³⁶S(¹⁴C,2nγ) **1986Wa19**

History							
Туре	Author	Citation	Literature Cutoff Date				
Full Evaluation	Jun Chen	NDS 179, 1 (2022)	30-Nov-2021				

Also includes data from measurements with following reactions: ${}^{34}S({}^{16}O,2p\gamma), {}^{51}V({}^{13}C,X\gamma), {}^{48}Ti({}^{16}O,X\gamma).$

1986Wa19: E=18-38 MeV ¹⁴C beam was produced from the Brookhaven National Laboratory (BNL) tandem Van de Graaff facility. Target was 300 μ g/cm² Ag₂S (81.1% ³⁶S). γ rays were detected with four Ge detectors. Measured E γ , I γ , $\gamma\gamma$ -coin, $\gamma(\theta)$, Doppler-shift attenuation. Deduced levels, J, π , T_{1/2}, γ -branching, mixing ratios.

Other measurements:

2001Le37: ⁵¹V(¹³C,X γ) E=30 MeV/nucleon ¹³C beam was produced at LBNL. γ rays were detected with the Gammasphere array. Measured E γ , I γ . Study of yields of high-spin states in nuclei produced in a fragmentation reaction.

1974Ta15: ³⁴S(¹⁶O,2p γ) E=30-36 MeV ¹⁶O beams were produced from the Universite de Montreal EN Tandem accelerator. γ rays were detected with Ge(Li) detectors; neutrons were detected with a liquid scintillator. Measured E γ , I γ , $\gamma\gamma$ -coin, $\gamma(\theta)$, excitation functions. Deduced levels, J, π , band structures, γ -ray branching ratios, multipolarities, mixing ratios, transition strengths. Comparisons with shell-model calculations.

1979Da07: ⁴⁸Ti(¹⁶O,X γ) E=120 MeV ¹⁶O beam was produced from the cyclotron at Grenoble. γ rays were detected with a Ge(Li) detector. Measured E γ , I γ . Report 983 γ and 1312 γ .

Level scheme including placements of γ transitions is from that of 1979Gl07 in (α ,p γ) and confirmed by 1986Wa19, unless otherwise noted.

⁴⁸Ti Levels

E(level) [†]	Jπ@	E(level) [†]	J ^π @	T _{1/2} &
0.0	0^{+}	5196.8 [#] 11	8+#	
983.4 <i>3</i>	2+	(5301‡)	(4+,5,6)	
2295.5 7	4+	6033.9 12	7+,9+	
3332.5 8	6+	6101.9 <i>13</i>	$10^{(+)},8$	
(3371‡)	2+	6905.9 14	10,8,6	
3507.8 9	6+	7373.9 14	11,9,7	28 fs +42-28
(4047 [‡])	$5^{(-)}$	8090.9 18	12,10,8,6	0.21 ps 7
4563.9 10	$8^{(+)}$			-

[†] From a least-squares fit to γ -ray energies, assuming $\Delta E \gamma = 1$ keV where not given.

[‡] Rounded value from Adopted Levels; not reported in 1986Wa19.

[#] From $(\alpha, p\gamma)$ data of 1979Gl07. Existence of state and spin and parity assignment confirmed by selective nature of ${}^{35}S+{}^{14}C$ reaction (1986Wa19).

[@] From Adopted Levels. Assignments quoted in 1986Wa19 are taken from 1979Gl07 in $(\alpha, p\gamma)$.

& From DSAM in 1986Wa19.

E_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	E_f J	$\frac{\pi}{f}$	E_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}
175.3 ^{‡#} 3	3507.8	6+	3332.5 6+		1037.0 ^{‡#} 5	3332.5	6+	2295.5	4+
^x 423.2 [‡] 4					1056 [#]	4563.9	$8^{(+)}$	3507.8	6+
468 [#]	7373.9	11,9,7	6905.9 10,	8,6	1212 [#]	3507.8	6+	2295.5	4+
633 ^{#@}	5196.8	8+	4563.9 8(+	·)	1231.4 ^{‡#} 6	4563.9	8(+)	3332.5	6+
717 [#]	8090.9	12,10,8,6	7373.9 11,	9,7	1272 [#]	7373.9	11,9,7	6101.9	10 ⁽⁺⁾ ,8
837	6033.9	7+,9+	5196.8 8+		1312.1 ^{‡#} 6	2295.5	4+	983.4	
872 [#]	6905.9	10,8,6	6033.9 7+,	,9+	1470	6033.9	$7^+, 9^+$	4563.9	8(+)
983.4 [‡] 3	983.4	2+	$0.0 \ 0^+$		1538 [#]	6101.9	10 ⁽⁺⁾ ,8	4563.9	8(+)

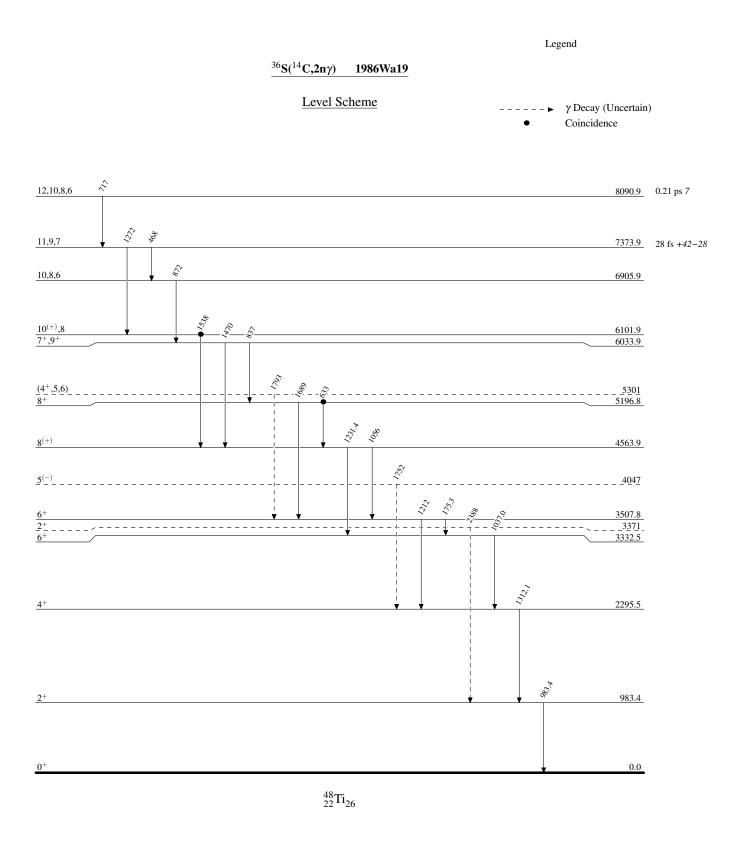
γ(⁴⁸Ti)

Continued on next page (footnotes at end of table)

${}^{36}S({}^{14}C,2n\gamma)$ 1986Wa19 (continued)

γ (⁴⁸Ti) (continued)

E_{γ}^{\dagger}	E_i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}
1689	5196.8	8+	3507.8	6+
1752 <mark>&a</mark>	(4047)	$5^{(-)}$	2295.5	4+
1793 <mark>&a</mark>	(5301)	$(4^+, 5, 6)$	3507.8	6+
2388 <mark>&</mark> a	(3371)	2+	983.4	2^{+}


[†] From 1986Wa19, unless otherwise noted.
[‡] From 1974Ta15.
[#] Also reported by 2001Le37.

^(a) Originally placed as deexciting a 6737, $(11^+, 12^+)$, state by 1976Fo22 in ⁴⁴Ca(⁷Li, p2n γ). 1986Wa19 confirm placement from 5197 suggested by 1979Gl07 in $(\alpha, p\gamma)$.

& From level energy differences. Reported by 2001Le37 in ${}^{51}V({}^{13}C,X\gamma)$ but only in a figure and placement from Adopted Gammas.

^a Placement of transition in the level scheme is uncertain.

 $x \gamma$ ray not placed in level scheme.

