⁴⁴Ca(7 Li,p2n γ) **1976Fo22**

		History		
Туре	Author	Citation	Literature Cutoff Date	
Full Evaluation	Jun Chen	NDS 179, 1 (2022)	30-Nov-2021	

1976Fo22: E=10-35 MeV 7 Li beam was produced from the MP-Tandem Van der Graaff generator of the Munich Universities. Targets were 500 to 1000 μ g/cm 2 metallic 44 Ca (about 95% enriched) on Au backings. γ rays were detected with Ge(Li) detectors. Measured E γ , I γ , $\gamma\gamma$ -coin, $\gamma(\theta)$, excitation functions. Deduced levels, J, π . Comparisons with theoretical calculations. 1976Fo22 also report data in 27 Al(24 Mg,3p γ) and 48 Ca(3 He,3n γ).

Level scheme including placements of γ transitions is from that of 1976Fo22.

⁴⁸Ti Levels

E(level) [†]	Jπ‡
0.0	0+
983.7 5	2+
2296.2 9	4+
3333.9 10	6+
3509.6 11	6+
4565.7 11	(8^{+})
5198.5 [#] <i>13</i>	8 ^{+#}
6104.6 <i>15</i>	(10^{+})

[†] From a least-squares fit to γ -ray energies, assuming $\Delta E \gamma = 1$ keV where not given.

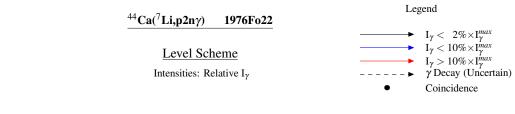
γ(⁴⁸Ti)

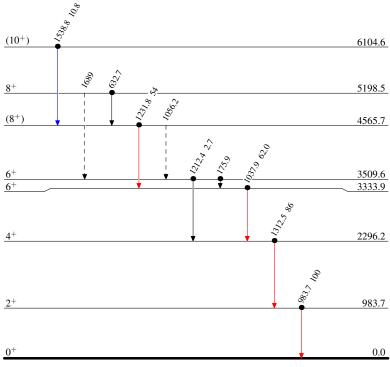
E_{γ}^{\dagger}	$I_{\gamma}{}^{\dagger}$	E_i (level)	\mathbf{J}_i^{π}	\mathbf{E}_f \mathbf{J}_f^{π}	Comments
175.9 5	&	3509.6	6+	3333.9 6 ⁺	
632.7 ^{#@} 10		5198.5	8+	4565.7 (8 ⁺)	
983.7 5	100	983.7	2+	$0.0 \ 0^{+}$	$A_2 = +0.286 \ 22, \ A_4 = -0.065 \ 26.$
1037.9 5	62.0 20	3333.9	6+	2296.2 4+	$A_2 = +0.270 \ 22, \ A_4 = -0.046 \ 27.$
1056.2 [@] a 10		4565.7	(8^{+})	3509.6 6 ⁺	
1212.4 10	2.7 4	3509.6	6+	2296.2 4+	
1231.8 5	54 <i>4</i>	4565.7	(8^{+})	3333.9 6 ⁺	$A_2 = +0.268 \ 24, \ A_4 = -0.095 \ 30.$
1312.5 7	86 <i>3</i>	2296.2	4+	983.7 2 ⁺	$A_2 = +0.271 \ 23, A_4 = -0.050 \ 28.$
1538.8 <i>10</i>	10.8 10	6104.6	(10^{+})	4565.7 (8 ⁺)	$A_2 = +0.340 \ 44, A_4 = -0.143 \ 54.$
(1689 [‡])		5198.5	8+	3509.6 6+	

[†] From 1976Fo22.

 $^{^{\}ddagger}$ From 1976Fo22, based on $\gamma(\theta)$ and reaction mechanism dependent arguments which are in common use in other mass regions but not yet well established for f-p shell residues. Arguments hinge basically on the assumption that the dominant decay follows the yrast states, so that strong transitions satisfy $J_i > J_f$. Evaporation model implying Gaussian magnetic substate population is employed in $\gamma(\theta)$ analysis. The validity of these assumptions is discussed critically by the authors.

[#] From $(\alpha, p\gamma)$ data of 1979Gl07. Existence of state and spin and parity assignment confirmed by selective nature of $^{35}S+^{14}C$ reaction (1986Wa19).


[‡] From $(\alpha, p\gamma)$ data of 1979Gl07 and placement confirmed by 1986Wa19 in $^{36}S(^{14}C, 2n\gamma)$. Not seen in 1976Fo22.


[#] Originally placed as deexciting a 6737, $(11^+,12^+)$, state by 1976Fo22. 1986Wa19 confirm placement from 5197 suggested by 1979Gl07 in $(\alpha, p\gamma)$.

[@] Weak.

[&]amp; Interference from a transition in ⁴⁵Ca made reliable extraction of intensity impossible (1976Fo22).

^a Placement of transition in the level scheme is uncertain.

 $^{48}_{22}{\rm Ti}_{26}$