48 Sc β^- decay 1990Me15

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Jun Chen	NDS 179, 1 (2022)	30-Nov-2021

Parent: ⁴⁸Sc: E=0.0; $J^{\pi}=6^+$; $T_{1/2}=43.71$ h 9; $Q(\beta^-)=3989$ 5; % β^- decay=100.0

 48 Sc-J^{π}, T_{1/2}: From Adopted Levels of 48 Sc. Adopted T_{1/2} is weighted average of 43.67 h 9 (1969Ra16), 44.1 h 3 (1300 γ) and 43.9 h 6 and 45.2 h 15 (175y) (1963Hi02), 44.0 h 9 (1959Po64), 43.4 h 5 (1945Hi04), and 44 h 1 (1940Wa01, Quartz-fibre electroscope). Other: 43.2 h (1963Ho17).

⁴⁸Sc-Q(β^-): From 2021Wa16.

1990Me15,1976Ja07: ⁴⁸Sc activity from ⁵¹V(n, α) at the Lawrence Livermore Laboratory. Measured E_Y, I_Y with Ge(Li) detectors. $E\gamma$ and $I\gamma$ values in 1976Ja07 are superseded by those in 1990Me15.

1970Ei07: ⁴⁸Sc activity from ⁴⁸Ca(p,n) at the Naval Research Laboratory. Measured E γ , I γ with a Ge(Li) detector. 1968KeZZ: ⁴⁸Sc activity from ⁴⁸Ti(n,p) at the University of Kentucky. Measured E γ , $\gamma\gamma$ -coin with Ge(Li) and NaI(Tl) detectors. 1967Ko01: ⁴⁸Sc activity from ${}^{51}V(d,\alpha p)$ at the IKO in Amsterdam. Measured E_{γ}, I_{γ} with a Ge detector.

1963Hi02: ⁴⁸Sc activity from ⁵¹V(n, α) at BNL. γ rays were detected with NaI(Tl) crystals and β particles were detected with an iron-free intermediate-image beta-ray spectrometer. Measured E γ , E β , $\gamma\gamma$ -coin, $\beta\gamma$ -coin, $\beta\gamma$ (t).

1957Va08: ⁴⁸Sc activity from ⁵¹V(d, α p) at the Philips synchro-cyclotron in Amsterdam. Measured E β , I β , E(ce), I(ce) with a magnetic beta-ray spectrometer.

1956Va06: ⁴⁸Sc activity from ⁵¹V(d, α p) at the Philips synchro-cyclotron in Amsterdam. Measured $\gamma\gamma$ -coin and $\gamma\gamma(\theta)$ with two NaI scintillation spectrometers.

Others: 1972Si37,1971ChXL, 1969Ra16, 1966Va14, 1963Ho17, 1959Po64, 1953Ca43, 1945Hi04, 1942Sm01, 1940Wa01.

⁴⁸Ti Levels

E(level) [†]	J π ‡	T _{1/2}		Comments
0.0	0^{+}	stable		
983.536 12	2^{+}			
2295.674 17	4+			
3333.208 20	6+		J ^{π} : spin=6 from $\gamma\gamma(\theta)$ in 1956Va06.	
3508.569 20	6+			

[†] From a least-squares fit to γ -ray energies.

[‡] From Adopted Levels. Supporting arguments from this dataset are given under comments where available.

β^{-} radiations

E(decay)	E(level)	$I\beta^{-\dagger}$	Log ft	Comments
475 23	3508.569	9.88 22	6.996 21	av Eβ=158.6 23
				E(decay): from 1963Hi02.
				$I\beta^-$: from I(γ +ce) intensity balance at this level.
644 5	3333.208	90.12 22	5.527 15	av E β =227.3 25
				E(decay): weighted average of 654 7 (1957Va08), 640 4 (1942Sm01), and 658 26 (1963Hi02).
				$I\beta^{-}$: from 100- $I\beta^{-}(3509)$.

[†] Absolute intensity per 100 decays.

48 Sc β^- decay 1990Me15 (continued)

γ (⁴⁸Ti)

I γ normalization: From %I(γ +ce)(983 γ)=100. A 2% uncertainty due to efficiency calibration as noted in 1976Ja07 is added. States below 3333 are not directly fed since $\Delta J \ge 2$, $\Delta \pi$ =+.

${\rm E_{\gamma}}^{\ddagger}$	$I_{\gamma}^{\ddagger@}$	E_i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [#]	α^{\dagger}	Comments
175.361 5	74.7 9	3508.569	6+	3333.208	6+	M1	0.00449 6	% $I\gamma$ =7.47 18 α (K)=0.00407 6; α (L)=0.000371 5; α (M)=4.74×10 ⁻⁵ 7 α (N)=2.54×10 ⁻⁶ 4 E _{γ} : others: 175.0 4 (1970Ei07), 175 1 (1968KeZZ), 175.3 5 (1967Ke01)
983.526 12	1000 20	983.536	2+	0.0	0+	E2	0.0001261 18	(1907K001). I_{γ} : others: 60 10 (1970Ei07), 94 5 (1967K001). $\alpha(\exp)=1.24\times10^{-4}$ 12 (1957Va08) $\%I\gamma=100$ $\alpha=0.0001261$ 18; $\alpha(K)=0.0001145$ 16; $\alpha(L)=1.025\times10^{-5}$ 14; $\alpha(M)=1.311\times10^{-6}$ 18
1037.522 <i>12</i>	975 5	3333.208	6+	2295.674	4+	E2	0.0001108 <i>16</i>	$\begin{aligned} &\alpha(\text{N}) = 7.10 \times 10^{-8} \ 10 \\ &\text{E}_{\gamma}: \text{ others: } 983.5 \ 2 \ (1970\text{Ei07}), \\ &987.0 \ 10 \ (1968\text{KeZZ}), 983.3 \ 4 \\ &(1967\text{Ko01}), 986 \ 3 \ (1957\text{Va08}). \\ &\text{I}_{\gamma}: \text{ others: } 1000 \\ &(1970\text{Ei07}, 1967\text{Ko01}). \\ &\alpha(\text{exp}) = 1.06 \times 10^{-4} \ 7 \ (1957\text{Va08}) \\ &\%\text{I}_{\gamma} = 97.5 \ 20 \\ &\alpha = 0.0001108 \ 16; \ \alpha(\text{K}) = 0.0001006 \\ &14; \ \alpha(\text{L}) = 9.00 \times 10^{-6} \ 13; \\ &\alpha(\text{M}) = 1.151 \times 10^{-6} \ 16 \end{aligned}$
1212.880 <i>12</i>	23.8 4	3508.569	6+	2295.674	4+	E2	8.83×10 ⁻⁵ 12	$\begin{aligned} \alpha(N) &= 6.23 \times 10^{-8} \ 9 \\ E_{\gamma}: \ others: \ 1037.6 \ 2 \ (1970Ei07), \\ 1039.9 \ 10 \ (1968KeZZ), \ 1037.1 \ 5 \\ (1967Ko01), \ 1040 \ 3 \ (1957Va08). \\ I_{\gamma}: \ others: \ 980 \ 20 \ (1970Ei07), \ 980 \\ 30 \ (1967Ko01). \\ \%I_{\gamma} &= 2.38 \ 6 \\ \alpha &= 8.83 \times 10^{-5} \ 12; \ \alpha(K) = 7.00 \times 10^{-5} \\ 10; \ \alpha(L) &= 6.26 \times 10^{-6} \ 9; \\ \alpha(M) &= 8.00 \times 10^{-7} \ 11 \end{aligned}$
1312.120 <i>12</i>	1000 5	2295.674	4+	983.536	2+	E2	9.66×10 ⁻⁵ 14	$\alpha(N)=4.34\times10^{-8} 6;$ $\alpha(IPF)=1.120\times10^{-5} 16$ E _{\gamma} : others: 1212.6 3 (1970Ei07), 1212.5 10 (1968KeZZ), 1212.3 7 (1967Ko01). I _γ : others: 22 5 (1970Ei07), 25 2 (1967Ko01). $\alpha(exp)=0.69\times10^{-4} 9 (1957Va08)$
								%1γ=100 α =9.66×10 ⁻⁵ 14; α(K)=5.89×10 ⁻⁵ 8; α(L)=5.26×10 ⁻⁶ 7; α(M)=6.73×10 ⁻⁷ 9 α(N)=3.65×10 ⁻⁸ 5; α(IPF)=3.17×10 ⁻⁵ 4 E _γ : others: 1312.1 3 (1970Ei07),

Continued on next page (footnotes at end of table)

48 Sc β^- decay 1990Me15 (continued)

 γ (⁴⁸Ti) (continued)

 $E_{\gamma}^{\ddagger} = E_i(\text{level})$

Comments

1311.2 5 (1968KeZZ), 1311.4 6 (1967Ko01), 1314 4 (1957Va08), 1311.85 20 (1974HeYW). I_{γ}: others: 1000 (1970Ei07), 1000 3 (1967Ko01).

[†] Additional information 1.

[‡] From 1990Me15. Values from other decay studies are in good agreement, but less precise and given under comments. Quoted uncertainties in I γ from 1990Me15 do not include an additional 2% uncertainty due to efficiency calibration (as noted in 1976Ja07), which is therefore added in quadrature for absolute intensities except for the %I(γ +ce)=100 transition.

[#] From Adopted Gammas. Supporting arguments from $\gamma\gamma(\theta)$ (1956Va06) and $\alpha(\exp)$ (1957Va08) are given under comments where available.

[@] For absolute intensity per 100 decays, multiply by 0.100 2.

⁴⁸Sc β^- decay 1990Me15

 $^{48}_{22}{
m Ti}_{26}$