=2.5\times10^{19}$ y +39–10 estimated by evaluator from partial $T_{1/2}(2\beta^{-})$'s to g.s., 984, 2421, and 2997. Other: $T_{1/2}(2\nu 2\beta^{-})=2.87\times 10^{19}$ y 51 (2004Ra26; from analysis of Gamow-Teller strengths in ⁴⁸Ti(d,2p) and 48 Ca(p,n).) and 3.55×10^{19} y 75 (2006Fr03, preliminary; from analysis of Gamow-Teller strengths in 48 Ti(d,2p) and 48 Ca(3 He,t).); $T_{1/2}(2\nu, \text{ g.s. to g.s.})=4.44\times10^{19} \text{ y} +49-40(\text{stat}) 29(\text{syst})$ reported from a NEMO3 experiment in a thesis (2008KiZL). ⁴⁸Ca-Q($2\beta^{-}$): From 2021Wa16.

 48 Ca- $\%2\beta^-$ decay: symmetrized value of 78% +22-30 from Adopted Levels of 48 Ca.

- 2016Ar19: measured $2\nu_2\beta^-$ -decay halflife with NEMO-3 in the Modane underground laboratory. $T_{1/2}(2\nu_2\beta^-)=6.4\times10^{19}$ y +7-6(stat) +12-9(syst), $T_{1/2}(0\nu 2\beta^{-})>2.0\times 10^{22}$ y (90% C.L). Results from 2016Ar19 should supersede all previous results from NEMO-3 in 2012Si23 and 2011Ba55,
- 2002Bb03,2002Ba33: source was a powder of 48 CaCO₃ (73% 48 Ca) at Modane Underground Laboratory. Measured E γ , I γ with low-background 400 cm³ HPGe with a passive shield of 6 cm lead, 10 cm of OFHC copper, and 15 cm of ordinary lead. 2002Bb03 repeat the measurement by 2002Ba33 since large impurities were found in the latter. Results in 2002Bb03 supersede those in 2002Ba33. $T_{1/2}(\beta^{-}) > 1.6 \times 10^{20}$ y, $> 2.5 \times 10^{20}$ y, $> 1.9 \times 10^{20}$ y for single β^{-} decay to g.s., 131 and 152 levels, respectively; $T_{1/2}(2\beta^{-}) > 1.8 \times 10^{20}$ y, $> 1.5 \times 10^{20}$ y, $> 1.5 \times 10^{20}$ y for $2\beta^{-}$ decay to 984, 2421, and 2297 levels, respectively, all with 90% C.L.
- 2000Br63,2000Br44: 3.5 g l of ⁴⁸Ca sources in 8 squares with mixture of 80% CaCO₃ and 20% polyvinyl (77.8% ⁴⁸Ca) at Modane Underground Laboratory. Measured $\beta\beta$ -coincidences with TGV (Telescope Germanium Vertical; 16 HPGe detectors, 20-cm Cu thick shielding, airtight box), $\beta\gamma$ discrimination for 8700-h run. T_{1/2}($2\nu 2\beta^{-}$)=4.2×10¹⁹ y +33-13, $T_{1/2}(0\nu 2\beta^{-}) > 1.5 \times 10^{21}$ y (90% C.L.).
- 2012Si23,2010Si06: measured $2\nu 2\beta^{-}$ -decay halflife with NEMO-3 in the Modane underground laboratory. See also 2011TrZW, 2009KoZY, 2008KoZV of the same measurement. $T_{1/2}(2\nu 2\beta^{-})=4.4\times 10^{19} \text{ y}+5-4(\text{stat}) 4(\text{syst}).$
- 2011Ba55: measured $0\nu 2\beta^{-}$ -decay halflife with NEMO-3 in the Modane underground laboratory. $T_{1/2}(0\nu 2\beta^{-}) > 1.3 \times 10^{22}$ y (90%) C.L).
- 2005Zd02: pilot study on use of enriched ⁴⁸CaWO₄ crystal scintillators to measure ⁴⁸Ca $T_{1/2}(0\nu 2\beta^{-})$. Scintillation properties (energy resolution, α/β ratio, and pulse-shape discrimination ability) and radiopurity of ⁴⁸CaWO₄ scintillators studied. Preliminary result using a small non-enriched crystal was $T_{1/2}(0\nu 2\beta^{-}) > 6 \times 10^{19}$ y for a 1374 h measuring time. Estimated sensitivity for ≈ 100 kG ⁴⁸CaWO₄ crystals is $T_{1/2}(0\nu 2\beta^{-}) > 1.0 \times 10^{27}$ y.

2002Be36: measured $\gamma\gamma$ -coin with NaI(Tl) detectors at INFN. $T_{1/2}(2\nu 2\beta^{-})>1.2\times 10^{18}$ y (90% C.L.).

- 2008Um05,2004Og01,2003Og05: measured γ spectra with a CaF₂ scintillation detector system (ELEGANT VI) at the underground laboratory (Oto Cosmo Observatory). $T_{1/2}(0v2\beta^{-}) > 5.8 \times 10^{22}$ y (90% C.L.). Result from 2008Um05 supersedes their previous result in 2004Og01. See also 2000OgZW and 2000OgZX.
- 1996Ba80,1996Bb01: measured 1e⁻ and 2e⁻; tunnel at Hoover Dam under a minimum of 72 meters of rock; UC Irvine time projection chamber with 2β source as the central electrode in a magnetic field. 42.2 g of CaO₃ (18.5 mg/cm² total thickness with substrate and binder) and 10.3 CaO₃ (5.4 mg/cm²) sources enriched to 73% ⁴⁸Ca. 2440 h exposure for thick source and 4001 h exposure for thin source. 14.0 47 2β events from one analysis of the thin source data resulted in $T_{1/2}(2\nu 2\beta^{-})=4.3\times 10^{19}$ y +24–11 with systematic uncertainty of 1.4×10^{19} y based on the difference between two different analyses of the thin source and detector efficiency. See 1996Ba80 for more details on the analysis, results from the thick target, and an alternate but consistent with the one adopted by 1996Ba80.
- 1991SaZO: measured I($2\beta^{-}$). Natural CaF₂ crystals containing a total of 0.32 grams of ⁴⁸Ca in Kamioka underground laboratory; 1314 hours.
- 1991Yo05: measured I($2\beta^{-}$). Natural CaF₂ crystals containing a total of 43.0 grams of 48Ca in coal mine; 7588.5 hours.
- 1986A105: reanalyzed the ⁴⁸Ca β^- decay data of 1985A117 to obtain a lower limit on T_{1/2} for ⁴⁸Ca θ^+ to ⁴⁸Ti 2297,2⁺ $2\beta^$ decay transition. The 2014γ -983 γ coincidence would be the signature for this decay.
- 1970Ba61: 10.6-grams ⁴⁸CaF₂ source in a deep salt mine. Measured I($2\beta^{-}$) with a streamer chamber triggered by two scintillation counters. Deduced $T_{1/2}$. Data were reanalyzed by 1989Ba05.
- Others: 2009SaZR, 2009Ki19,
- ⁴⁸Ca is a particularly attractive candidate for a 2β -decay search. The β^- decay of ⁴⁸Ca to ⁴⁸Sc is suppressed due to the angular momentum conservation law $(J^{\pi}({}^{48}Ca, g.s.)=0^+ \text{ and } J^{\pi}({}^{48}Sc.g.s.)=6^+)$ and the $2\beta^-$ decay has the largest available energy release

⁴⁸Ca 2β⁻ decay 2016Ar19,2002Bb03,2000Br63 (continued)

for all 2β candidates (Q($2\beta^-$)=4.274 MeV 4) that is higher than most of the radioactive backgrounds. Therefore, the large space factor compensates for a relatively small nuclear matrix element. See 1993Mo36 for a review of $2\beta^-$ decay searches. Others: see the Nuclear Science References File for theoretical studies, compilations, and reviews. See 1990Al19 for a measurement of $\sigma(\theta)$ from the ⁴⁸Ti(n,p) reaction at E=198 MeV and its possible implications on ⁴⁸Ca $2\beta^-$ decay.

⁴⁸Ti Levels

E(level) [†]	$J^{\pi \dagger}$	T _{1/2} †	Comments
0.0	0+	stable	$\begin{aligned} T_{1/2}(2\nu2\beta^{-}) &= 5.6 \times 10^{19} \text{ y} + 14 - 11, \text{ from weighted average of } 6.4 \times 10^{19} \text{ y} + 7 - 6(\text{stat}) + 12 - 9(\text{syst}) \\ (2016\text{Ar19}), 4.3 \times 10^{19} \text{ y} + 24 - 11 \text{ (1996Ba80, syst } \Delta T_{1/2} = 1.4 \times 10^{19} \text{ y}), \text{ and } 4.2 \times 10^{19} \text{ y} + 33 - 13 \\ (2000\text{Br63}) \text{ for decay to this state; syst } \Delta T_{1/2} \text{ added in quadrature before averaging. Note that} \\ 4.2 \times 10^{19} \text{ y} + 22 - 11 \text{ from } 2006\text{BaZZ} \text{ is from the average of the latter two. Other:} > 3.6 \times 10^{19} \text{ y} \\ (1970\text{Ba61}). \text{ Theory: } 1.3 \times 10^{19} \text{ y} \leq T_{1/2}(2\nu2\beta^{-}) \leq 6.0 \times 10^{19} \text{ y} \text{ (1998Su19)}. \\ T_{1/2}(0\nu2\beta^{-}) \geq 5.8 \times 10^{22} \text{ y} \text{ for decay to this state } (2008\text{Um05}, 90\% \text{ C.L.}). \text{ Others: } > 2.0 \times 10^{22} \text{ y} \\ (2016\text{Ar19}, 90\% \text{ C.L.}), > 1.5 \times 10^{21} \text{ y} \text{ (2000Br63}, 90\% \text{ C.L.}), > 1.1 \times 10^{21} \text{ y} \text{ (1989Ba05)}, > 9.5 \times 10^{21} \text{ y} \\ (1991\text{Y005}, 76\% \text{ C.L.}), \text{ and } > 1.6 \times 10^{19} \text{ y} \text{ (1991SaZQ)}. \text{ Theory: } 1.3 \times 10^{25} \text{ y} \leq T_{12}(0\nu2\beta^{-}) \leq 4.0 \times 10^{25} \text{ y} \text{ (1998Su19)}. \end{aligned}$
(983.5)	2+		$T_{1/2}(2\beta^{-}) > 1.8 \times 10^{20}$ y for decay to this state (2002Bb03, 90% C.L.). Other: $T_{1/2}(0\nu 2\beta^{-}) > 1.0 \times 10^{21}$ y (1970Ba61). Theory: $T_{1/2}(2\nu 2\beta^{-}) = 5.0 \times 10^{26}$ y (1984Ha60).
(2421.1)	2+		$T_{1/2}(2\beta^{-}) > 1.5 \times 10^{20}$ y for decay to this state (2002Bb03, 90% C.L.). Theory: $T_{1/2}(2\nu 2\beta^{-}) = 3.6 \times 10^{26}$ y (1984Ha60).
(2997.3)	0^{+}		$T_{1/2}(2\beta^{-})>1.5\times10^{20}$ y for decay to this state (2002Bb03, 90% C.L.). Other: $T_{1/2}(0\nu 2\beta^{-})>8\times10^{18}$ y (1986Al05, 95% C.L.).

[†] From Adopted Levels. Energies are rounded values.

 γ (⁴⁸Ti)

E_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}
(983.5)	(983.5)	2+	0.0	0^{+}
(2013.8)	(2997.3)	0^{+}	983.5?	2^{+}

[†] Rounded values from Adopted Gammas.

