**References quoted in the ENSDF dataset: 56CA ADOPTED LEVELS, GAMMAS **

124 references found.

Clicking on a keynumber will list datasets that reference the given article.

Phys.Rev. C13, 887 (1976)

C.N.Davids

*Mass-Excess Predictions for Neutron-Rich Isotopes Near Iron*

NUCLEAR STRUCTURE ^{51,52,53,54,55,56,57,58}Ca, ^{53,55,57,59}Sc, ^{53,54,55,56,57,58,59,60}Ti, ^{55,57,59,61}V, ^{57,58,59,60,61,62}Cr, ^{59,61,63}Mn, ^{61,62,63,64}Fe, ^{65}Co, ^{63}Ga, ^{64,65,67}Ge; calculated mass excess.

Prog.Theor.Phys.(Kyoto) 83, 180 (1990)

Y.Suzuki, K.Ikeda, H.Sato

*New Type of Dipole Vibration in Nuclei*

NUCLEAR STRUCTURE ^{47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62}Ca; calculated pygmy dipole resonance, GDR relative energy, dipole strength ratio. ^{128}I, ^{134}Cs, ^{142}Pr, ^{160}Tb, ^{166}Ho, ^{170}Tm, ^{176}Lu, ^{182}Ta, ^{198}Au, ^{207}Pb; calculated pygmy resonance energy, electric dipole strength. Hydrodynamic model.

Phys.Rev. C44, 1467 (1991)

D.Hirata, H.Toki, T.Watabe, I.Tanihata, B.V.Carlson

*Relativistic Hartree Theory for Nuclei Far from the Stability Line*

NUCLEAR STRUCTURE ^{36,40,44,48,52,56,60,64,68,38,42,46,50,54,58,62,66,70}Ca; calculated binding energy per particle, p, n, charge radii, single particle spectra. Relativistic Hartree theory.

Nucl.Phys. A524, 633 (1991)

H.Toki, Y.Sugahara, D.Hirata, B.V.Carlson, I.Tanihata

*Properties of Nuclei Far from the Stability Line in the Relativistic Hartree Theory*

NUCLEAR STRUCTURE ^{12}C, ^{16}O, ^{40}Ca, ^{90}Zr; calculated binding energy per particle, p, n charge rms radii. ^{36,38,40,42,44,46,48,50,52,54,56,58,60,62,64,66,68,70}Ca; calculated binding energy per particle, p, n charge rms radii, density distributions. Relativistic Hartree theory.

doi: 10.1016/0375-9474(91)90266-9

Chin.J.Nucl.Phys. 14, No 4, 301 (1992)

Z.Ma, B.Chen

*Effect of Tensor Coupling of ρ Meson in Relativistic Hartree Theory for Ca Isotopes*

NUCLEAR STRUCTURE ^{38,40,42,44,46,48,50,52,54,56,58,62,64,66,68,70}Ca; calculated proton, neutron rms radii, binding energies per particle. Relativistic Hartree theory.

Phys.Rev. C47, 623 (1993)

P.Vogel, W.E.Ormand

*Spin-Isospin SU(4) Symmetry in sd- and fp-Shell Nuclei*

NUCLEAR STRUCTURE ^{16}O, ^{20}Ne, ^{24}Mg, ^{28}Si, ^{32}S, ^{36}Ar, ^{19}F, ^{23}Na, ^{27}Al, ^{31}P, ^{35}Cl, ^{39}K, ^{42,44,46,48,50,52,54,56,58}Ca; calculated SU(4) overlaps for J(π)=0^{+}, 1^{+} states. Shell model, Wildenthal interaction.

Nucl.Phys. A586, 445 (1995); Erratum Nucl.Phys. A596, 716 (1996)

W.A.Richter, M.G.Van der Merwe, B.Brown

*Shell-Model Calculations for Neutron-Rich Nuclei in the 0f1p Shell*

NUCLEAR STRUCTURE ^{51,52,53,54,55,56,57,58,59,60}Ca, ^{52,53,54,55,56,57,58,59,60,61}Sc, ^{54,55,56,57,58,59,60,61,62}Ti, ^{59,60,61,62,63}V, ^{58,60,61,62,63,64}Cr, ^{62,63,64,65}Mn, ^{63,64,65,66}Fe; calculated binding energies, mass defects. ^{51,50,52}Ca, ^{52,53}Ti, ^{51,52}Sc; calculated levels. Shell model, empirical effective interaction.

doi: 10.1016/0375-9474(94)00802-T

Phys.Lett. 415B, 111 (1997)

M.Bernas, C.Engelmann, P.Armbruster, S.Czajkowski, F.Ameil, C.Bockstiegel, Ph.Dessagne, C.Donzaud, H.Geissel, A.Heinz, Z.Janas, C.Kozhuharov, Ch.Miehe, G.Munzenberg, M.Pfutzner, W.Schwab, C.Stephan, K.Summerer, L.Tassan-Got, B.Voss

*Discovery and Cross-Section Measurement of 58 New Fission Products in Projectile-Fission of 750 x A MeV ^{238}U*

NUCLEAR REACTIONS Be(^{238}U, X)^{54}Ca/^{55}Ca/^{56}Ca/^{56}Sc/^{57}Sc/^{58}Sc/^{59}Ti/^{60}Ti/^{61}Ti/^{62}V/^{63}V/^{64}V/^{65}Cr/^{66}Cr/^{67}Cr/^{67}Mn/^{68}Mn/^{69}Mn/^{70}Fe/^{71}Fe/^{72}Fe/^{73}Co/^{74}Co/^{75}Co/^{77}Ni/^{78}Ni/^{80}Cu/^{82}Zn/^{83}Zn/^{85}Ga/^{86}Ga/^{87}Ge/^{88}Ge/^{89}Ge/^{90}As/^{91}As/^{92}As/^{92}Se/^{93}Se/^{94}Se/^{95}Br/^{96}Br/^{97}Br/^{97}Kr/^{98}Kr/^{99}Kr/^{100}Kr/^{103}Sr/^{104}Sr/^{105}Sr/^{106}Y/^{107}Y/^{108}Zr/^{109}Zr/^{110}Zr/^{111}Nb/^{112}Nb/^{113}Nb/^{114}Mo/^{116}Tc/^{117}Tc/^{119}Ru/^{122}Rh/^{124}Pd, E=750 MeV/nucleon; measured projectile fission fragment yields, production σ. Fragment separator, tof techniques.

doi: 10.1016/S0370-2693(97)01216-1

Int.J.Mod.Phys. E6, 641 (1997)

S.K.Patra, R.K.Gupta, W.Greiner

*Relativistic Mean-Field Theory and the Structural Properties of Ne, Mg, Si, S, Ar and Ca Nuclei from Proton- to Neutron-Drip Lines*

NUCLEAR STRUCTURE ^{16,18,20,22,24,26,28,30,32,34,36}Ne, ^{18,20,22,24,26,28,30,32,34,36,38,40,42}Mg, ^{20,22,24,26,28,30,32,34,36,38,40,42,44,46,48,50,52}Si, ^{26,28,30,32,34,36,38,40,42,44,46,48,50,52,54,56,58}S, ^{30,32,34,36,38,40,42,44,46,48,50,52,54,56,58,60}Ar, ^{32,34,36,38,40,42,44,46,48,50,52,54,56,58,60,62,64,66,68,70,72}Ca; calculated binding energies, deformations, radii. ^{34,42}Si calculated single-particle level energies. Deformed relativistic mean field calculations, several parameter sets compared.

doi: 10.1142/S0218301397000317

Phys.Rev. C58, 2099 (1998)

B.A.Brown, W.A.Richter

*Shell-Model Plus Hartree-Fock Calculations for the Neutron-Rich Ca Isotopes*

NUCLEAR STRUCTURE ^{47,48,49,50,51,52,53,54,55,56,57,58,59,60}Ca; calculated binding energies, levels, J, π. ^{48}Ca calculated electron scattering form factors. Shell model plus Hartree-Fock approach.

Iader.Fiz.Enerh. 2 no.1, 42 (2001)

V.J.Denisov, V.A.Nesterov

*Properties of the ground states of spherical atomic nuclei in the frameworks of the extended Thomas-Fermi method*

NUCLEAR STRUCTURE ^{32,40,48,56}Ca, ^{48,50,58,60,62,64,78}Ni, ^{90}Zr, ^{100,114,124,132,142,152}Sn, ^{140}Ce, ^{208}Pb, ^{296}Fl, ^{300}Og, ^{302}120, ^{308}126, ^{310}126, ^{436}164, ^{482}164; calculated binding energies, radii, chemical potentials, particle density distributions. Nonlocal extended Thomas-Fermi approximation, Skyrme forces.

doi: 10.15407/jnpae

Yad.Fiz. 65, 847 (2002); Phys.Atomic Nuclei 65, 814 (2002)

V.Yu.Denisov, V.A.Nesterov

*Binding Energies of Nuclei and Their Density Distributions in a Nonlocal Extended Thomas-Fermi Approximation*

NUCLEAR STRUCTURE ^{32,40,48,56}Ca, ^{48,50,58,60,62,64,78}Ni, ^{90}Zr, ^{100,114,124,132}Sn, ^{140}Ce, ^{208}Pb, ^{296}Fl, ^{300}Og, ^{302}120, ^{308}126; calculated binding energies, radii, chemical potentials, particle density distributions. Nonlocal extended Thomas-Fermi approximation, Skyrme forces.

doi: 10.1134/1.1481472

Chin.Phys.Lett. 19, 312 (2002)

S.-Q.Zhang, J.Meng, S.-G.Zhou, J.-Y.Zeng

*Giant Neutron Halo in Exotic Calcium Nuclei*

NUCLEAR STRUCTURE ^{34,36,38,40,42,44,46,48,50,52,54,56,58,60,62,64,66,68,70,72}Ca; calculated binding energies, two-neutron separations energies, radii, density distributions, neutron halo features.

doi: 10.1088/0256-307X/19/3/308

Bull.Rus.Acad.Sci.Phys. 68, 1313 (2004)

O.V.Bespalova, I.N.Boboshin, V.V.Varlamov, T.A.Ermakova, B.S.Ishkhanov, E.A.Romanovsky, T.I.Spasskaya, T.P.Timokhina

*Presumable magic number N = 34 in ^{54}_{20}Ca_{34} nucleus*

NUCLEAR STRUCTURE ^{40,42,44,46,48}Ca; analyzed data; deduced single-particle energies, dispersion optical model parameters. ^{50,52,54,56}Ca; calculated single-particle energies, dispersion optical model parameters; deduced shell closure features.

Yad.Fiz. 68, 216 (2005); Phys.Atomic Nuclei 68, 191 (2005)

O.V.Bespalova, I.N.Boboshin, V.V.Varlamov, T.A.Ermakova, B.S.Ishkhanov, E.A.Romanovsky, T.I.Spasskaya, T.P.Timokhina

*Investigation of the Neutron Shell Structure of the Even-Even Isotopes ^{40-56}Ca within the Dispersive Optical Model*

NUCLEAR STRUCTURE ^{40,42,44,46,48}Ca; analyzed data; deduced optical model parameters, neutron single-particle states energies, occupation numbers. ^{50,52,54,56}Ca; calculated single-particle level energies, configurations.

doi: 10.1134/1.1866375

Part. and Nucl., Lett. 129, 40 (2005)

K.A.Gridnev, D.K.Gridnev, V.G.Kartavenko, V.E.Mitroshin, V.N.Tarasov, D.V.Tarasov, W.Greiner

*About Stability of Nuclei with Neutron Excess*

NUCLEAR STRUCTURE ^{4,6,8,10,12}He, ^{14,16,18,20,22,24,26,28,30,32,34,36,38,40,42,44}O, ^{38,40,42,44,46,48,50,52,54,56,58,60,62,64,66,68,70,72,74,76,78,80,82,84,86,88}Ca; calculated one- and two-neutron separation energies. Skyrme-Hartree-Fock approach.

Eur.Phys.J. A 25, Supplement 1, 499 (2005)

M.Honma, T.Otsuka, B.A.Brown, T.Mizusaki

*Shell-model description of neutron-rich pf-shell nuclei with a new effective interaction GXPF1*

NUCLEAR STRUCTURE ^{42,44,46,48,50,52,54,56,58}Ca, ^{44,46,48,50,52,54,56,58,60}Ti, ^{48,50,52,54,56,58,60,62}Cr; calculated 2^{+} excited states energies, single-particle level energies. ^{53,54,55,56}Ti; calculated levels, J, π. Shell model, modified effective interaction, comparisons with data.

doi: 10.1140/epjad/i2005-06-032-2

Phys.Rev. C 71, 064326 (2005)

M.Matsuo, K.Mizuyama, Y.Serizawa

*Di-neutron correlation and soft dipole excitation in medium mass neutron-rich nuclei near drip line*

NUCLEAR STRUCTURE ^{18,20,22,24}O, ^{50,52,54,56,58,60}Ca, ^{80,82,84,86}Ni; calculated neutron pair gaps, two-body correlation densities, effect on soft dipole excitations. Hartree-Fock-Bogoliubov method, quasiparticle RPA.

doi: 10.1103/PhysRevC.71.064326

Phys.Rev. C 71, 054323 (2005)

Z.Wang, Z.Ren

*Systematic study of charge form factors of elastic electron-nucleus scattering with the relativistic eikonal approximation*

NUCLEAR STRUCTURE ^{12}C, ^{16}O, ^{32}S, ^{34,36,38,40,42,44,46,48,50,52,54,56,58,60}Ca, ^{48,50,52,54,56,58,60,62,64,66,68,70,72,74,76,78,80}Ni; calculated charge densities, form factors, radii. Relativistic eikonal approximation.

NUCLEAR REACTIONS ^{40}Ca, ^{58}Ni, ^{208}Pb(e, e), E ≈ 400-500 MeV; calculated σ(θ).

doi: 10.1103/PhysRevC.71.054323

Phys.Atomic Nuclei 69, 1 (2006); Yad.Fiz. 69, 3 (2006)

K.A.Gridnev, D.K.Gridnev, V.G.Kartavenko, V.E.Mitroshin, V.N.Tarasov, D.V.Tarasov, W.Greiner

*Specific Features of the Nuclear Drip Line in the Region of Light Nuclei*

NUCLEAR STRUCTURE ^{14,16,18,20,22,24,26,28,30}O; calculated one- and two-neutron separation energies, one-proton separation energies. ^{20,40}O; calculated proton and neutron density distributions. ^{38,40,42,44,46,48,50,52,54,56,58,60,62,64,66,68,70,72,74,76,78,80}Ca; calculated one- and two-neutron separation energies. Skyrme-Hartree-Fock approach.

doi: 10.1134/S1063778806010017

Int.J.Mod.Phys. E15, 673 (2006)

K.A.Gridnev, D.K.Gridnev, V.G.Kartavenko, V.E.Mitroshin, V.N.Tarasov, D.V.Tarasov, W.Greiner

*On stability of the neutron-rich oxygen isotopes*

NUCLEAR STRUCTURE ^{14,16,18,20,22,24,26,28,30,32,34,36,38,40,42,44}O; calculated proton, neutron, and two-neutron separation energies. ^{20,40}O; calculated proton and neutron distributions. ^{38,40,42,44,46,48,50,52,54,56,58,60,62,64,66,68,70,72,74,76,78,80}Ca; calculated one and two neutron separation energies. Hartree-Fock approach, Skyrme forces.

doi: 10.1142/S0218301306004053

Phys.Rev.C 74, 064317 (2006)

M.Grasso, S.Yoshida, N.Sandulescu, N.Van Giai

*Giant neutron halos in the non-relativistic mean field approach*

NUCLEAR STRUCTURE ^{56,58,60,62,64,66,68,70,72}Ca, ^{116,118,120,122,124,126,128,130,132,134,136,138,140}Zr; calculated radii, two-neutron separation energies, halo features. Non-relativistic mean field approach.

doi: 10.1103/PhysRevC.74.064317

Chin.Phys.Lett. 23, 804 (2006)

M.Liu, N.Wang, Z.-X.Li, X.-Z.Wu

*Neutron Skin Thickness of Nuclei and Effective Nucleon-Nucleon Interactions*

NUCLEAR STRUCTURE ^{18}O, ^{48}Ca, ^{114,116,118,120,122,124,132}Sn, ^{208}Pb; calculated radii, neutron skin thickness. ^{38,40,48,56}Ca, ^{82,90,96,116}Zr, ^{92,100,112,130}Sn, ^{180,208,220,240}Pb; calculated neutron and proton density distributions. Skyrme energy density functional, comparisons with data.

doi: 10.1088/0256-307X/23/4/012

Phys.Rev. C 74, 044301 (2006)

J.Terasaki, J.Engel

*Self-consistent description of multipole strength: Systematic calculations*

NUCLEAR STRUCTURE ^{36,38,40,42,44,46,48,50,52,54,56,58,60,62,64,66,68,70,72,74,76}Ca, ^{50,52,54,56,58,60,62,64,66,68,70,72,74,76,78,80,82,84,86,88,90,92,94,96,98}Ni, ^{100,102,104,106,108,110,112,114,116,118,120,122,124,126,128,130,132,134,136,138,140,142,144,146,148,150,152,154,156,158,160,162,164,166,168,170,172,174,176}Sn; calculated isoscalar and isovector 0^{+}, 1^{-}, 2^{+} strength functions, transition densities, partial energy-weighted sums. Quasiparticle RPA, Skyrme density functionals.

doi: 10.1103/PhysRevC.74.044301

Phys.Rev. C 74, 054318 (2006)

J.Terasaki, S.Q.Zhang, S.G.Zhou, J.Meng

*Giant halos in relativistic and nonrelativistic approaches*

NUCLEAR STRUCTURE ^{36,38,40,42,44,46,48,50,52,54,56,58,60,62,64,66,68,70,72,74,76,78}Ca; calculated two-neutron separation energies, radii, density distributions, halo features. ^{66}Ca; calculated single-particle level energies, particle density distributions, radii. Relativistic continuum Hartree-Bogoliubov approximation and Skyrme Hartree-Fock-Bogoliubov approximation.

doi: 10.1103/PhysRevC.74.054318

Int.J.Mod.Phys. E15, 1833 (2006)

J.Terasaki, S.Q.Zhang, S.G.Zhou, J.Meng

*Comparison of relativistic and non-relativistic approaches in halo*

NUCLEAR STRUCTURE ^{50,52,54,56,58,60,62,64,66,68,70,72,74,76,78}Ca; calculated two-neutron separation energies, neutron and proton radii, halo features. ^{66}Ca; calculated single-particle level energies.

doi: 10.1142/S0218301306005381

Phys.Rev. C 76, 044320 (2007)

J.Terasaki, J.Engel

*Excited-state density distributions in neutron-rich nuclei*

NUCLEAR STRUCTURE ^{50}Ca; excitation energies and excited state densities. ^{50,54,56,58,62,64,66,70,76}Ca, ^{60,66,72,78,80,84,90,96,98}Ni, ^{132,134,136,138,140,142,144,146,148,150,152,164,166,168,172,176}Sn; calculated strength function peaks. QRPA with Skyrme.

doi: 10.1103/PhysRevC.76.044320

Phys.Rev. C 77, 014313 (2008)

P.F.Mantica, R.Broda, H.L.Crawford, A.Damaske, B.Fornal, A.A.Hecht, C.Hoffman, M.Horoi, N.Hoteling, R.V.F.Janssens, J.Pereira, J.S.Pinter, J.B.Stoker, S.L.Tabor, T.Sumikama, W.B.Walters, X.Wang, S.Zhu

*β decay of neutron-rich ^{53-56}Ca*

RADIOACTIVITY ^{53,54,55,56}Ca(β^{-}) [from ^{9}Be(^{76}Ge, X), E=140 MeV/nucleon; measured Eγ, Iγ, βγ-coin, half-lives. ^{54}Ca; deduced Iβ, logft. ^{54}Sc; levels, J, π, half-lives, B(M1), B(E2), comparison with calculations.

NUCLEAR REACTIONS ^{9}Be(^{76}Ge, X)^{49}Cl/^{50}Ar/^{51}Ar/^{52}K/^{53}K/^{54}K/^{53}Ca/^{54}Ca/^{55}Ca/^{56}Ca/^{55}Sc/^{56}Sc/^{57}Sc/^{57}Ti/^{58}Ti/^{59}Ti/^{60}V, E=140 MeV/nucleon; measured reaction yields.

doi: 10.1103/PhysRevC.77.014313

Phys.Rev. C 77, 054309 (2008)

J.Margueron, H.Sagawa, K.Hagino

*Effective pairing interactions with isospin density dependence*

NUCLEAR STRUCTURE ^{36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62}Ca, ^{52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90}Ni, ^{100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170}Sn, ^{182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267}Pb; calculated odd-even mass staggering, binding energies, two-neutron separation energies, pairing gaps. Comparison with experimental data. ^{110,150}Sn; calculated particle densities, neutron Fermi momentum. Hartree-Fock-Bogoliubov model.

doi: 10.1103/PhysRevC.77.054309

Phys.Rev. C 79, 054329 (2009)

L.Capelli, G.Colo, J.Li

*Dielectric theorem within the Hartree-Fock-Bogoliubov framework*

NUCLEAR STRUCTURE ^{40,42,44,46,48,50,52,54,56,58,60,62,64,66,68,70,72,74,76}Ca, ^{56,58,60,62,64,66,68,70,72,74,76,78,80,82,84}Ni; calculated constrained monopole energies, monopole inverse energy-weighted sum rule (IEWSR), isoscalar 0^{+} strength functions, proton and neutron transition densities. Quasiparticle random phase approximation (QRPA) calculations based on Hartree-Fock-Bogoliubov (HFB) with SKM* and volume pairing forces.

doi: 10.1103/PhysRevC.79.054329

Phys.Rev. C 80, 044311 (2009)

L.Coraggio, A.Covello, A.Gargano, N.Itaco

*Spectroscopic study of neutron-rich calcium isotopes with a realistic shell-model interaction*

NUCLEAR STRUCTURE ^{49,50,51,52,53,54,55}Ca, ^{56}Ca; calculated levels, J, π, and neutron-neutron two-body matrix elements using shell-model with a realistic effective interaction from the CD-Bonn nucleon-nucleon potential. ^{42,44,46,48,50,52,54,56}Ca; calculated ground-state energies per valence neutron and effective single-particle energies. Comparison with experimental data.

doi: 10.1103/PhysRevC.80.044311

Phys.Rev.Lett. 103, 012502 (2009)

W.Satula, J.Dobaczewski, W.Nazarewicz, M.Rafalski

*Isospin Mixing in Nuclei within the Nuclear Density Functional Theory*

NUCLEAR STRUCTURE ^{40,42,44,46,48,50,52,54,56,58,60}Ca, ^{100}Sn; calculated isospin-mixing parameters. Extended mean-field approach.

doi: 10.1103/PhysRevLett.103.012502

Phys.Rev. C 81, 031302 (2010)

W.-H.Long, P.Ring, J.Meng, N.Van Giai, C.A.Bertulani

*Nuclear halo structure and pseudospin symmetry*

NUCLEAR STRUCTURE ^{40,42,44,46,48,50,52,54,56,58,60,62,64,66,68,70,72,74}Ca, ^{56,58,60,62,64,66,68,70,72,74,76,78,80,82,84,86,88,90,92,94}Ni, ^{80,82,84,86,88,90,92,94,96,98,100,102,104,106,108,110,112,114,116,118,120,122,124,126,128,130,132,134,136,138,140}Zr, ^{102,104,106,108,110,112,114,116,118,120,122,124,126,128,130,132,134,136,138,140,142,144,146,148,150,152,154,156,158,160,162,164,166,168,170,172,174}Sn, ^{122,124,126,128,130,132,134,136,138,140,142,144,146,148,150,152,154,156,158,160,162,164,166,168,170,172,174,176,178,180,182,184,186,188,190,192,194,196,198}Ce; calculated neutron skin thickness (r_{n}-r_{p}) using RHFB with PKA1 plus the D1S pairing force. ^{140,142,144,146,148,150,152,154,156,158,160,162,164,166,168,170,172,174,176,178,180,182,184,186,188,190,192,194,196,198}Ce; calculated neutron and proton densities, neutron single particle energies, Two-body interaction matrix elements V_{ab}, neutron shell gap, halo structure near neutron drip line, and conservation of pseudospin symmetry using relativistic Hartree-Fock-Bogoliubov calculations.

doi: 10.1103/PhysRevC.81.031302

Phys.Rev. C 81, 027301 (2010); Erratum Phys.Rev. C 82, 029903 (2010)

H.Nakada

*Modified parameter sets of M3Y-type semi-realistic nucleon-nucleon interactions for nuclear structure studies*

NUCLEAR STRUCTURE ^{16,24}O, ^{40,48}Ca, ^{90}Zr, ^{132}Sn, ^{208}Pb; calculated binding energies, rms radii. ^{101,103,105,107,109,111,113,115,117,119,121,123,125,127,129,131,133,135,137,139,141}Sn; calculated odd-even mass difference. ^{38,40,42,44,46,48,50,52,54,56,58,60,62,64,66,68,70}Ca, ^{48,50,52,54,56,58,60,62,64,66,68,70,72,74,76,78,80,82,84,86,88,90,92,94}Ni; calculated Hartree-Fock and Hartree-Fock Bogoliubov energies. Calculated new parameter sets for M3Y-type semirealistic nucleon-nucleon effective interactions.

doi: 10.1103/PhysRevC.81.027301

Phys.Atomic Nuclei 73, 1684 (2010); Yad.Fiz. 73, 1731 (2010)

S.V.Tolokonnikov, E.E.Saperstein

*Description of superheavy nuclei on the basis of a modified version of the DF3 energy functional*

NUCLEAR STRUCTURE ^{35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57}Ca, ^{176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214}Pb, ^{218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282}U, ^{298}Fl; calculated proton and neutron single-particle spectrum, neutron separation energies, rms charge radii. DF-3, HFB-17 functionals.

doi: 10.1134/S1063778810100054

J.Phys.:Conf.Ser. 312, 092015 (2011)

S.Baroni, A.O.Macchiavelli, A.Schwenk

*Partial-wave contributions to pairing in nuclei*

NUCLEAR STRUCTURE ^{37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57}Ca, ^{101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138}Sn, ^{185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213}Pb; calculated binding energy, mass excess using phenomenological EDF (energy-density formalism). Shown influence of partial waves, compared with data.

doi: 10.1088/1742-6596/313/9/092015

J.Phys.:Conf.Ser. 312, 092021 (2011)

L.Coraggio, A.Covello, A.Gargano, N.Itaco, T.T.S.Kuo

*Fully microscopic shell-model calculations with realistic effective hamiltonians*

NUCLEAR STRUCTURE ^{16,18,20,22,24}C, ^{18,20,22,24,26,28}O, ^{42,44,46,48,50,52,54,56}Ca; calculated binding energy, mass excess, yrast 2^{+} state energy. ^{42,44,46,48,50,52,54,56}Ti; calculated yrast 2^{+} state energy, B(E2). ^{134}Sn, ^{136}Te, ^{138}Xe, ^{140}Ba, ^{142}Ce, ^{144}Nd, ^{146}Sm, ^{148}Gd, ^{150}Dy, ^{152}Er, ^{154}Yb; calculated ground state energy, mass excess. ^{134}Te; calculated levels, J, π. Realistic shell model within fully microscopic approach; compared with available data.

doi: 10.1088/1742-6596/312/9/092021

Phys.Rev. C 83, 064317 (2011)

H.Hergert, P.Papakonstantinou, R.Roth

*Quasiparticle random-phase approximation with interactions from the Similarity Renormalization Group*

NUCLEAR STRUCTURE ^{56}Ca; calculated number operator response for nonspurious monopole states, isoscalar and isovector dipole strengths. ^{4}He, ^{16,24}O, ^{34}Si, ^{40,48}Ca, ^{56,68,78}Ni, ^{88}Sr, ^{90}Zr, ^{100,114,132}Sn, ^{146}Gd, ^{208}Pb; calculated ground-state energy per nucleon and charge radii. ^{16}O, ^{40,48}Ca, ^{100,132}Sn; calculated proton and neutron spin-orbit splittings. ^{36,38,40,42,44,46,48,50,52,54,56,58,60}Ca; calculated ground-state energies per nucleon, charge radii, odd-even mass differences, and pairing energies, isoscalar and isovector monopole, dipole and quadrupole responses, isoscalar monopole centroids and energies of the first excited 0+ states, centroids of isovector dipole response, isoscalar quadrupole centroids and energies of the first 2+ states. ^{40,48}Ca; calculated single particle energies. ^{120}Sn; calculated canonical single-neutron energies, isoscalar monopole response, running energy-weighted sums, centroid energies of the isoscalar monopole strength distribution. ^{50}Ca; calculated proton and neutron transition densities for monopole peaks. ^{36,44}Ca; calculated proton and neutron dipole transition densities. ^{54}Ca; calculated proton and neutron quadrupole transition densities for a pygmy and a GQR mode. Quasiparticle random phase approximation built on the HFB ground states. Comparison with experimental data.

doi: 10.1103/PhysRevC.83.064317

Phys.Rev. C 84, 021302 (2011)

T.Inakura, T.Nakatsukasa, K.Yabana

*Emergence of pygmy dipole resonances: Magic numbers and neutron skins*

NUCLEAR STRUCTURE ^{20,22,24,26,28,30,32,34}Ne, ^{40,42,44,46,48,50,52,54,56,58,60}Ca; calculated photoabsorption cross sections. Z=8-40, N=8-82; calculated fraction of photoabsorption cross section of pygmy dipole resonances (PDR) for even-even spherical and deformed nuclei. Z=16-40, N=16-82; calculated correlations between fraction of photoabsorption cross section of pygmy dipole resonances (PDR) and neutron skin thickness for even-even nuclei. B(E1) strengths. Random-phase approximation (RPA) calculations with the Skyrme functional SkM* using finite amplitude method (FAM).

doi: 10.1103/PhysRevC.84.021302

Phys.Rev. C 83, 014320 (2011)

K.Kaneko, Y.Sun, T.Mizusaki, M.Hasegawa

*Shell-model study for neutron-rich sd-shell nuclei*

NUCLEAR STRUCTURE ^{35}Si, ^{36,37,38,40,42,43,44,46}S, ^{38,39,40,42,43,44,45,46,47,48}Ar, ^{41,49}Ca, ^{47}K; calculated levels, J, π. ^{40}Mg, ^{34,36,38,40,42,44,46,48,50,52}Si, ^{36,38,40,42,44,46,48,50,52,54}S, ^{38,40,42,44,46,48,50,52,54,56}Ar, ^{40,42,44,46,48,50,52,54,56,58}Ca; calculated energies of first 2+ states. Z=20, N=20-40; calculated effective proton single-particle energies. Z=8-20, N=20; calculated effective neutron single-particle energies. ^{36,38,40,42}Si, ^{36,38,40,42,44}S, ^{38,40,42,44,46}Ar; calculated B(E2) values for first 2+ states. ^{40}Mg, ^{42}Si, ^{44}S, ^{44,46}Ar, ^{48}Ca; calculated spectroscopic quadrupole moments of first 2+ states. ^{35,37,39,41,43}P, ^{37,39,41,43,45}Cl, ^{39,41,43,45,47,49}K; calculated 3/2+ to 1/2+ splittings. ^{41}Si, ^{43}S, ^{45}Ar, ^{47}Ca; calculated 7/2- to 3/2- splittings. Spherical shell model in the sd-pf valence space with the extended pairing plus quadrupole-quadrupole forces accompanied by the monopole interaction (EPQQM). Comparison with experimental data for sd-shell nuclei.

doi: 10.1103/PhysRevC.83.014320

Phys.Rev. C 84, 044333 (2011)

Y.Z.Wang, J.Z.Gu, X.Z.Zhang, J.M.Dong

*Tensor effects on the proton sd states in neutron-rich Ca isotopes and bubble structure of exotic nuclei*

NUCLEAR STRUCTURE ^{40,42,44,46,48,50,52,54,56,58,60,62,64,66,68}Ca; calculated energy differences of the proton single-particle states with and without tensor force. ^{48,64}Ca; calculated proton spin-orbit potentials and squared radial wave functions, proton single-particle energies. ^{46}Ar, ^{206}Hg; calculated proton single-particle spectrum, proton density distributions. Hartree-Fock-Bogoliubov (HFB) approach with Skyrme interactions SLy5+T, SLy5+Tw and several sets of the TIJ parameterizations. Comparison with experimental data.

doi: 10.1103/PhysRevC.84.044333

Phys.Rev. C 85, 034324 (2012)

M.A.Caprio, F.Q.Luo, K.Cai, V.Hellemans, Ch.Constantinou

*Generalized seniority for the shell model with realistic interactions*

NUCLEAR STRUCTURE ^{41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59}Ca; calculated levels, J, π, orbital occupations, quadrupole moments, B(E2), magnetic moment. Comparison between seniority (ν=1-3) model space and full shell-model space.

doi: 10.1103/PhysRevC.85.034324

J.Phys.(London) G39, 105108 (2012)

M.A.Caprio, F.Q.Luo, K.Cai, Ch.Constantinou, V.Hellemans

*Generalized seniority with realistic interactions in open-shell nuclei*

NUCLEAR STRUCTURE ^{40,42,44,46,48,50,52,54,56,58,60}Ca, ^{42,44,46,48,50,52,54,56,58,60,62}Ti, ^{44,46,48,50,52,54,56,58,60,62,64}Cr; calculated energy levels, J, π, electric quadrupole and dipole magnetic moments. Shell model calculations, FPD6 and GXPF1 interactions, comparison with available data.

doi: 10.1088/0954-3899/39/10/105108

J.Phys.(London) G39, 125105 (2012)

D.-D.Ni, Z.-Z.Ren

*Calculations of the b-decay half-lives of neutron-rich nuclei*

RADIOACTIVITY ^{16,18,20,22}C, ^{22,24,26,28}O, ^{26,28,30,32,34}Ne, ^{30,32,34,36,38,40}Mg, ^{34,36,38,40,42,44}Si, ^{40,42,44,46,48}S, ^{46,48,50,52}Ar, ^{52,54,56,58}Ca, ^{54,56,58,60,62}Ti, ^{58,60,62,64,66,68}Cr, ^{64,66,68,70,72}Fe, ^{70,72,74,76,78}Ni, ^{76,78,80,82}Zn, ^{82,84,86,88}Ge, ^{88,90,92,94}Se, ^{92,94,96,98,100}Kr, ^{96,98,100,102,104}Sr, ^{100,102,104,106,108,110}Zr, ^{106,108,110,112,114}Mo, ^{112,114,116,118,120}Ru, ^{118,120,122,124}Pd, ^{122,124,126,128,130,132}Cd, ^{134,136}Sn, ^{138,140,142}Te, ^{142,144,146}Xe, ^{146,148,150,152}Ba, ^{150,152,154,156}Ce(β^{-}); calculated T_{1/2}. pnQRPA with δ-form Gamow-Teller residual interaction, comparison with experimental data.

doi: 10.1088/0954-3899/39/12/125105

Phys.Rev.Lett. 109, 032502 (2012)

G.Hagen, M.Hjorth-Jensen, G.R.Jansen, R.Machleidt, T.Papenbrock

*Evolution of Shell Structure in Neutron-Rich Calcium Isotopes*

NUCLEAR STRUCTURE ^{42,48,50,52,53,54,55,56,61}Ca, ^{50,54,56}Ti; calculated ground state energies, J, π. Chiral effective field theory, comparison with available data.

doi: 10.1103/PhysRevLett.109.032502

Phys.Atomic Nuclei 76, 1482 (2013); Yad.Fiz. 76, 1566 (2013)

O.V.Bespalova, T.A.Ermakova, A.A.Klimochkina, E.A.Romanovsky, T.I.Spasskaya

*Evolution of proton shells in 20 ≤ Z ≤ 28 and 20 ≤ N ≤ 50 nuclei and dispersive optical model*

COMPILATION ^{40,42,44,46,48,50,52,54,56,58,60,62,64,66,68,70}Ca, ^{42,44,46,48,50,52,54,56,58,60,62,64,66,68,70,72}Ti, ^{44,46,48,50,52,54,56,58,60,62,64,66,68,70,72,74}Cr, ^{46,48,50,52,54,56,58,60,62,64,66,68,70,72,74,76}Fe, ^{52,54,56,58,60,62,64}Ni, ^{68}Ni, ^{78}Ni; compiled single-particle proton energies; deduced parameters of the photon dispersive optical potential, evolution of the particle-hole energy gap.

doi: 10.1134/S1063778813120028

J.Phys.:Conf.Ser. 445, 012010 (2013)

B.A.Brown

*Pairing and shell gaps in nuclei*

NUCLEAR STRUCTURE ^{40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60}Ca; calculated ground-state energy, 2^{+} energy, 1n separation energy, Q. Z=6-92; calculated energy differences, Q of neighbouring isotopes. Shell model. Compared with available data.

doi: 10.1088/1742-6596/445/1/012010

J.Phys.(London) G40, 105103 (2013)

N.Dinh Dang, N.Quang Hung

*On the importance of using exact pairing in the study of pygmy dipole resonance*

NUCLEAR STRUCTURE ^{18,20,22,24}O, ^{50,52,54,54,56,58,60}Ca, ^{120,122,124,126,128,130}Sn; calculated strength functions of the giant dipole resonance. Comparison with available data.

doi: 10.1088/0954-3899/40/10/105103

Phys.Rev.Lett. 110, 192502 (2013)

A.Ekstrom, G.Baardsen, C.Forssen, G.Hagen, M.Hjorth-Jensen, G.R.Jansen, R.Machleidt, W.Nazarewicz, T.Papenbrock, J.Sarich, S.M.Wild

*Optimized Chiral Nucleon-Nucleon Interaction at Next-to-Next-to-Leading Order*

NUCLEAR STRUCTURE ^{3}H, ^{3,4}He, ^{10}B, ^{17,22,24}O, ^{40,48,50,52,54,56}Ca; calculated energy of the first 2^{+} state, energy per nucleon for neutron matter, phase shifts. The nucleon-nucleon interaction from chiral effective field theory at next-to-next-to-leading order (NNLO).

doi: 10.1103/PhysRevLett.110.192502

Phys.Rev. C 88, 044303 (2013)

L.Y.Jia

*Particle-number-conserving theory for nuclear pairing*

NUCLEAR STRUCTURE ^{42,44,46,48,50,52,54,56,58}Ca; calculated ground state energies, occupation numbers, pair emission amplitudes using generalized density matrix formalism. Comparison with shell model (NUSHELLX code) and BCS calculations.

doi: 10.1103/PhysRevC.88.044303

Nucl.Phys. A900, 1 (2013)

J.Liu, Z.Ren, T.Dong

*Theoretical study on neutron skin thickness of Ca isotopes by parity-violating electron scattering*

NUCLEAR STRUCTURE ^{44,48}Ca, ^{208}Pb; analyzed PVS (parity-violating electron scattering); calculated, deduced parity-violating asymmetry, symmetry energy, proton, neutron radius, neutron skin. ^{36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,41,52,53,54,55,56,57,58}Ca; calculated, deduced neutron, proton density distribution with nuclear radius and diffusivity fitted to FSUGold parameter set.

doi: 10.1016/j.nuclphysa.2013.01.034

Phys.Rev. C 88, 034308 (2013)

Y.F.Niu, Z.M.Niu, N.Paar, D.Vretenar, G.H.Wang, J.S.Bai, J.Meng

*Pairing transitions in finite-temperature relativistic Hartree-Bogoliubov theory*

NUCLEAR STRUCTURE ^{124}Sn; calculated binding energy/nucleon, entropy, neutron radius, charge radius, neutron pairing energy, neutron pairing gap, specific heat and contour plot for the neutron pairing gap as function of temperature. ^{36,38,40,42,44,46,48,50,52,54,56,58,60,62}Ca, ^{54,56,58,60,62,64,66,68,70,72,74,76,78,80,82,84,86,88,90,92}Ni, ^{102,104,106,108,110,112,114,116,118,120,122,124,126,128,130,132,134,136,138,140,142,144,146,148,150,152,154,156,158,160,162,164,166,168,170}Sn, ^{182,184,186,188,190,192,194,196,198,200,202,204,206,208,210,212,214,216,218,220,222,224,226,228,230,232,234,236,238,240,242,244,246,248,250,252,254,256,258,260,262,264}Pb; calculated neutron pairing gap as a function of temperature, neutron pairing gaps at zero temperature and critical temperatures for pairing transition. Finite temperature relativistic Hartree-Bogoliubov (FTRHB) theory based on point-coupling functional PC-PK1 with Gogny or separable pairing forces.

doi: 10.1103/PhysRevC.88.034308

Phys.Part. and Nucl.Lett. 10, 220 (2013)

G.Saxena, D.Singh, M.Kaushik

*Magicity in Exotic Nuclei*

NUCLEAR STRUCTURE ^{34,36,38,40,42,44,46,48,50,52,54,56,58,60,62,64,66}Ca; calculated proton and neutron density distributions, two-neutron separation and neutron single-particle energies. Relativistic mean field (RMF) plus state-dependent BCS approach.

doi: 10.1134/S1547477113030114

J.Phys.:Conf.Ser. 445, 012009 (2013)

A.Schwenk

*Three-nucleon forces and nuclei at the extremes*

NUCLEAR STRUCTURE ^{16,17,18,19,20,21,22,23,24,25,26,27,28}O; calculated single-particle energy. ^{48,49,50,51,52}Ca; calculated 2n separation energy, Q. ^{42,44,46,48,50,52,54,56,58,60,62,64,66,68}Ca;calculated 2^{+} energy. ^{16}O, ^{17}F, ^{18}Ne, ^{19}Na, ^{20}Mg, ^{21}Al, ^{22}Si; calculated levels, J, π, Q. Two- and three-nucleon forces; compared with available data and AME.

doi: 10.1088/1742-6596/445/1/012009

Phys.Rev. C 87, 014335 (2013)

R.Xu, C.Wu, G.Ma, D.Fang, Z.Ren

*Properties of deformed even-even nuclei near Z=20 in an improved quark mass density-dependent model*

NUCLEAR STRUCTURE ^{24,26,28,30,32,34,36,38,40,42}Si, ^{28,30,32,34,36,38,40,42,44,46}S, ^{32,34,36,38,40,42,44,46,48,50}Ar, ^{36,38,40,42,44,46,48,50,52,54,56}Ca, ^{40,42,44,46,48,50,52,54,56,58,60}Ti, ^{42,44,46,48,50,52,54,56,58,60,62,64,66}Cr, ^{50,52,54,56,58,60,62,64,66,68,70,72}Fe; calculated binding energy/nucleon, S(2n), S(2p), β_{2} prolate and oblate, rms charge, neutron and proton radii, hexadecapole moment, prolate-oblate energy difference, neutron skin thickness. Improved quark mass density-dependent (IQMDD) model. Comparison with experimental data.

doi: 10.1103/PhysRevC.87.014335

Nucl.Phys. A907, 1 (2013)

R.Xu, C.Wu, Z.Ren, S.Kumar, J.Liu

*New effective interactions in improved quark mass density-dependent model with ? tensor and non-linear Ω-ρ couplings*

NUCLEAR STRUCTURE ^{16}O, ^{40,48}Ca, ^{89}Y, ^{90}Zr, ^{132}Sn, ^{139}La, ^{208}Pb; calculated binding energy, charge radii, neutron skin thickness. ^{36,38,40,42,44,46,48,50,52,54,56}Ca, ^{116,118,120,122,124,126,128,130,132,134}Sn; calculated binding energy, Q, charge radii; deduced nuclear matter properties, equation of state for different interactions. IQMDD (improved quark mass density-dependent) model with tensor and non-linear couplings.

doi: 10.1016/j.nuclphysa.2013.03.015

Phys.Rev. C 89, 024319 (2014)

L.Coraggio, A.Covello, A.Gargano, N.Itaco

*Realistic shell-model calculations for isotopic chains "north-east" of ^{48}Ca in the (N, Z) plane*

NUCLEAR STRUCTURE ^{50,52,54,56,58,60,62,64,66,68,70,72}Ca, ^{50,52,54,56,58,60,62}Ti, ^{52,54,56,58,60,62,64}Cr, ^{54,56,58,60,62,64,66}Fe, ^{56,58,60,62,64,66,68,70,72,74,76,78}Ni; calculated energies and B(E2) values of first 2+ states using realistic shell-model calculations with two different model spaces. Discussed role of 1d_{5/2} neutron orbital on yrast quadrupole excitations. Comparison with experimental data taken from ENSDF and XUNDL databases.

doi: 10.1103/PhysRevC.89.024319

Phys.Rev. C 90, 024303 (2014); Erratum Phys.Rev. C 92, 069902 (2015)

S.Ebata, T.Nakatsukasa, T.Inakura

*Systematic investigation of low-lying dipole modes using the canonical-basis time-dependent Hartree-Fock-Bogoliubov theory*

NUCLEAR STRUCTURE ^{8,10,12,14,16,18,20,22}C, ^{14,16,18,20,22,24,26}O, ^{20,22,24,26,28,30,32}Ne, ^{18,20,22,24,26,28,30,32,34,36,38,40}Mg, ^{24,26,28,30,32,34,36,38,40,42,44,46}Si, ^{26,28,30,32,34,36,38,40,42,44,46,48,50}S, ^{32,34,36,38,40,42,44,46,48,50,52,54,56}Ar, ^{34,36,38,40,42,44,46,48,50,52,54,56,58,60,62,64}Ca, ^{56,58,60,62,64,66,68,70,72,74,76,78,80,82,84}Ni, ^{60,62,64,66,68,70,72,74,76,78,80,82,84,86,88}Zn, ^{64,66,68,70,72,74,76,78,80,82,84,86,88,90,92,94,96,98}Ge, ^{68,70,72,74,76,78,80,82,84,86,88,90,92,94,96,98,100,102,104}Se, ^{72,74,76,78,80,82,84,86,88,90,92,94,96,98,100,102,104,106,108,110,112,114,116,118}Kr, ^{76,78,80,82,84,86,88,90,92,94,96,98,100,102,104,106,108,110,112,114,116,118}Sr, ^{80,82,84,86,88,90,92,94,96,98,100,102,104,106,108,110,112,114,116,118,120,122,124,126,128,130,132}Zr, ^{84,86,88,90,92,94,96,98,100,102,104,106,108,110,112,114,116,118,120,122,124,126,128,130,132}Mo, ^{88,90,92,94,96,98,100,102,104,106,108,110,112,114,116,118,120,122,124,126,128,130}Ru, ^{92,94,96,98,100,102,104,106,108,110,112,114,116,118,120,122,124,126,128,130,132,134}Pd, ^{96,98,100,102,104,106,108,110,112,114,116,118,120,122,124,126,128,130,132,134,136,138}Cd, ^{100,102,104,106,108,110,112,114,116,118,120,122,124,126,128,130,132,134,136,138,140}Sn; calculated low-lying electric dipole (E1) strengths of pygmy dipole resonances (PDR), the PDR fraction as functions of the neutron number and neutron skin thickness, proton number dependence of the PDR fraction, shell structure, neutron skin thickness, neutron and proton pairing gaps and chemical potentials, quadrupole deformation parameters β_{2} and γ. ^{128,130,132,134,136,138,140,142}Te; calculated Proton number dependence of the PDR fraction. Canonical-basis time-dependent Hartree-Fock-Bogoliubov (Cb-TDHFB) theory.

doi: 10.1103/PhysRevC.90.024303

Phys.Rev. C 90, 041302 (2014)

H.Hergert, S.K.Bogner, T.D.Morris, S.Binder, A.Calci, J.Langhammer, R.Roth

*Ab initio multireference in-medium similarity renormalization group calculations of even calcium and nickel isotopes*

NUCLEAR STRUCTURE ^{34,36,38,40,42,44,46,48,50,52,54,56,58,60,62}Ca, ^{48,50,52,54,56,58,60,62,64,66,68,70,72,74,76,78,80,82,84,86,88,90}Ni; calculated ground state energies, and S(2n) using multireference in-medium similarity renormalization group based on NN+3N nucleon interactions from chiral effective field theory. Comparison with other calculations and experimental results.

doi: 10.1103/PhysRevC.90.041302

Phys.Rev. C 90, 024312 (2014)

J.D.Holt, J.Menendez, J.Simonis, A.Schwenk

*Three-nucleon forces and spectroscopy of neutron-rich calcium isotopes*

NUCLEAR STRUCTURE ^{40,41,42,43,44,45,46,47,48,49,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70}Ca; calculated ground-state energies in pf and pfg9/2 shells, convergence of ^{42}Ca and ^{48}Ca ground-state energies as a function of increasing intermediate-state excitations; calculated levels, J, π, B(E2), B(M1) for ^{43,44,45,46,47,48,49,51,52,53,54,55,56,57}Ca, energy convergence. Chiral two- and three-nucleon (NN and 3N) interactions, and many-body perturbation theory (MBPT). Comparison with coupled-cluster calculations, and with available experimental data for A=43-57 Ca isotopes.

doi: 10.1103/PhysRevC.90.024312

Phys.Rev. C 89, 011302 (2014)

K.Kaneko, T.Mizusaki, Y.Sun, S.Tazaki

*Toward a unified realistic shell-model Hamiltonian with the monopole-based universal force*

NUCLEAR STRUCTURE Z=20-28, A=42-64; calculated binding energies and fitted with experimental values for 95 nuclides. ^{42,44,46,48,50,52,54,56,58}Ca, ^{44,46,48,50,52,54,56,58,60}Ti, ^{48,50,52,54,56,58,60,62}Cr, ^{52,54,56,58,60,62,64}Fe, ^{56,58,60,62,64,66,68,70,72,74}Ni, ^{60,62,64,66,68,70,72,74,76,78,80}Zn, ^{64,66,68,70,72,74,76,78,80,82}Ge, ^{68,70,72,74,76,78,80,82,84}Se; calculated energies and B(E2) for first 2+ levels. ^{55}Co, ^{56}Ni, ^{69,72}Ge; calculated levels, J, π. Unified realistic shell-model Hamiltonian employing pairing plus multipole Hamiltonian combined with monopole interaction (PMMU model). Comparison with experimental data.

doi: 10.1103/PhysRevC.89.011302

Phys.Rev. C 90, 024311 (2014)

J.Menendez, T.R.Rodriguez, G.Martinez-Pinedo, A.Poves

*Correlations and neutrinoless ββ decay nuclear matrix elements of pf-shell nuclei*

RADIOACTIVITY ^{42,44,46,48,50,52,54,56}Ca, ^{44,46,48,50,52,54,56,58}Ti, ^{46,48,50,52,54,56,58,60}Cr(2β^{-}); calculated Fermi and Gamow-Teller parts of nuclear matrix elements (NMEs) for 0νββ decay mode, particle-number and angular-momentum projected (J=0) potential energy surfaces and ground-state collective wave functions. Shell model and energy density functional methods.

doi: 10.1103/PhysRevC.90.024311

Phys.Rev. C 89, 064302 (2014)

M.Warda, M.Centelles, X.Vinas, X.Roca-Maza

*Influence of the single-particle structure on the nuclear surface and the neutron skin*

NUCLEAR STRUCTURE ^{40,42,44,46,48,50,52,54,56,58,60,62,64,66,68,70}Ca, ^{48,50,52,54,56,58,60,62,64,66,68,70,72,74,76,78}Ni, ^{90,92,94,96,98,100,102,104,106,108,110,112,114,116,118,120,122}Zr, ^{132,134,136,138,140,142,144,146,148,150,152,154,156,158,160,162,164,166,168,170,172,174,176}Sn, ^{208,210,212,214,216,218,220,222,224,226,228,230,232,234,236,238,240,242,244,246,248,250,252,254,256,258,260,262,264,266}Pb; calculated proton and neutron rms radii, neutron skin thickness (NST), single-particle energies and Fermi level, configurations, rms radii, neutron, shell, and single-particle level densities and density ratios. Skyrme-Hartree-Fock plus BCS approach with the SLy4 Skyrme force. Discussed impact of the valence shell neutrons on the tail of the neutron density distributions.

doi: 10.1103/PhysRevC.89.064302

Phys.Rev. C 90, 034313 (2014)

Y.Zhang, M.Matsuo, J.Meng

*Asymptotic form of neutron Cooper pairs in weakly bound nuclei*

NUCLEAR STRUCTURE ^{44,46,48,50,52,54,56,58,60,62,64,66,68,70,72,74,76}Ca, ^{60,62,64,66,68,70,72,74,76,78,80,82,84,86,88}Ni, ^{92,94,96,98,100,102,104,106,108,110,112,114,116,118,120,122,124,126,128,130,132,134,136,138}Zr, ^{120,122,124,126,128,130,132,134,136,138,140,142,144,146,148,150}Sn; calculated asymptotic exponential constant of the neutron Cooper pair condensates as a function of Fermi energy using the HFB calculation. ^{92,138}Zr; calculated single-particle levels, quasi-particle spectra of neutrons, penetration depth of neutron Cooper pair using Bogoliubov theory for superfluid systems.

doi: 10.1103/PhysRevC.90.034313

Phys.Rev. C 92, 034313 (2015)

T.Duguet, H.Hergert, J.D.Holt, V.Soma

*Nonobservable nature of the nuclear shell structure: Meaning, illustrations, and consequences*

NUCLEAR STRUCTURE ^{40,42,44,46,48,50,52,54,56,58,60}Ca; calculated effective single-particle energies (ESPEs), energies of first 2+ states using Shell model. ^{22,24}O; calculated Fermi gap in the ESPE spectrum and the first 2+ excitation energy using microscopic shell model based on realistic 2N and 3N interactions. ^{74}Ni; calculated spectral strength distribution for one-neutron addition and removal processes, ESPEs using self-consistent Gorkov Green's function with a realistic 2N chiral interaction. ^{14,16,18,20,22,24}O; calculated binding energies, S(n) with dominant spectroscopic factors versus neutron ESPEs, residual spreads of separation energies and ESPEs, two-nucleon shell gap versus ESPE Fermi gap, spectroscopic factors associated with one neutron addition and removal process on the ground states. State-of-the-art multireference in-medium SRG and self-consistent Gorkov Green's function many-body calculations based on chiral two- and three-nucleon interactions to illustrate nonobservable aspects of the one-nucleon shell structure.

doi: 10.1103/PhysRevC.92.034313

Phys.Rev. C 93, 044304 (2016)

S.E.Agbemava, A.V.Afanasjev, P.Ring

*Octupole deformation in the ground states of even-even nuclei: A global analysis within the covariant density functional theory*

NUCLEAR STRUCTURE ^{56,60}Ca, ^{78}Sr, ^{78,80,108,110,112}Zr, ^{82}Mo, ^{90}Cd, ^{108,110,112,142,144}Xe, ^{108,110,112,114,116,142,144,146,148,150}Ba, ^{114,144,146,148,150}Ce, ^{146,148,150}Nd, ^{150}Sm, ^{196,198,200,202}Gd, ^{200,202,204}Dy, ^{198,200,202,204}Er, ^{204}Yb, ^{210}Os, ^{214}Pt, ^{216,218}Hg, ^{180,182,184,216,218,220,222}Pb, ^{218,220,222}Po, ^{218,220,222,224,226,232}Rn, ^{218,220,222,224,226,228,230}Ra, ^{220,222,224,226,228,230,232,236,288,290,292,294}Th, ^{220,222,224,226,228,230,232,234,238,290,292,294,296}U, ^{222,224,226,228,230,232,234,240,288,290,292,294,296}Pu, ^{224,226,228,230,232,234,236,242,286,288,290,292,294,296,298}Cm, ^{224,226,228,230,232,234,236,238,288,290,292,294,296,298,300}Cf, ^{226,228,232,234,236,238,240,290,292,294,296,298,300,302}Fm, ^{236,238,240,242,284,286,288,290,292,294,296,298,300,302,304,306}No, ^{242,244,246,288,290,292,294,296,298,300,304,306,308}Rf, ^{248,250,288,290,292,294,300,302,304,306}Sg; calculated equilibrium β_{2}, β_{3} deformation parameters for ground states using DD-PC1 and NL3* density functional models and ϵ_{2}, ϵ_{3} parameters by mic-mac (MM) approach, potential energy surfaces in (β_{2}, β_{3}) plane using CEDF DD-PC1 theory. Covariant energy density functionals (CEDF) of different types, with a nonlinear meson coupling, with density-dependent meson couplings, and pairing correlations within relativistic Hartree-Bogoliubov theory. Predicted a new region of octupole deformation around Z=98 and N=196. Comparison with available experimental data.

doi: 10.1103/PhysRevC.93.044304

Phys.Rev. C 93, 044611 (2016)

W.Horiuchi, S.Hatakeyama, S.Ebata, Y.Suzuki

*Extracting nuclear sizes of medium to heavy nuclei from total reaction cross sections*

NUCLEAR STRUCTURE ^{100,102,104,106,108,110,112,114,116,118,120,122,124,126,128,130,132,134,136,138,140}Sn; calculated neutron and proton rms radii. ^{40,42,44,46,48,50,52,54,56,58,60}Ca, ^{56,58,60,62,64,66,68,70,72,74,76,78,80,82,84}Ni, ^{80,82,84,86,88,90,92,94,96,98,100,102,104,106,108,110,112,114,116,118,120,122}Zr, ^{100,102,104,106,108,110,112,114,116,118,120,122,124,126,128,130,132,134,136,138,140}Sn, ^{156,158,160,162,164,166,168,170,172,174,176,178,180,182,184,186,188,190,192,194,196}Yb, ^{190,192,194,196,198,200,202,204,206,208,210,212,214}Pb; calculated matter radius of even-even nuclei using SkM*, SLy4, and SkI3 interactions. HF+BCS and HF theory with different interactions.

NUCLEAR REACTIONS ^{1,2}H, ^{4}He, ^{12}C(^{40}Ca, X), (^{42}Ca, X), (^{44}Ca, X), (^{46}Ca, X), (^{48}Ca, X), (^{50}Ca, X), (^{52}Ca, X), (^{54}Ca, X), (^{56}Ca, X), (^{58}Ca, X), (^{60}Ca, X), (^{56}Ni, X), (^{58}Ni, X), (^{60}Ni, X), (^{62}Ni, X), (^{64}Ni, X), (^{66}Ni, X), (^{68}Ni, X), (^{70}Ni, X), (^{72}Ni, X), (^{74}Ni, X), (^{76}Ni, X), (^{78}Ni, X), (^{80}Ni, X), (^{82}Ni, X), (^{84}Ni, X), (^{80}Zr, X), (^{82}Zr, X), (^{84}Zr, X), (^{86}Zr, X), (^{88}Zr, X), (^{90}Zr, X), (^{92}Zr, X), (^{94}Zr, X), (^{96}Zr, X), (^{98}Zr, X), (^{100}Zr, X), (^{102}Zr, X), (^{104}Zr, X), (^{106}Zr, X), (^{108}Zr, X), (^{110}Zr, X), (^{112}Zr, X), (^{114}Zr, X), (^{116}Zr, X), (^{118}Zr, X), (^{120}Zr, X), (^{122}Zr, X), (^{100}Sn, X), (^{102}Sn, X), (^{104}Sn, X), (^{106}Sn, X), (^{108}Sn, X), (^{110}Sn, X), (^{112}Sn, X), (^{114}Sn, X), (^{116}Sn, X), (^{118}Sn, X), (^{120}Sn, X), (^{122}Sn, X), (^{124}Sn, X), (^{126}Sn, X), (^{128}Sn, X), (^{130}Sn, X), (^{132}Sn, X), (^{134}Sn, X), (^{136}Sn, X), (^{138}Sn, X), (^{140}Sn, X), (^{156}Yb, X), (^{158}Yb, X), (^{160}Yb, X), (^{162}Yb, X), (^{164}Yb, X), (^{166}Yb, X), (^{168}Yb, X), (^{170}Yb, X), (^{172}Yb, X), (^{174}Yb, X), (^{176}Yb, X), (^{178}Yb, X), (^{180}Yb, X), (^{182}Yb, X), (^{184}Yb, X), (^{186}Yb, X), (^{188}Yb, X), (^{190}Yb, X), (^{192}Yb, X), (^{194}Yb, X), (^{196}Yb, X), (^{190}Pb, X), (^{192}Pb, X), (^{194}Pb, X), (^{196}Pb, X), (^{198}Pb, X), (^{200}Pb, X), (^{202}Pb, X), (^{204}Pb, X), (^{206}Pb, X), (^{208}Pb, X), (^{210}Pb, X), (^{212}Pb, X), (^{214}Pb, X), E=1000 MeV, also 200 MeV for proton target; calculated Coulomb breakup cross sections by equivalent-photon method (EPM) with projectile density from SkM*, SLy4, and SkI3 Skyrme interactions, total reaction and Coulomb breakup probabilities, reaction radii versus point matter rms radii. Glauber model with densities from Skyrme-Hartree-Fock+BCS model. ^{12}C(^{208}Pb, ^{12}C), E=200, 1000 MeV; ^{1}H(^{208}Pb, p), E=45-1000 MeV; calculated elastic σ(θ, E) using SkM* interaction, and compared with experimental data. ^{1}H(^{40}Ca, X), (^{58}Ni, X), (^{90}Zr, X), (^{120}Sn, X), (^{208}Pb, X), E=40-1000 MeV; calculated total reaction σ(E) and compared with experimental data.

doi: 10.1103/PhysRevC.93.044611

J.Phys.(London) G43, 105104 (2016)

V.Kumar, P.C.Srivastava, H.Li

*Nuclear β ^{-}-decay half-lives for fp and fpg shell nuclei*

RADIOACTIVITY ^{52,53,54,55,56,57,58}Ca, ^{54,55,56,57,58,59,60,61}Sc, ^{56,57,58,59,60,61,62}Ti, ^{56,57,58,59,60,61,62,63}V, ^{59,60,61,62,63,64}Cr, ^{60,61,62,63,64,65}Mn, ^{65,66}Fe, ^{64,65,66,67}Co, ^{67,68,69,70,71,72,73,74,75,76,77,78}Ni, ^{68,69,70,71,72,73,74,75,76,77,78,79}Cu, ^{73,74,75,76,77,78,79,80}Zn(β^{-}); calculated T_{1/2}. Comparison with experimental data.

doi: 10.1088/0954-3899/43/10/105104

Phys.Rev. C 93, 014305 (2016)

J.Menendez, No.Hinohara, J.Engel, G.Martinez-Pinedo, T.R.Rodriguez

*Testing the importance of collective correlations in neutrinoless ββ decay*

RADIOACTIVITY ^{42,44,46,48,50,52,54,56,58,60}Ca, ^{44,46,48,50,52,54,56,58}Ti, ^{46,48,50,52,54,56,58,60}Cr(2β^{-}); calculated Gamow-Teller part of the 0νββ decay matrix elements, percentage of ground state in daughter nuclei belonging to SU(4) irreducible representations using shell model with KB3G interaction, full collective interaction H_{coll}, H_{coll} with the quadrupole-quadrupole term removed, H_{coll} with the isoscalar pairing term removed, and H_{coll} with both the isoscalar-pairing and spin-isospin removed. ^{48}Ca, ^{76}Ge, ^{82}Se, ^{124}Sn, ^{130}Te, ^{136}Xe(2β^{-}); calculated Gamow-Teller matrix elements for 0νββ decay and estimated effect of isoscalar pairing. Role of collective correlations in 0νββ decay. Comparison of GCM calculations for fp shell nuclei with full shell-model calculations.

NUCLEAR STRUCTURE ^{46,48,50,52,54,56,58,60}Cr; calculated B(E2) for first 2+ states using shell model with KB3G interaction, full collective interaction H_{coll}, and by H_{coll} without the quadrupole-quadrupole part. Comparison with experimental values.

doi: 10.1103/PhysRevC.93.014305

Phys.Rev. C 95, 054312 (2017)

N.N.Arsenyev, A.P.Severyukhin, V.V.Voronov, Nguyen Van Giai

*Influence of complex configurations on the properties of the pygmy dipole resonance in neutron-rich Ca isotopes*

NUCLEAR STRUCTURE ^{40,42,44,46,48,50,52,54,56,58,60}Ca; calculated binding energies, neutron skin thicknesses, electric dipole polarizability, S(n), S(2n), summed dipole strength below 10 MeV, energies and B(E2) for the first 2+ states, energies and B(Eλ) values for first 2+, 3-, 4+ and 5- states in ^{46,48,50}Ca, low-energy E1 strength distributions of ^{40}Ca, ^{48}Ca and ^{50}Ca, photoabsorption cross section and electric dipole polarizability for ^{48}Ca, transition proton and neutron densities to selected 1- states of ^{50}Ca and ^{56}Ca. Effects of phonon-phonon coupling (PPC) on the low-energy electric dipole response investigated by quasiparticle random phase approximation based on the Skyrme interaction SLy5. Comparison with experimental data.

doi: 10.1103/PhysRevC.95.054312

Phys.Rev. C 96, 044330 (2017)

P.Becker, D.Davesne, J.Meyer, J.Navarro, A.Pastore

*Solution of Hartree-Fock-Bogoliubov equations and fitting procedure using the N2LO Skyrme pseudopotential in spherical symmetry*

NUCLEAR STRUCTURE ^{208}Pb; calculated isoscalar densities, radial dependence of coefficients using the SN2LO1 and SLy5 interactions, for centrifugal and spin-orbit fields. ^{208}Pb, ^{120}Sn, ^{40}Ca; calculated energies (total, kinetic, field, spin-orbit, Coulomb, and neutron pairing) using the WHISKY and LENTEUR codes with self-consistent HF calculations and the SLy5 interaction. ^{40}Ca, ^{208}Pb; calculated neutron single-particle energies around the Fermi energy for SLy5 and SN2LO1 parametrizations. ^{34,36,38,40,42,44,46,48,50,52,54,56}Ca, ^{48,50,52,54,56,58,60,62,64,66,68,70,72,74,76,78}Ni, ^{100,102,104,106,108,110,112,114,116,118,120,122,124,126,128,130,132,134,136}Sn, ^{178,180,182,184,186,188,190,192,194,196,198,200,202,204,206,208,210,212,214}Pb, ^{48}Ca, ^{50}Ti, ^{52}Cr, ^{54}Fe, ^{56}Ni, ^{58}Zn, ^{60}Ge, ^{78}Ni, ^{80}Zn, ^{82}Ge, ^{84}Se, ^{86}Kr, ^{88}Sr, ^{90}Zr, ^{92}Mo, ^{94}Ru, ^{96}Pd, ^{98}Cd, ^{100}Sn, ^{130}Cd, ^{132}Sn, ^{134}Te, ^{136}Xe, ^{138}Ba, ^{140}Ce, ^{142}Nd, ^{144}Sm, ^{146}Gd, ^{148}Dy, ^{150}Er, ^{152}Yb, ^{206}Hg, ^{208}Pb, ^{210}Po, ^{212}Rn, ^{214}Ra, ^{216}Th, ^{218}U; calculated binding energies and proton radii for isotopic and isotonic chains using extended Skyrme interaction SN2LO1, and compared with experimental values, as well as with calculations using the SLy5 parametrization.

doi: 10.1103/PhysRevC.96.044330

Phys.Rev. C 95, 054329 (2017)

V.De Donno, G.Co, M.Anguiano, A.M.Lallena

*Pairing in spherical nuclei: Quasiparticle random-phase approximation calculations with the Gogny interaction*

NUCLEAR STRUCTURE ^{16,18,20,22,24,26}O, ^{40,42,44,46,48,50,52,54,56,58,60,62}Ca, ^{30}Ne, ^{32}Mg, ^{34}Si, ^{36}S, ^{38}Ar, ^{40}Ca, ^{42}Ti, ^{44}Cr, ^{46}Fe; calculated energies of 1-, 2+ and 3- levels, B(E2) for the first 2+ states, B(M1) values of 1+ states, occupation probabilities for ^{36}S, ^{38}Ar, ^{54,56}Ca, energies and B(E1) of first three 1- states in ^{18}O. ^{20}O, ^{50}Ca; calculated B(E1) and transition densities for the states identified as pygmy dipole resonances (PDR). Hartree-Fock, Bardeen, Cooper, and Schrieffer, and quasiparticle random-phase-approximation (HF+BCS+QRPA and QRPA(F)) calculations with finite-range interaction of Gogny type . Comparison with experimental data.

doi: 10.1103/PhysRevC.95.054329

Phys.Rev. C 95, 044301 (2017)

Z.M.Niu, Y.F.Niu, H.Z.Liang, W.H.Long, J.Meng

*Self-consistent relativistic quasiparticle random-phase approximation and its applications to charge-exchange excitations*

NUCLEAR STRUCTURE ^{36,38,40,42,44,46,48,50,52,54,56,58,60}Ca, ^{54,56,58,60,62,64,68,70,72,74,76,78,80,82,84,86,88}Ni, ^{100,102,104,106,108,110,112,114,116,118,120,122,124,126,128,130,132,134,136,138,140,142,144,146,148}Sn; calculated nuclear masses, S(2n), Q(β) values for Ca, Ni and Sn isotopes, neutron-skin thicknesses, IAS and GT excitation energies for Sn isotopes using the RHFB theory with PKO1 interaction and the RHB theory with DD-ME2 effective interaction. ^{118}Sn; calculated running sum of the GT transition probabilities, and GT strength distribution using RHFB+QRPA approach with PKO1 interaction. ^{114}Sn; calculated transition probabilities for the IAS by RHFB+QRPA, RHF+RPA, RHFB+RPA, RHFB+QRPA* with PKO1 interaction. Comparison with experimental data.

doi: 10.1103/PhysRevC.95.044301

Phys.Rev. C 96, 044314 (2017)

J.Piekarewicz

*Emergence of low-energy monopole strength in the neutron-rich calcium isotopes*

NUCLEAR STRUCTURE ^{40,42,44,46,48,50,52,54,56,58,60}Ca; calculated centroids and E0 strengths of isoscalar giant monopole resonances; deduced no evidence of low-energy monopole strength. Relativistic random phase approximation (RPA) using three effective interactions. Comparison with experimental data.

doi: 10.1103/PhysRevC.96.044314

Eur.Phys.J. A 53, 146 (2017)

M.A.Souza, H.Miyake

*Search for α + core states in even-even Cr isotopes*

NUCLEAR STRUCTURE ^{42,44,46,48,50,52,54,56,58,60,62,64,66}Cr, ^{46}S, ^{46}Ar, ^{46,54,56}Ca, ^{46,54,56,58}Ti, ^{46,54,56,58}Fe, ^{54,56,58}Ni, ^{54,56,58}Zn, ^{58}Ge; calculated α-decay Q vs N_{T} and vs Z_{T} using local potential model with two different potentials. ^{46,54}Cr; calculated levels, J, π, rotational bands, radius. Compared to data.

doi: 10.1140/epja/i2017-12339-9

Phys.Rev. C 96, 051302 (2017)

K.Yoshida

*Charge-exchange dipole excitations in neutron-rich nuclei: - 1h-bar w _{0} anti-analog pygmy and anti-analog giant resonances*

NUCLEAR STRUCTURE ^{50,52,54,56,58,60,62,64,66,68,70,72,74,76}Ca, ^{78,80,82,84,86,88,90,92,94}Ni, ^{134,136,138,140,142,144,146,148,150,152,154,156,158,160}Sn; calculated charge-exchange dipole strength distributions for neutron-rich isotopes as functions of the excitation energy, fraction of the summed strengths of the pygmy dipole resonance to the total sum of strengths. ^{54}Ca, ^{86}Ni; calculated transition densities to giant, pygmy resonances and other states, matrix element for the pygmy resonance. Fully self-consistent proton-neutron quasiparticle-random-phase approximation (pnQRPA) with the Skyrme energy density functional (EDF).

doi: 10.1103/PhysRevC.96.051302

Phys.Rev. C 97, 034313 (2018)

G.Co, M.Anguiano, V.De Donno, A.M.Lallena

*Matter distribution and spin-orbit force in spherical nuclei*

NUCLEAR STRUCTURE ^{16,18,20,22,24}O, ^{26,28,30}Ne, ^{28,30,32}Mg, ^{30,32,34}Si, ^{30,32,34,36}S, ^{38,40}Ar, ^{34,36,38,40,42,44,46,48,50,52,54,56,58,60}Ca, ^{42}Ti, ^{44}Cr, ^{46}Fe; calculated binding energies per nucleon, charge root-mean-square radii, depletion fraction for proton and neutron density distributions, proton, neutron, and matter density distributions, charge distributions, spin orbit splitting. ^{34}Si, ^{36}S, ^{34,36}Ca; calculated levels, J, π. ^{30,32,34}Si, ^{30,32,34,36}S, ^{34,36}Ca; calculated energies of 4+ levels, and QRPA amplitudes of main configurations. ^{30}Si; calculated elastic electron scattering σ(θ) for 300 MeV incident electron energy. Hartree-Fock plus Bardeen-Cooper-Schrieffer (HF+BCS) approach, with excited states from quasiparticle random phase approximation (QRPA), and using D1M, D1S, D1MTd, and D1ST2a interactions. Comparison with experimental data.

doi: 10.1103/PhysRevC.97.034313

Phys.Rev. C 97, 054607 (2018)

S.Hatakeyama, W.Horiuchi, A.Kohama

*Nuclear surface diffuseness revealed in nucleon-nucleus diffraction*

NUCLEAR REACTIONS ^{120,132}Sn, ^{208}Pb(p, p), E=200, 325, 550, 800 MeV; calculated differential σ(θ), target two-parameter Fermi density distributions, scattering angles at the first peak position of σ(θ) using Glauber and black sphere (BS) model, and the spatial distribution of the scattering amplitude at the first and second peak of σ(θ) of one nucleon elastic scattering; deduced method for determining nuclear radii and diffuseness from first peak position and magnitude of differential σ(θ). ^{40,42,44,46,48,50,52,54,56,58,60}Ca, ^{56,58,60,62,64,66,68,70,72,74,76,78,80,82,84}Ni, ^{80,82,84,86,88,90,92,94,96,98,100,102,104,106,108,110,112,114,116,118,120}Zr, ^{100,102,104,106,108,110,112,114,116,118,120,122,124,126,128,130,132,134,136,138,140}Sn, ^{150,152,154,156,158,160,162,164,166,168,170,172,174,176,178,180,182,184,186,188,190,192,194,196,198,200}Yb, ^{182,184,186,188,190,192,194,196,198,200,202,204,206,208,210,212,214,216,218,220,222,224,226,228,230,232,234,236,238,240,242}Pb(p, p), (p, X), E=325, 550, 800 MeV; calculated rms radii, nuclear diffuseness of protons and neutrons from theoretical first peak position and amplitude of differential σ(θ) using HF+BCS method, total reaction cross sections by Glauber and black sphere (BS) models.

doi: 10.1103/PhysRevC.97.054607

Phys.Rev. C 97, 045806 (2018)

B.Kumar, S.K.Patra, B.K.Agrawal

*New relativistic effective interaction for finite nuclei, infinite nuclear matter, and neutron stars*

NUCLEAR STRUCTURE ^{16}O, ^{40,48}Ca, ^{68}Ni, ^{90}Zr, ^{100,132}Sn, ^{208}Pb; calculated binding energy per particle, charge radius, and neutron-skin thicknesses. ^{40,48}Ca, ^{58,60,64}Ni, ^{59}Co, ^{54,56,57}Fe, ^{90,96}Zr, ^{112,116,120,124}Sn, ^{106,116}Cd, ^{122,124,126,128,130}Te, ^{209}Bi, ^{208}Pb, ^{232}Th, ^{238}U; calculated neutron skin thicknesses. ^{36,38,40,42,44,46,48,50,52,54,56,58}Ca, ^{50,52,54,56,58,60,62,64,66,68,70,72,74,76,78,80}Ni, ^{80,82,84,86,88,90,92,94,96,98,100,102,104,106,108,110,112}Zr, ^{102,104,106,108,110,112,114,116,118,120,122,124,126,128,130,132,134,136,138,140}Sn, ^{188,190,192,194,196,198,200,202,204,206,208,210,212,214,216,218,220}Pb, ^{290,292,294,296,298,300,302,304,306,308,310,312,314,316,318,320,322,324,326,328,330,332,334,336,338}120; calculated S(2n). Effective-field-theory relativistic mean-field (E-RMF) model using Institute of Physics Bhubaneswar-I (IOPB-I) interaction. Comparison with results from NL3, FSUGarnet, and G3 models, and with experimental values. Applied IOPB-I to evaluate properties of infinite nuclear matter and neutron stars.

doi: 10.1103/PhysRevC.97.045806

Phys.Rev.Lett. 121, 022506 (2018)

S.Michimasa, M.Kobayashi, Y.Kiyokawa, S.Ota, D.S.Ahn, H.Baba, G.P.A.Berg, M.Dozono, N.Fukuda, T.Furuno, E.Ideguchi, N.Inabe, T.Kawabata, S.Kawase, K.Kisamori, K.Kobayashi, T.Kubo, Y.Kubota, C.S.Lee, M.Matsushita, H.Miya, A.Mizukami, H.Nagakura, D.Nishimura, H.Oikawa, H.Sakai, Y.Shimizu, A.Stolz, H.Suzuki, M.Takaki, H.Takeda, S.Takeuchi, H.Tokieda, T.Uesaka, K.Yako, Y.Yamaguchi, Y.Yanagisawa, R.Yokoyama, K.Yoshida, S.Shimoura

*Magic Nature of Neutrons in Ca54 : First Mass Measurements of ^{55-57}Ca*

ATOMIC MASSES ^{55,56,57}Ca, ^{48}Ar, ^{44,46}Cl, ^{40,42}P, ^{40}Si; measured charge, TOF, magnetic rigidity, and flight path length between the timing detectors; deduced m/q spectrum of reference masses, mass excesses. Comparison with AME2016 evaluation.

doi: 10.1103/PhysRevLett.121.022506

Phys.Rev. C 98, 024311 (2018)

P.Sarriguren, A.Algora, G.Kiss

*β-decay properties of neutron-rich Ca, Ti, and Cr isotopes*

NUCLEAR STRUCTURE ^{50,52,54,56,58,60,62,64}Ca, ^{56,58,60,62,64,66,68,70}Cr, ^{52,54,56,58,60,62,64,66}Ti; calculated potential energy curves using constrained HF+BCS with Skyrme force SLy4.

RADIOACTIVITY ^{50,52,54,56,58,60,62,64}Ca, ^{56,58,60,62,64,66,68,70}Cr, ^{52,54,56,58,60,62,64,66}Ti(β^{-}); calculated T_{1/2}, Q(β), S(n) of daughter nuclei, β-delayed neutron-emission probabilities (P_{n}), Gamow-Teller strength distributions using self-consistent deformed Skyrme-Hartree-Fock model with pairing and QRPA correlations.Comparison with other theoretical calculations of half-lives and P_{n}, and with experimental data for half-lives.

doi: 10.1103/PhysRevC.98.024311

Phys.Lett. B 786, 195 (2018)

A.Tichai, P.Arthuis, T.Duguet, H.Hergert, V.Soma, R.Roth

*Bogoliubov many-body perturbation theory for open-shell nuclei*

NUCLEAR STRUCTURE ^{14,16,18,20,22,24,26,28}O, ^{34,36,38,40,42,44,46,48,50,52,54,56,58,60}Ca, ^{48,50,52,54,56,58,60,62,64,66,68,70,72,74,76,78}Ni; calculated absolute ground-state binding energies and two-neutron separation energies. A Rayleighâ€“Schrodinger many-body perturbation theory (MBPT) approach.

doi: 10.1016/j.physletb.2018.09.044

Phys.Rev. C 99, 014318 (2019)

S.E.Agbemava, A.V.Afanasjev, A.Taninah

*Propagation of statistical uncertainties in covariant density functional theory: Ground state observables and single-particle properties*

NUCLEAR STRUCTURE ^{34,36,38,40,42,44,46,48,50,52,54,56,58,60,62,64,66,68,70,72,74,76}Ca, ^{50,52,54,56,58,60,62,64,66,68,70,72,74,76,78,80,82,84,86,88,90,92,94,96}Ni, ^{98,100,102,104,106,108,110,112,114,116,118,120,122,124,126,128,130,132,134,136,138,140,142,144,146,148,150,152,154,156,158,160,162,164,166,168,170,172}Sn, ^{176,178,180,182,184,186,188,190,192,194,196,198,200,202,204,206,208,210,212,214,216,218,220,222,224,226,228,230,232,234,236,238,240,242,244,246,248,250,252,254,256,258,260,262,264,266}Pb, ^{304}120; calculated range of variations of parameters and statistical uncertainties in total binding energy, charge radii, S(2n), and neutron skins using covariant energy density functional theory (CDFT) with only the covariant energy density functionals (CEDFs) with nonlinear density dependency. ^{208,266}Pb, ^{304}120; calculated neutron and proton single-particle states, and relative energies of the pairs of neutron and proton single-particle states. Z=2-112, N=2-172; deduced differences between theoretical and experimental binding energies for several CEDFs for even-even nuclei; calculated charge quadrupole deformations β_{2} of ground states in even-even nuclei using the RHB calculations. Z=2-96, N=2-152; deduced differences between theoretical and experimental charge radii for several CEDFs.

doi: 10.1103/PhysRevC.99.014318

Phys.Rev. C 100, 044308 (2019)

B.Bally, A.Sanchez-Fernandez, T.R.Rodriguez

*Variational approximations to exact solutions in shell-model valence spaces: Calcium isotopes in the pf shell*

NUCLEAR STRUCTURE ^{48}Ca; calculated total energy surfaces (TES) as a function of the quadrupole degrees of freedom in the (β_{2}, γ) plane, intrinsic pairing energy, particle-number projected, and particle-number and angular-momentum projected total energy surfaces as a function of the axial quadrupole (β_{2}, γ=0 or 180 degrees) and nn-pairing degrees of freedom, levels, J, π, wave functions, B(E2), spectroscopic electric quadrupole moments, occupation numbers. ^{42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60}Ca; calculated ground-state energies, energy difference between the approximate and exact ground-state energies computed with different variational approaches, excitation energies as a function of the angular momentum. Calculations used several projected generator coordinate methods (PGCM) in reproducing the exact eigenstates of the shell-model Hamiltonian KB3G in the pf-shell valence space.

doi: 10.1103/PhysRevC.100.044308

Phys.Rev. C 99, 024314 (2019)

X.-N.Cao, Q.Liu, Z.-M.Niu, J.-Y.Guo

*Systematic studies of the influence of single-particle resonances on neutron halo and skin in the relativistic-mean-field and complex-momentum-representation methods*

NUCLEAR STRUCTURE ^{40,42,44,46,48,50,52,54,56,58,60,62,64,66,68,70,72,74}Ca, ^{50,52,54,56,58,60,62,64,66,68,70,72,74,76,78,80,82,84}Ni, ^{114,116,118,120,122,124,126,128,130,132,134,136,138,140,142,144,146,148,150,152,154}Sn, ^{200,202,204,206,208,210,212,214,216,218,220,222,224,226,228,230,232,234,236,238,240}Pb; calculated neutron rms radii, S(2n), single-neutron energies, occupation probabilities of single-neutron levels, and density distributions of ^{74}Ca, ^{84}Ni, ^{160}Sn, ^{240}Pb using relativistic-mean-field and complex-momentum-representation (RMF-CMR) method. Comparison with relativistic Hartree-Bogoliubov calculations, and with experimental data.

doi: 10.1103/PhysRevC.99.024314

Phys.Rev. C 99, 064319 (2019)

H.Gil, P.Papakonstantinou, C.H.Hyun, Y.Oh

*From homogeneous matter to finite nuclei: Role of the effective mass*

NUCLEAR STRUCTURE ^{16,28}O, ^{40,42,44,46,48,50,52,54,56,58,60}Ca, ^{90}Zr, ^{100,102,104,106,108,110,112,114,116,118,120,122,124,126,128,130,132}Sn, ^{208}Pb, ^{218}U; calculated binding energy per nucleon, charge radii and neutron-skin thickness for ^{16,28}O, ^{40,48,60}Ca, ^{90}Zr, ^{132}Sn, ^{208}Pb, ^{218}U, and energies of occupied proton levels in ^{208}Pb using microscopic Skyrme type energy density functional (EDF) generated from a immutable equation of state (EoS). Comparison with experimental values, and with other theoretical predictions.

doi: 10.1103/PhysRevC.99.064319

Phys.Rev. C 100, 034324 (2019)

Y.Z.Ma, L.Coraggio, L.De Angelis, T.Fukui, A.Gargano, N.Itaco, F.R.Xu

*Contribution of chiral three-body forces to the monopole component of the effective shell-model Hamiltonian*

NUCLEAR STRUCTURE ^{41,42}Ca, ^{41}Sc; calculated low-lying levels, J, π, single-particle spectra for ^{41}Ca and ^{41}Sc. ^{40,42,44,46,48,50,52,54,56,58,60}Ca, ^{48,50,52,54,56,58,60,62,64,66,68}Ni; calculated neutron and proton effective single-particle energies (ESPEs), energies of 2+ levels, S(2n). ^{42,44,46,48,50,52,54,56,58,60,62}Ti, ^{44,46,48,50,52,54,56,58,60,62,64}Cr, ^{46,48,50,52,54,56,58,60,62,64,66}Fe; calculated energies of 2+ levels, S(2n). ^{46}Ar, ^{48}Ca, ^{50}Ti, ^{52}Cr, ^{54}Fe, ^{56}Ni; calculated energies of 2+ levels, B(E2) for the first 2+ levels. Realistic shell-model calculations for fp-shell even-even nuclei (Z=20-28, N=20-40) starting from chiral two-nucleon (2NF) and three-nucleon (3NF) forces, within the many-body perturbation theory. Comparison with experimental data. Discussed the role of the monopole component of the effective shell-model Hamiltonian.

doi: 10.1103/PhysRevC.100.034324

At.Data Nucl.Data Tables 125, 1 (2019)

P.Moller, M.R.Mumpower, T.Kawano, W.D.Myers

*Nuclear properties for astrophysical and radioactive-ion-beam applications (II)*

NUCLEAR STRUCTURE Z=8-136; calculated the ground-state odd-proton and odd-neutron spins and parities, proton and neutron pairing gaps, one- and two-neutron separation energies, quantities related to β-delayed one- and two-neutron emission probabilities, average energy and average number of emitted neutrons, β-decay energy release and T_{1/2} with respect to Gamow-Teller decay with a phenomenological treatment of first-forbidden decays, one- and two-proton separation energies, and α-decay energy release and half-life.

doi: 10.1016/j.adt.2018.03.003

Phys.Rev.Lett. 122, 062502 (2019)

L.Neufcourt, Y.Cao, W.Nazarewicz, E.Olsen, F.Viens

*Neutron Drip Line in the Ca Region from Bayesian Model Averaging*

NUCLEAR STRUCTURE ^{50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82}Ca, ^{52}Cl, ^{53}Ar, ^{49}S; calculated one- and two-neutron separation energies, posterior probability of existence of neutron-rich nuclei in the Ca region.

doi: 10.1103/PhysRevLett.122.062502

Phys.Lett. B 788, 1 (2019)

G.Saxena, M.Kumawat, M.Kaushik, S.K.Jain, M.Aggarwal

*Bubble structure in magic nuclei*

NUCLEAR STRUCTURE ^{12,13,14,15,16,17,18,19,20,21,22,23,24}O, ^{34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70}Ca, ^{48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98}Ni, ^{80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150}Zr, ^{78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126}Sn, ^{178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262}Pb, ^{251}Fr, ^{299}Mc, ^{302}Og, ^{22}Si, ^{34}Si, ^{46}Ar, ^{56}S, ^{58}Ar, ^{184}Ce, ^{347}119, ^{292}120, ^{341}Nh; calculated charge and matter densities, single particle levels and depletion fraction (DF) across the periodic chart; deduced that the central depletion is correlated to shell structure and occurs due to unoccupancy in s-orbit (2s, 3s, 4s) and inversion of (2s, 1d) and (3s, 1h) states in nuclei upto Z less or equal to 82. Bubble effect in superheavy region is a signature of the interplay between the Coulomb and nn-interaction where the depletion fraction is found to increase with Z (Coulomb repulsion) and decrease with isospin.

doi: 10.1016/j.physletb.2018.08.076

Chin.Phys.C 43, 114101 (2019)

Y.-Z.Wang, X.-D.Su, C.Qi, J.-Z.Gu

*Tensor force effect on the exotic structure of neutron-rich Ca isotopes**

NUCLEAR STRUCTURE ^{56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74}Ca; calculated two neutron separation energy, radii, neutron density distributions using spherical Skyrme-Hartree-Fock-Bogoliubov (SHFB) approach.

doi: 10.1088/1674-1137/43/11/114101

Chin.Phys.C 43, 124106 (2019)

X.-B.Wang, Y.-H.Meng, Y.Tu, G.-X.Dong

*The structure of neutron-rich calcium isotopes studied by the shell model with realistic effective interactions*

NUCLEAR STRUCTURE ^{41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58}Ca; calculated binding energies, two-neutron separation energies, energy levels, J, π, yrast states, spectroscopic factors. CD-Bonn and Kuo-Brown (KB) interactions.

doi: 10.1088/1674-1137/43/12/124106

Phys.Rev. C 99, 034318 (2019)

E.Yuksel, T.Marketin, N.Paar

*Optimizing the relativistic energy density functional with nuclear ground state and collective excitation properties*

NUCLEAR STRUCTURE ^{36,38,40,42,44,46,48,50,52,54,56}Ca, ^{54,56,58,60,62,64,66,68,70,72}Ni, ^{100,102,104,106,108,110,112,114,116,118,120,122,124,126,128,130,132,134}Sn, ^{190,192,194,196,198,200,202,204,206,208,210,212,214}Pb, ^{90}Zr; calculated binding energies using DD-PCX, DD-PC1, and DD-ME2 interactions, charge radii. ^{90}Zr, ^{120}Sn, ^{208}Pb; calculated isoscalar GMR energies. ^{48}Ca, ^{68}Ni, ^{208}Pb, ^{112,116,118,120,122,124}Sn; calculated dipole polarizabilities using RHB+(Q)RPA with DD-PCX, DD-PC1, and DD-ME2 interactions. ^{208}Pb; calculated neutron skin thickness. Relativistic energy density functional with DD-PCX interaction, based on the RHB plus (Q)RPA, supplemented with the covariance analysis. Comparison with experimental data.

doi: 10.1103/PhysRevC.99.034318

Int.J.Mod.Phys. E29, 2050073 (2020)

S.Aberg, A.Yadav, A.Shukla

*Possible dual bubble-like structure predicted by the relativistic Hartree-Bogoliubov model*

NUCLEAR STRUCTURE ^{43}Si, ^{12}O, ^{62}Ni, ^{26,28}O, ^{32,34}Ne, ^{38,40}Mg, ^{42,44}Si, ^{46,48}S, ^{50,52}Ar, ^{56,58}Ca, ^{60,62}Ti, ^{66,68}Cr, ^{72,74,76,78,80}Ni; calculated binding energies, radial density distributions, neutron and proton single-particle energy levels, pairing strengths. Comparison with available data.

doi: 10.1142/S0218301320500731

J.Phys.(London) G47, 065105 (2020)

B.Bhoy, P.C.Srivastava, K.Kaneko

*Shell model results for ^{47-58}Ca isotopes in the fp, fpg_{9/2} and fpg_{9/2}d_{5/2} model spaces*

NUCLEAR STRUCTURE ^{47,48,49,50,51,52,53,54,55,56,57,58}Ca; calculated energy levels, J, π, occupancy, B(E2), nuclear magnetic moments, spectroscopic factors, wave functions. Comparison with available data.

Phys.Rev. C 102, 054326 (2020)

L.Coraggio, G.De Gregorio, A.Gargano, N.Itaco, T.Fukui, Y.Z.Ma, F.R.Xu

*Shell-model study of calcium isotopes toward their drip line*

NUCLEAR STRUCTURE ^{50}Ca; calculated low-lying levels, J, π. ^{42,44,46,48,50,52,54,56,58,60,62,64,66,68,70}Ca; calculated S(2n), energies of first 2+ states. ^{49}Ca; calculated negative-parity, low-spin energy levels. Shell model calculations with two- and three-nucleon potentials derived within the chiral perturbation theory. Calculated two-body matrix elements given in Supplemental material. Comparison with experimental data.

doi: 10.1103/PhysRevC.102.054326

Phys.Rev. C 102, 064301 (2020)

A.C.Dassie, R.M.Id Betan

*Estimate of the location of the neutron drip line for calcium isotopes from an exact Hamiltonian with continuum pair correlations*

NUCLEAR STRUCTURE ^{41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73}Ca; calculated binding energies, S(2n), Fermi level and pairing gaps of even Ca isotopes, energies of single-particle bound levels for odd Ca isotopes from A=41-73, occupation probabilities for ^{50,54,62,66}Ca, for even Ca isotopes, binding energies of ^{51,53,55,57,59,61}Ca; deduced one particle drip line at ^{57}Ca, and the two neutron drip line at ^{60}Ca or ^{66}Ca, depending on the model used. Modified Richardson equations to solve the many-body system, with two isospin independent models, and an isospin dependent model. Comparison with available experimental data.

doi: 10.1103/PhysRevC.102.064301

Phys.Rev. C 101, 061301 (2020)

W.Horiuchi, T.Inakura

*Core swelling in spherical nuclei: An indication of the saturation of nuclear density*

NUCLEAR REACTIONS ^{12}C(^{40}Ca, X), (^{42}Ca, X), (^{43}Ca, X), (^{44}Ca, X), (^{45}Ca, X), (^{46}Ca, X), (^{47}Ca, X), (^{48}Ca, X), (^{49}Ca, X), (^{50}Ca, X), (^{51}Ca, X), (^{52}Ca, X), (^{54}Ca, X), (^{56}Ca, X), (^{58}Ca, X), (^{60}Ca, X), (^{62}Ca, X), (^{64}Ca, X), (^{66}Ca, X), (^{68}Ca, X), (^{70}Ca, X), E=280 MeV/nucleon; calculated total reaction σ. Comparison with available experimental data for ^{42,43,44,45,46,47,48,49,50,51}Ca.

NUCLEAR STRUCTURE ^{40,42,44,46,48,50,52,54,56,58,60,62,64,66,68,70}Ca, ^{56,58,60,62,64,66,68,70,72,74,76,78,80,82,84,86}Ni, ^{114,116,118,120,122,124,126,128,130,132,134,136,138,140,142,144,146}Sn; calculated proton and neutron rms radii, and total matter, core, and valence neutron densities using microscopic Hartree-Fock with three Skryme-type effective interactions. Discussion of core swelling mechanism in spherical nuclei. Comparison with available experimental data for ^{39,40,41,42,43,44,45,46,47,48,50}Ca, ^{58,60,61,62,64}Ni, ^{112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132}Sn.

doi: 10.1103/PhysRevC.101.061301

Phys.Rev. C 102, 054301 (2020)

W.G.Jiang, A.Ekstrom, C.Forssen, G.Hagen, G.R.Jansen, T.Papenbrock

*Accurate bulk properties of nuclei from A = 20 to ∞ from potentials with Δ isobars*

NUCLEAR STRUCTURE ^{2,3}H, ^{3,4}He, ^{16,22,24}O, ^{40,48,50,52,54,56,58,60}Ca, ^{78}Ni, ^{90}Zr, ^{100,132}Sn; calculated binding energies, and charge radii for Ca isotopes, quadrupole moment for ^{2}H, first 3- state of ^{16}O, and first 2+ states of ^{22}O, ^{24}O and ^{48}Ca. Coupled-cluster calculations with ΔNNLO_{GO} interactions optimized from chiral effective field theory. Comparison with experimental data. Computed neutron-proton and proton-proton phase shifts for the contact and selected peripheral partial waves with the ΔNLO_{GO} and ΔNNLO_{GO} potentials.

doi: 10.1103/PhysRevC.102.054301

Phys.Rev. C 102, 034302 (2020)

J.G.Li, B.S.Hu, Q.Wu, Y.Gao, S.J.Dai, F.R.Xu

*Neutron-rich calcium isotopes within realistic Gamow shell model calculations with continuum coupling*

NUCLEAR STRUCTURE ^{49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72}Ca; calculated binding energies, S(n), S(2n), neutron effective single-particle energies (ESPE), energies of the first 2+ states in even-A nuclei. ^{51,52,53,54,55,56,57,58}Ca; calculated levels, J, π. ^{51,53,55,57}Ca; calculated energies and widths of the first 5/2+ and 9/2+ resonance states. Realistic Gamow shell model based on high-precision CD-Bonn potential. Comparison with experimental data. ^{57}Ca; predicted as the heaviest odd-A bound Ca isotope. ^{70}Ca; predicted as the dripline nucleus. Calculations support shell closures at ^{52}Ca, ^{54}Ca, and possibly at ^{70}Ca, and a weakening of shell closure at ^{60}Ca.

doi: 10.1103/PhysRevC.102.034302

J.Phys.(London) G47, 115106 (2020)

T.Oishi, G.Kruzic, N.Paar

*Role of residual interaction in the relativistic description of M1 excitation*

NUCLEAR STRUCTURE ^{36,38,40,42,44,46,48,50,52,54,56,58,60,62,64}Ca; analyzed available data; calculated summations of the M1-excitation strength of Ca isotopes, M1-excitation energies.

Phys.Rev. C 101, 014318 (2020)

V.Soma, P.Navratil, F.Raimondi, C.Barbieri, T.Duguet

*Novel chiral Hamiltonian and observables in light and medium-mass nuclei*

NUCLEAR STRUCTURE ^{3}H, ^{3,4,6,8}He, ^{6,7,9}Li, ^{7,8,9,10}Be, ^{10,11}B, ^{12,13,14}C, ^{14}N, ^{14,16}O, ^{36}Ca, ^{68}Ni; calculated ground-state energies. ^{6,7,9}Li, ^{8,9}Be, ^{10,11}B, ^{12,13}C; calculated levels, J, π. ^{12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28}O, ^{34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,70}Ca, ^{48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78}Ni; calculated total binding energies, S(2n), rms charge radii. ^{16}O, ^{40}Ca, ^{58}Ni; calculated charge density distribution. ^{47,49,53,55}Ca, ^{53}K, ^{55}Sc; calculated levels, J, π populated in one-neutron removal and addition from and to ^{48}Ca and ^{54}Ca. ^{37,39,41,43,45,47,49,51,53,55}K; calculated energies of the first excited states. ^{16}O, ^{36}Ca, ^{56}Ni; calculated binding energies. ^{18}O, ^{52}Ca, ^{64}Ni; calculated rms charge radii. ^{39}K, ^{49,53}Ca; calculated one-nucleon separation energies. ^{16,22,24}O, ^{36,40,48,52,54,60}Ca, ^{48,56,68}Ni; calculated binding energy per particle for doubly closed-shell nuclei. State-of-the-art no-core shell model and self-consistent Green's function approaches with NN+3N(lnl) interaction, and with comparisons made with NNLO_{sat} and NN+3N(400) interactions, and with experimental data.

doi: 10.1103/PhysRevC.101.014318

Phys.Rev. C 101, 014620 (2020)

S.Tagami, M.Tanaka, M.Takechi, M.Fukuda, M.Yahiro

*Chiral g-matrix folding-model approach to reaction cross sections for scattering of Ca isotopes on a C target*

NUCLEAR STRUCTURE ^{40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,62,64}Ca; calculated β and γ deformation parameters, even and odd driplines, binding energies, charge, proton, neutron and matter radii, neutron skin for the ground states using Gogny-D1S Hartree-Fock-Bogoliubov (GHFB) theory with and without the angular momentum projection (AMP). Comparison with experimental data.

NUCLEAR REACTIONS ^{12}C(^{40}Ca, X), (^{41}Ca, X), (^{42}Ca, X), (^{43}Ca, X), (^{44}Ca, X), (^{45}Ca, X), (^{46}Ca, X), (^{47}Ca, X), (^{48}Ca, X), (^{49}Ca, X), (^{50}Ca, X), (^{51}Ca, X), (^{52}Ca, X), (^{53}Ca, X), (^{54}Ca, X), (^{55}Ca, X), (^{56}Ca, X), (^{57}Ca, X), (^{58}Ca, X), (^{59}Ca, X), (^{60}Ca, X), (^{62}Ca, X), (^{64}Ca, X), E=280, 250.7 MeV; calculated reaction σ(E) using chiral g-matrix double-folding model (DFM), and compared with GHFB+AMP density, and available experimental data. ^{9}Be, ^{12}C, ^{27}Al(^{12}C, X), E=30-400 MeV; calculated reaction σ(E) using chiral g-matrix double-folding model (DFM). Comparison with results from t-matrix DFM densities, and experimental data.

doi: 10.1103/PhysRevC.101.014620

Nucl.Phys. A1002, 121981 (2020)

V.Thakur, P.Kumar, S.Thakur, S.Thakur, V.Kumar, S.K.Dhiman

*Microscopic study of the shell structure evolution in isotopes of light to middle mass range nuclides*

NUCLEAR STRUCTURE ^{24,26,28,30,32,34,36,38,40,42,44}Si, ^{28,30,32,34,36,38,40,42,44,46,48}S, ^{32,34,36,38,40,42,44,46,48,50,52}Ar, ^{38,40,42,44,46,48,50,52,54,56,58}Ca; analyzed evolution of shell structures in the even-even isotopes of silicon, sulphur, argon and calcium; calculated binding energy per nucleon using RHB theory.

doi: 10.1016/j.nuclphysa.2020.121981

Phys.Rev. C 102, 034322 (2020)

Q.Zhao, P.Zhao, J.Meng

*Impact of tensor forces on spin-orbit splittings in neutron-proton drops*

NUCLEAR STRUCTURE ^{40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69}Ca; calculated spin-orbit splittings of single-particle states 1p and 1d orbitals in neutron-proton drops. N=8-50; calculated spin-orbit splittings of single-neutron states 1p, 1d, 1f and 2p as a function of the neutron number for neutron drops and neutron-proton drops with Z=1. Hartree-Fock (RHF) theory with the p-N coupling strength optimized to the relativistic Brueckner-Hartree-Fock (RBHF) results for neutron drops. Systematic study of the impact of tensor-force in neutron-proton drops.

doi: 10.1103/PhysRevC.102.034322

Phys.Rev. C 102, 054312 (2020)

Y.Zhang, X.Y.Qu

*Effects of pairing correlation on the quasiparticle resonance in neutron-rich Ca isotopes*

NUCLEAR STRUCTURE ^{48,50,52,54,56,58,60,62,64,66,68}Ca; calculated S(2n) and compared to available experimental values for A=48-57 odd- and even-A Ca nuclei. ^{54,56,58,60,62,64,66}Ca; calculated neutron single-particle energies, neutron Fermi energies, average pairing gaps, occupation probabilities, neutron quasiparticle spectra for s_{1/2} partial wave, peak centroid energies and widths of resonances from the quasiparticle spectra of p_{1/2}, d_{5/2}, g_{9/2} partial waves. , quasiparticle-state probability density, occupation probability density, and pair probability density. Self-consistent continuum Skyrme Hartree-Fock-Bogoliubov (HFB) theory with Green's function method.

doi: 10.1103/PhysRevC.102.054312

Phys.Rev. C 103, 064317 (2021)

S.Burrello, J.Bonnard, M.Grasso

*Application of an ab-initio-inspired energy density functional to nuclei: Impact of the effective mass and the slope of the symmetry energy on bulk and surface properties*

NUCLEAR STRUCTURE ^{12,14,16,18,20,22,24}O, ^{34,36,38,40,42,44,46,48,50,52,54,56,58,60,62}Ca, ^{78,80,82,84,86,88,90,92,94,96,98,100,102,104,106,108,110,112,114,116,118,120,122,124}Zr, ^{100,102,104,106,108,110,112,114,116,118,120,122,124,126,128,130,132,134,136,138,140,142,144,146,148,150,152,154,156,158,160,162,164,166,168,170,172,174,176,178}Sn, ^{178,180,182,184,186,188,190,192,194,196,198,200,202,204,206,208,210,212,214,216,218,220,222,224,226,228,230,232,234,236,238,240,242,244,246,248,250,252,254,256,258,260,262,264,266}Pb; calculated S(2n) for O, Ca, Zr and Sn isotopic chains, binding energies for Ca and Zr chains, difference between neutron and proton radii for O, Ca, Zr and Pb chains, charge radii and neutron skins for ^{16}O, ^{40,48}Ca, ^{90}Zr, ^{132}Sn, ^{208}Pb, neutron and proton density profiles for ^{122}Zr and ^{266}Pb, single-proton energies for ^{208}Pb for the last occupied proton. Mean-field Hartree-Fock calculations with Yang-Grasso-Lacroix-Orsay (YGLO) density functionals. Comparison with experimental data extracted from databases at NNDC-BNL. Discussed effective masses and the slope of the symmetry energy.

doi: 10.1103/PhysRevC.103.064317

Few-Body Systems 62, 64 (2021)

T.Fukui, L.Coraggio, G.De Gregorio, A.Gargano, N.Itaco, Y.Ma, F.Xu

*Realistic Shell Model with Chiral Interaction and Its Application to Drip-Line Predictions*

NUCLEAR STRUCTURE ^{10}B, ^{42,44,46,48,50,52,54,56,58,60,62,64,66,68,70}Ca; calculated energy levels, J, π, two-neutron separation energy. Comparison with experimental data.

doi: 10.1007/s00601-021-01655-8

Phys.Rev. C 104, L051302 (2021)

A.Magilligan, B.A.Brown, S.R.Stroberg

*Data-driven configuration-interaction Hamiltonian extrapolation to ^{60}Ca*

NUCLEAR STRUCTURE ^{46,47,48,49,50,51,52,53,54,55,56,57,58,59,60}Ca; calculated levels, J, π, S(2n); comparison of the two-body matrix elements (TBME) between the UFP-CA and the initial IMSRG interaction; deduced likely doubly magic nature of ^{60}Ca at a level similar to that of ^{68}Ni. State-of-the-art in-medium similarity renormalization group (IMSRG) interaction, with universal fp shell interaction for calcium isotopes (UFP-CA). Comparison with experimental data.

doi: 10.1103/PhysRevC.104.L051302

Phys.Rev. C 104, 044321 (2021)

F.Minato, T.Marketin, N.Paar

*β-delayed neutron-emission and fission calculations within relativistic quasiparticle random-phase approximation and a statistical model*

RADIOACTIVITY Z=8-110, N=11-209, A=19-318(β^{-}), (β^{-}n); calculated T_{1/2}, β^{-}-delayed neutron emission (BDNE) branching ratios (P_{0n}, P_{1n}, P_{2n}, P_{3n}, P_{4n}, P_{5n}, P_{6n}, P_{7n}, P_{8n}, P_{9n}, P_{10n}), mean number of delayed neutrons per beta-decay, and average delayed neutron kinetic energy, total beta-delayed fission and α emission branching ratios for four fission barrier height models (ETFSI, FRDM, SBM, HFB-14). Z=93-110, N=184-200, A=224-318; calculated T_{1/2}, β^{-}-delayed fission (BDF) branching ratios (P_{0f}, P_{1f}, P_{2f}, P_{3f}, P_{4f}, P_{5f}, P_{6f}, P_{7f}, P_{8f}, P_{9f}, P_{10f}), total beta-delayed fission and beta-delayed neutron emission branching ratios for four fission barrier height models ^{140,162}Sn; calculated β strength functions, β^{-}-delayed neutron branching ratios from P_{0n} to P_{10n} by pn-RQRPA+HFM and pn-RQRPA methods. ^{137,138,139,140,156,157,158,159,160,161,162}Sb; calculated isotope production ratios as a function of excitation energy. ^{123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156}Pd, ^{120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159}Ag, ^{200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250}Os, ^{200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255}Ir; calculated β-delayed one neutron branching ratio P_{1n} by pn-RQRPA+HFM, pn-RQRPA, and FRDM+QRPA+HFM methods, and compared with available experimental data. ^{89}Br, ^{138}I; calculated β-delayed neutron spectrum by pn-RQRPA+HFM method, and compared with experimental spectra. ^{260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288,289,290,291,292,293,294,295,296,297,298,299,300,301,302,303,304,305,306,307,308,309,310,311,312,313,314,315,316,317,318,319,320,321,322,323,324,325,326,327,328,329,330}Fm; calculated fission barrier heights for HFB-14, FRDM, ETFSI and SBM models, mean numbers and mean energies of emitted β-delayed neutrons by pn-RQRPA+HFM and pn-RQRPA methods. ^{63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99}Ni, ^{120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,161,162,163,164,165,166,167,168,169,170}Sn; calculated mean numbers and mean energies of emitted β-delayed neutrons by pn-RQRPA+HFM and pn-RQRPA methods. Z=70-110, N=120-190; calculated β^{-}-delayed α branching ratios P_{α} (%) for FRDM fission barrier data. Fully self-consistent covariant density-functional theory (CDFT), with the ground states of all the nuclei calculated with the relativistic Hartree-Bogoliubov (RHB) model with the D3C^{*} interaction, and relativistic proton-neutron quasiparticle random-phase approximation (pn-RQRPA) for β strength functions, with particle evaporations and fission from highly excited nuclear states estimated by Hauser-Feshbach statistical model (pn-RQRPA+HFM) for four fission barrier height models (ETFSI, FRDM, SBM, HFB-14). Detailed tables of numerical data for β-delayed neutron emission (BDNE), β-delayed fission (BDF) and β-delayed α-particle emission branching ratios are given in the Supplemental Material of the paper.

doi: 10.1103/PhysRevC.104.044321

Phys.Scr. 96, 12539 (2021)

J.A.Pattnaik, M.Bhuyan, R.N.Panda, S.K.Patra

*Isotopic shift in magic nuclei within relativistic mean-field formalism*

NUCLEAR STRUCTURE ^{38,40,42,44,46,48,50,52,54,56}Ca, ^{100,102,104,106,108,110,112,114,116,118,120,122,124,126,128,130,132,134,136,138}Sn, ^{182,184,186,188,190,192,194,196,198,200,202,204,206,208,210,212,214}Pb; analyzed available data. Z=120; calculated ground-state properties such as binding energy, root-mean-square radius, pairing energy, nucleons density distribution, symmetry energy, and single-particle energies employing the relativistic mean-field approximation.

Phys.Rev. C 104, 064313 (2021)

U.C.Perera, A.V.Afanasjev, P.Ring

*Charge radii in covariant density functional theory: A global view*

NUCLEAR STRUCTURE ^{208}Pb, ^{132}Sn, ^{40,48}Ca; calculated neutron and proton single-particle states at spherical shape, charge radius, neutron skin, neutron single-particle rms radii without pairing, using DDME2, DDMEδ, DDPC1, NL3^{*}, and PCPK1 interactions. ^{134}Sn; calculated occupation probabilities of the neutron orbitals located above the N=82 shell closure. ^{198,200,202,204,206,208,210,212,214,216}Pb; ^{176,178,180,182,184,186,188,190,192,194,196,198,200,202,204,206,208,210,212,214,216,218,220,222,224,226,228,230,232,234,236,238,240,242,244,246,248,250,252,254,256,258,260,262,264,266}Pb; calculated rms charge radii without and with pairing, the latter using RHB approach, using DDME2, DDMEδ, DDPC1, NL3^{*}, and PCPK1 interactions and for all the even-even Pb isotopes located between the two-proton and two-neutron drip lines, compared to available experimental data. Z=78, 80, 82, 84, 86, N=104-136 (even); Z=50, 52, 54, 56, 58, 60, 62, 64, N=50-100 (even); Z=36, 38, 42, N=32-70 (even); Z=18, 20, 22, 24, 26, N=12-38 (even); ^{100,102,104,106,108,110,112,114,116,118,120,122,124,126,128,130,132,134,136}Sn, ^{72,74,76,78,80,82,84,86,88,90,92,94,96,98,100,102,104,106,108}Sr, ^{34,36,38,40,42,44,46,48,50,52,54,56,58,60}Ca; calculated charge radii δ(r^{2}) for even-even nuclei as function of neutron number using DDME2, DDMEδ, DDPC1, NL3^{*}, and PCPK1 interactions, and compared with available experimental data. Z=10, N=9-15; Z=18, N=15-25; Z=20, N=17-31; Z=22, N=23-27; Z=36, N=39-59; Z=38, N=40-61; Z=48, N=55-69; Z=50, N=59-81; Z=54, N=83-89; Z=56, N=65-89; Z=60, N=75-85; Z=62, N=77-91; Z=66, N=83-97; Z=70, N=85-105; Z=72, N=99-107; Z=78, N=101-117; Z=80, N=98-125; Z=82, N=101-129; Z=84, N=108-126; Z=86, N=119-125, 133-135; Z=88, N=121-125, 133-141; Z=90, N=138-139; Z=92, N=142-143; Z=94, N=145-147; compiled odd-even staggering (OES) of experimental charge radii of even-Z nuclei. ^{30,32,34,36,38,40,42,44,46,48,50}Ar, ^{32,34,36,38,40,42,44,46,48,50,52}Ca, ^{38,40,42,44,46,48,50,52,54,56,58}Ti, ^{44,46,48,50,52,54,56,58,60,62,64}Cr, ^{46,48,50,52,54,56,58,60,62,64}Fe, ^{68,70,72,74,76,78,80,82,84,86,88}Kr, ^{72,74,76,78,80,82,84,86,88,90,92,94,96,98,100}Sr, ^{80,82,84,86,88,90,92,94,96,98,100,102,104,106,108}Mo, ^{94,96,98,100,102,104,106,108,110,112,114}Cd, ^{100,102,104,106,108,110,112,114,116,118,120}Sn, ^{108,110,112,114,116,118,120,122,124,126,128}Te, ^{110,112,114,116,118,120,122,124,126,128,130}Xe, ^{114,116,118,120,122,124,126,128,130,132,134}Ba, ^{118,120,122,124,126,128,130,132,134,136,138}Ce, ^{122,124,126,128,130,132,134,136,138,140,142}Nd, ^{128,130,132,134,136,138,140,142,144,146,148}Sm, ^{132,134,136,138,140,142,144,146,148,150,152}Gd, ^{178,180,182,184,186,188,190,192,194,196,198}Pt, ^{184,186,188,190,192,194,196,198,200,202,204}Po, ^{186,188,190,192,194,196,198,200,202,204,206}Rn; calculated potential energy curves as function of deformation parameter β_{2} obtained with constrained axial RHB calculations using DDME2, DDMEδ, DDPC1, NL3^{*}, and PCPK1 covariant energy density functionals; deduced β_{2} parameters in different mass regions. These data are from Supplemental Material of the paper. Detailed systematic global investigation of differential charge radii within the covariant density functional theory (CDFT) framework.

doi: 10.1103/PhysRevC.104.064313

Chin.Phys.C 45, 030003 (2021)

M.Wang, W.J.Huang, F.G.Kondev, G.Audi, S.Naimi

*The AME 2020 atomic mass evaluation (II). Tables, graphs and references*

ATOMIC MASSES A=1-295; compiled, evaluated atomic masses, mass excess, β-, ββ and ββββ-decay, binding, neutron and proton separation energies, decay and reaction Q-value data.

Phys.Rev. C 104, 014309 (2021)

K.Yoshida

*Isovector spin susceptibility: Isotopic evolution of collectivity in spin response*

NUCLEAR STRUCTURE ^{42,44,46,48,50,52,54,56,58,60,62,64,66,68,70}Ca, ^{52,54,56,58,60,62,64,66,68,70,72,74,76,78}Ni; calculated distributions of the isovector (IV) spin-flip magnetic-dipole (M1), Gamow-Teller (GT) transition strengths in the neutral channel as functions of the excitation energy, moments of the transition strengths, SGII functional, SkP functional, isovector-spin susceptibility; deduced that repulsive character of the residual interaction in the spin-isospin channel diminishes the susceptibility, whereas the isoscalar (IS) proton-neutron pairing appearing in the charge exchange channel opposes the suppression. Nuclear energy-density functional (EDF) approach for calculating the response functions based on Skyrme-Kohn-Sham-Bogoliubov method and the like-particle quasiparticle-random-phase approximation (QRPA) and the proton-neutron QRPA.

doi: 10.1103/PhysRevC.104.014309

Phys.Atomic Nuclei 85, 222 (2022)

I.N.Borzov, S.V.Tolokonnikov

*Self-Consistent Study of Nuclear Charge Radii in Ar-Ti Region*

NUCLEAR STRUCTURE ^{33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55}K, ^{34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56}Ca, ^{35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57}Sc, ^{32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54}Ar, ^{36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58}Ti; analyzed available data; calculated the charge radii within the framework of the Fayans Density Functional (DF3-a).

doi: 10.1134/S1063778822030061

Phys.Rev. C 105, 034320 (2022)

G.Co, M.Anguiano, A.M.Lallena

*Charge radii of Ca isotopes and correlations*

NUCLEAR STRUCTURE ^{34,36,38,40,42,44,46,48,50,52,54,56,58,60}Ca; calculated binding energies, isotope shifts, charge radii. Independent particle model based on Hartree-Fock plus Bardeen-Cooper-Schrieffer (HF+BCS) approach with inclusion of short- and long-range correlations. Comparison to experimental data and other model calculations.

doi: 10.1103/PhysRevC.105.034320

Phys.Rev. C 105, L021303 (2022)

M.Kortelainen, Z.Sun, G.Hagen, W.Nazarewicz, T.Papenbrock, P.-G.Reinhard

*Universal trend of charge radii of even-even Ca-Zn nuclei*

NUCLEAR STRUCTURE ^{36,38,40,42,44,46,48,50,52,54,56,58,60}Ca, ^{42,44,46,48,50,52,54,56,58,60,62}Ti, ^{44,46,48,50,52,54,56,58,60,62,64}Cr, ^{46,48,50,52,54,56,58,60,62,64,66}Fe, ^{48,50,52,54,56,58,60,62,64,66,68}Ni, ^{60,62,64,66,68,70}Zn; calculated ground state energies, charge rms radii. Coupled cluster (CC) and ab-initio density functional theory calculations extended to the open-shell deformed nuclei. Comparison to available data.

doi: 10.1103/PhysRevC.105.L021303

Nucl.Phys. A1022, 122429 (2022)

V.Kumar, P.Kumar, V.Thakur, S.Thakur, S.K.Dhiman

*The microscopic studies of the even-even ^{12-28}O, ^{34-60}Ca, ^{48-80}Ni, and ^{100-134}Sn using covariant density functional theory*

NUCLEAR STRUCTURE ^{12,14,16,18,20,22,24,26,28}O, ^{34,36,38,40,42,44,46,48,50,52,54,56,58,60}Ca, ^{48,50,52,54,56,58,60,62,64,66,68,70,72,74,76,78,80}Ni, ^{100,102,104,106,108,110,112,114,116,118,120,122,124,126,128,130,132,134}Sn; calculated potential energy surfaces, binding and two-neutron separation energies, charge radii, neutron and proton rms radii, neutron skin thickness; deduced covariant mass data and Skyrme mass data for D1S, NL-SH, NL3, DD-ME2, DD-MEδ, DD-PC1, NL3*, SkM*, SkP, SLy4, SV-min, UNEDF0, and UNEDF1 parameterizations.

doi: 10.1016/j.nuclphysa.2022.122429

Phys.Rev. C 105, 034343 (2022)

F.Mercier, J.-P.Ebran, E.Khan

*Low-energy monopole strength in spherical and axially deformed nuclei: Cluster and soft modes*

NUCLEAR STRUCTURE ^{40,42,44,46,48,50,52,54,56,58,60,62}Ca, ^{46,48,50,52,54,56,58,60,62,64,66,68,70,72,74,76,78,80,82,84,86}Ni, ^{24,26,28,30,32,34,36}Mg; calculated isoscalar monopole strength distribution, single-particle spectrum, transition densities, soft mode and cluster exciations contribution to the total strength. ^{20}Ne; calculated ground-state density, localization function, transition densities. Studied the evolution of monopole strength with pairing energy, deformation, neutron excess. Covariant QRPA calculations, formulated within the finite amplitude method, on top of constrained relativistic Hartree-Bogoliubov (RHB) reference states.

doi: 10.1103/PhysRevC.105.034343

Phys.Rev. C 105, 044312 (2022)

X.Sun, J.Meng

*Finite amplitude method on the deformed relativistic Hartree-Bogoliubov theory in continuum: The isoscalar giant monopole resonance in exotic nuclei*

NUCLEAR STRUCTURE ^{40,42,44,46,48,68,80}Ca, ^{208}Pb; calculated isoscalar giant monopole resonance, monopole strength distributions. ^{40,42,44,46,48,50,52,54,56,58,60,62,64,66,68,70,72,74,76,78,80}Ca; calculated energy weighted sum rule for isoscalar giant monopole resonance. ^{200}Nd; calculated proton and neutron transition densities of the soft monopole mode in prolate and oblate cases, potential energy curve, features of the isoscalar giant monopole resonance built on ground state and prolate isomer state, monopole strength distribution. Finite amplitude method based on the deformed relativistic Hartree-Bogoliubov theory in continuum (DRHBc-FAM). Comparison to available experimental data.

doi: 10.1103/PhysRevC.105.044312

Phys.Rev. C 106, 014315 (2022)

J.M.Yao, I.Ginnett, A.Belley, T.Miyagi, R.Wirth, S.Bogner, J.Engel, H.Hergert, J.D.Holt, S.R.Stroberg

*Ab initio studies of the double-Gamow-Teller transition and its correlation with neutrinoless double-β decay*

RADIOACTIVITY ^{6,8}He, ^{10}Be, ^{14}C, ^{18,22}O, ^{22}Ne, ^{26,28}Mg, ^{30}Si, ^{34}S, ^{38}Ar, ^{42,44,48,56}Ca, ^{50}Cr, ^{46,52}Ti(2β^{-}); A=6-76(2β^{-}); calculated nuclear matrix elements (NMEs) for ground-state-to-ground-state double Gamow-Teller transitions (DGT) and Gamow Teller (GT) 0νββ decay, transition densities of parent nuclei, correlation between the transition densities and NMEs of DGT transitions. Ab initio many body methods by importance-truncated no-core shell model (IT-NCSM) with GXPF1A interaction, valence-space in-medium similarity renormalization group method (VSIMSRG) with EM1.8/2.0 interaction, and in-medium generator coordinate method (IM-GCM). ^{6}He, ^{10}Be, ^{14}C, ^{18}O, ^{22}Ne, ^{26}Mg, ^{30}Si, ^{34}S, ^{38}Ar, ^{42,44}Ca, ^{46}Ti, ^{50}Cr; 2β^{-} decay mode forbidden for these nuclei due to negative Q values, however, on query, authors mentioned that these nuclei were included for NMEs for 0νββ decays as these involved the same decay operators that determine the allowed decay rates, thus helpful to benchmark many-body approaches for the nuclear matrix elements of neutrinoless double beta decay.

doi: 10.1103/PhysRevC.106.014315

Phys.Lett. B 843, 138025 (2023)

S.Chen, F.Browne, P.Doornenbal, J.Lee, A.Obertelli, Y.Tsunoda, T.Otsuka, Y.Chazono, G.Hagen, J.D.Holt, G.R.Jansen, K.Ogata, N.Shimizu, Y.Utsuno, K.Yoshida, N.L.Achouri, H.Baba, D.Calvet, F.Chateau, N.Chiga, A.Corsi, M.L.Cortes, A.Delbart, J.-M.Gheller, A.Giganon, A.Gillibert, C.Hilaire, T.Isobe, T.Kobayashi, Y.Kubota, V.Lapoux, H.N.Liu, T.Motobayashi, I.Murray, H.Otsu, V.Panin, N.Paul, W.Rodriguez, H.Sakurai, M.Sasano, D.Steppenbeck, L.Stuhl, Y.L.Sun, Y.Togano, T.Uesaka, K.Wimmer, K.Yoneda, O.Aktas, T.Aumann, L.X.Chung, F.Flavigny, S.Franchoo, I.Gasparic, R.-B.Gerst, J.Gibelin, K.I.Hahn, D.Kim, T.Koiwai, Y.Kondo, P.Koseoglou, C.Lehr, B.D.Linh, T.Lokotko, M.MacCormick, K.Moschner, T.Nakamura, S.Y.Park, D.Rossi, E.Sahin, P.-A.Soderstrom, D.Sohler, S.Takeuchi, H.Tornqvist, V.Vaquero, V.Wagner, S.Wang, V.Werner, X.Xu, H.Yamada, D.Yan, Z.Yang, M.Yasuda, L.Zanetti

*Level structures of ^{56, 58}Ca cast doubt on a doubly magic ^{60}Ca*

NUCLEAR REACTIONS ^{1}H(^{57}Sc, 2p)^{56}Ca, E=209 MeV/nucleon; ^{1}H(^{59}Sc, 2p)^{58}Ca, E=199 MeV/nucleon, [^{57,59}Sc secondary beams from ^{9}Be(^{70}Zn, X), E=345 MeV/nucleon, followed by separation and identification of ions of interest using the BigRIPS separator at RIBF-RIKEN facility]; measured reaction residues of ^{56}Ca and ^{58}Ca through identification by the SAMURAI spectrometer, Doppler-corrected Eγ, Iγ, (particle)γ-coin using the DALI2^{+} array using MINOS liquid hydrogen target. ^{56,58}Ca; deduced energies of the first 2+ levels. Comparison with shell-model calculations with the GXPF1B Hamiltonian in full pf model space, and the state-of-the-art ab initio approaches: VS-IMSRG method, and CC calculations. Systematics of energies of the first 2+ states and S(2n) from experiment (N=22-36) and theory in N=22-54 Ca isotopes.

doi: 10.1016/j.physletb.2023.138025

Eur.Phys.J. A 59, 50 (2023)

G.Kruzic, T.Oishi, N.Paar

*Magnetic quadrupole transitions in the relativistic energy density functional theory*

NUCLEAR STRUCTURE ^{16}O, ^{48}Ca, ^{208}Pb, ^{18}O, ^{42}Ca, ^{56}Fe, ^{90}Zr, ^{36,38,40,42,44,46,48,50,52,54,56,58,60,62,64}Ca; calculated the nuclear ground state with relativistic Hartree-Bogoliubov model, and the M2 excitations using the relativistic quasiparticle random phase approximation with the residual interaction extended with the isovector-pseudovector term.

doi: 10.1140/epja/s10050-023-00958-0

Phys.Rev. C 107, 054307 (2023)

T.Naito, T.Oishi, H.Sagawa, Z.Wang

*Comparative study on charge radii and their kinks at magic numbers*

NUCLEAR STRUCTURE ^{36,38,40,42,44,46,48,50,52,54,56,58,60,62}Ca, ^{100,102,104,106,108,110,112,114,116,118,120,122,124,126,128,130,132,134,136,138,140,142,144}Sn, ^{182,184,186,188,190,192,194,196,198,200,202,204,206,208,210,212,214,216,218,220,222}Pb; calculated rms charge radii. ^{132}Sn, ^{208}Pb; calculated single-particle spectra, occupation numbers. Discussed sudden change of the mass-number dependence of the charge radius at the neutron shell gap - so-called kink behavior. Nonrelativistic Skyrme, relativistic mean field (RMF), and the relativistic Hartree-Fock (RHF) calculations. Comparison to experimental data.

doi: 10.1103/PhysRevC.107.054307