⁴⁸Ca(3 He,3n γ) **1976Fo22**

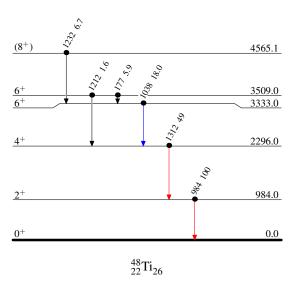
History								
Type	Author	Citation	Literature Cutoff Date					
Full Evaluation	Jun Chen	NDS 179, 1 (2022)	30-Nov-2021					

1976Fo22: E=10-26 MeV 3 He beam was produced from the MP-Tandem Van der Graaff generator of the Munich Universities. Target was about 700 μ g/cm 2 metallic 48 Ca (>95% enriched). γ rays were detected with Ge(Li) detectors. Measured E γ , I γ , $\gamma\gamma$ -coin, excitation functions. Deduced levels, J, π . Comparisons with theoretical calculations. 1976Fo22 also report data in 44 Ca(7 Li,p2n γ) and 27 Al(24 Mg,3p γ).

⁴⁸Ti Levels

E(level) [†]	$J^{\pi \ddagger}$	
0.0	0+	
984.0 <i>10</i>	2+	
2296.0 <i>15</i>	4+	
3333.0 17	6+	
3509.0 <i>17</i>	6+	
4565.1 20	(8^{+})	

[†] From a least-squares fit to γ -ray energies, assuming $\Delta E \gamma = 1$ keV.


γ(⁴⁸Ti)

E_{γ}^{\dagger}	I_{γ}^{\dagger}	$E_i(level)$	\mathbf{J}_i^{π}	E_f J_j^r	r F
177	5.9 3	3509.0	6+	3333.0 6+	
984	100	984.0	2+	$0.0 0^{+}$	
1038	18.0 <i>10</i>	3333.0	6+	2296.0 4+	
1212	1.6 6	3509.0	6+	2296.0 4+	
1232	6.7 6	4565.1	(8^{+})	3333.0 6 ⁺	
1312	49 3	2296.0	4+	984.0 2+	

[†] From 1976Fo22.

[‡] From 1976Fo22, based on $\gamma(\theta)$ and reaction mechanism dependent arguments which are in common use in other mass regions but not yet well established for f-p shell residues. Arguments hinge basically on the assumption that the dominant decay follows the yrast states, so that strong transitions satisfy $J_i > J_f$. States identified as high spin (>6) are much more weakly populated, relatively, in (3 He, 3

