ADOPTED LEVELS, GAMMAS for 238Pu

Authors: E. Browne, J. K. Tuli  Citation: Nucl. Data Sheets 127, 191 (2015)  Cutoff date: 1-Jun-2014

Full ENSDF file

Q(β-)=-2258.3 keV 51S(n)= 6999.8 keV 13S(p)= 5997.5 keV 4Q(α)= 5593.20 keV 19
Reference: 2012WA38

References:
  A  238Am ε decay  B  238Np β- decay
  C  242Cm α decay  D  Coulomb Excitation
  E  239Pu(d,t)  F  240Pu(p,t)
  G  238U(α,4nγ)  H  239Pu(207Pb,208PBG)
  I  239Pu(117Sn,118SNG) 

E(level)
(keV)
XREFJπ(level) T1/2(level)E(γ)
(keV)
I(γ)M(γ)Final level
      0.0ABCDEFGHI 0+ 87.7 y 1 
% α = 100
% SF = 1.9E-7 1
     
     44.065 15 ABCDEFGHI 2+ 175 ps 3      44.06 2 
  100
E2
      0.0
0+
    145.936 21 ABCDEFGH  4+      101.88 3 
  100
E2
     44.065
2+
    303.36 6  BC  FGHI 6+      157.42 5 
  100
E2
    145.936
4+
    512.55 15   C   GHI 8+      209.20 14 
  100
E2
    303.36
6+
    605.18 3 ABC       1-      561.17 5 
   605.18 5 
  100
   73 2 
E1
E1
     44.065
      0.0
2+
0+
    661.44 4 ABCD      3-      515.53 7 
   617.41 5 
   55 1 
  100
E1+M2
E1+M2
    145.936
     44.065
4+
2+
    763.24 11  BC       5-      459.80 20 
   617.36
   ≈3.4
  100


    303.36
    145.936
6+
4+
    771.9 5       GHI 10+      259.4 5 
  100
E2
    512.55
8+
    911.6 8        H  7-      608.7 5 ?
  100

    303.36
6+
    941.47 8 ABC EF    0+      336.38 15 
   897.33 10 
   941.5 2 
    2.8 16 
  100 7 
 
[E1]
(E2)
E0
    605.18
     44.065
      0.0
1-
2+
0+
    962.783 23 ABC       1-      301.5 1 
   357.62 7 
   918.69 4 
   962.77 3 
    1.68 9 
    7.80 16 
   82.0 8 
  100.0 8 
E2
M1+E2
E1
E1
    661.44
    605.18
     44.065
      0.0
3-
1-
2+
0+
    968.2 4 ? B        (2-) < 8.5 ns    924?
   968.9 4 ?
  100
   12 6 
[E1]
[M2]
     44.065
      0.0
2+
0+
    983.09 7 ABCDEF    2+ 0.55 ps +15-11     321.75 20 
   378.05 13 
   837.11 15 
   938.95 10 
   983.0 3 
    1.8 7 
    4.4 7 
   35 2 
   43 3 
  100 30 
[E1]
[E1]
[E2]
E0+E2
[E2]
    661.44
    605.18
    145.936
     44.065
      0.0
3-
1-
4+
2+
0+
    985.45 5 AB        2-      323.98 9 
   380.29 13 
   941.38 5 
    2.8 1 
    2.2 2 
  100.0 10 
M1+E2
[M1]
[E1+M2]
    661.44
    605.18
     44.065
3-
1-
2+
   1018.6 3 ?  C            974.5 3 ?
 

     44.065
2+
   1028.537 16 ABC  F    2+      882.63 3 
   984.45 2 
  1028.54 2 
    3.19 2 
  100 1 
   72.6 3 
E2
M1+E2
E2
    145.936
     44.065
      0.0
4+
2+
0+
   1069.929 22  B        3+      923.98 2 
  1025.87 2 
   30.0 2 
  100
M1+E2
M1+E2
    145.936
     44.065
4+
2+
   1077.7 5       GHI 12+      305.9 5 
  100

    771.9
10+
   1082.55 6  B        (4)- 8.5 ns 5     114.4 4 
   319.29 11 
   421.14 11 
   936.61 6 
    1.51 27 
    2.3 3 
    6.0 2 
  100.0 14 
(E2)
M1+E2
[M1]
E1+M2
    968.2
    763.24
    661.44
    145.936
(2-)
5-
3-
4+
   1102.4 5        H  9-      190.8 6 
   330.5 6 ?
   589.9 5 
   60 19 
   35 11 
  100 24 


E1
    911.6
    771.9
    512.55
7-
10+
8+
   1125.75 17   C       (4+)      979.80 20 
  1081.7 3 
  100
   19 7 


    145.936
     44.065
4+
2+
   1134 4      F    (0+)        
   1174.4 4 A         (2+)     1130.2 5 
  1174.5 5 
  100
   83 22 


     44.065
      0.0
2+
0+
   1202.45 8  B        (3)-      119.9 1 
   132.49 11 
   174.0 2 
  100 4 
    2.4 2 
   22.0 5 
M1(+E2)
[E1]
[E1]
   1082.55
   1069.929
   1028.537
(4)-
3+
2+
   1228.65 18 A C E     0+     1184.55 21 
  1228.7 3 
  100
 
E2
E0
     44.065
      0.0
2+
0+
   1252 2      F           
   1264.20 15 A C E     2+     1118.25 21 
  1220.15 21 
  100
   81 15 
[E2]
E0+E2+M1
    145.936
     44.065
4+
2+
   1310.3 3 ?A         1+,2+     1266.2 3 
  100
M1
     44.065
2+
   1340.4 6        H  11-      238.0 6 
   262.6?
   568.5 6 
   74 25 
 
  100 29 
E2

E1
   1102.4
   1077.7
    771.9
9-
12+
10+
   1426.4 6       GHI 14+      348.8 5 
  100

   1077.7
12+
   1426.61 24 A         0+      821.5 4 
  1426.6 3 
  100
 
E1
E0
    605.18
      0.0
1-
0+
   1447.24 19 A         1-      841.9 4 
  1403.2 3 
  1447.3 3 
 
  100 9 
   62 4 
E0
E1
E1
    605.18
     44.065
      0.0
1-
2+
0+
   1458.29 22 A         2+     1414.0 3 
  1458.5 3 
  ≈23
  100
E0+E2+M1

     44.065
      0.0
2+
0+
   1559.82 14 A         1-      574.0 3 
   597.0 3 
   954.7 3 
  1515.9 3 
  1560.0 3 
   77 19 
  100 12 
  ≈58
   79 10 
   65 10 
M1+E2
[M1+E2]
[M1+E2]


    985.45
    962.783
    605.18
     44.065
      0.0
2-
1-
1-
2+
0+
   1596.3 3 A         (2+)      633.0 5 ?
  1450.4 5 ?
  1552.2 3 
  1596.5 5 
  ≈77
  ≈77
  100 16 
  ≈31




    962.783
    145.936
     44.065
      0.0
1-
4+
2+
0+
   1621.29 12 A         1-      658.4 2 
   679.5 4 
  1016.2 2 
  1577.3 3 
  1621.4 4 
    6.2 7 
    8.8 9 
    9.7 10 
  100 8 
   ≈0.6
E0+E2+M1
E1
E0+E2+M1
E1

    962.783
    941.47
    605.18
     44.065
      0.0
1-
0+
1-
2+
0+
   1621.8 6        H  13-      281.5 6 
   544.1 6 
  100 39 
   73 33 

E1
   1340.4
   1077.7
11-
12+
   1636.40 13 A         1-      653.3 5 
   673.4 2 
  1031.3 3 
  1592.5 3 
  1636.6 3 
   ≈4.4
 
 
   38 4 
  100 9 

E0
E0

E1
    983.09
    962.783
    605.18
     44.065
      0.0
2+
1-
1-
2+
0+
   1651.2 4 A         1,2+     1607.0 4 
  1651.4 5 
  100
   18 7 


     44.065
      0.0
2+
0+
   1726.34 22 A         1,2+     1682.2 3 
  1726.4 3 
  100
   59 9 
E1,E2

     44.065
      0.0
2+
0+
   1783.5 3 A         1,2+     1739.4 4 
  1783.6 4 
   48 15 
  100


     44.065
      0.0
2+
0+
   1815.5 5       GHI 16+      389.0 5 
  100
E2
   1426.4
14+
   1898.42 22 A         2-      935.2 3 ?
  1237.0 3 
  1293.2 3 
  ≈27
   81 7 
  100 9 

M1
M1
    962.783
    661.44
    605.18
1-
3-
1-
   1944.6 4        H  15-      323.1 5 
   518.3 5 
  100 44 
   57 29 


   1621.8
   1426.4
13-
14+
   2241.7 6       GHI 18+      426.2 5 
  100
E2
   1815.5
16+
   2308.2 5        H  17-      363.5 5 
   492.8 5 
  100 48 
   46 46 
E2

   1944.6
   1815.5
15-
16+
  ≈2400          0.6 ns 2 
% SF ≤ 100
     
   2702.3 8        HI 20+      460.6 5 
  100

   2241.7
18+
   2708.7 6        H  19-      400.5 5 
   467.1 5 
  100
  ≈38
E2

   2308.2
   2241.7
17-
18+
   3143.8 8        H  21-      435.1 5 
   441.6 5 ?
  100 49 
   38 20 
E2

   2708.7
   2702.3
19-
20+
   3195.4 8        HI 22+      493.10 17 
  100

   2702.3
20+
  ≈3500          (0+) 6.0 ns 15 
% SF ≤ 100
     
   3610.6 10        H  23-      415.7 5 ?
   466.8 5 
   40
  100


   3195.4
   3143.8
22+
21-
   3717.1 10        HI 24+      521.7 5 
  100

   3195.4
22+
   4105.2 11        H  25-      494.6 6 
  100
E2
   3610.6
23-
   4263.7 11        HI 26+      546.6 5 
  100

   3717.1
24+
   4623.2 13        H  27-      518.0 7 
  100

   4105.2
25-
   4833.3 13        H  28+      569.6 6 
  100

   4263.7
26+
   5161.3       H  (29-)      538.5 7 ?
  100

   4623.2
27-
   5426.5 9 ?       H  (30+)      592.2 6 ?
  100

   4833.3
28+
Jπ(level): From an energy fit to the g.s. band in addition to other arguments as given
E(γ): From β- decay, α decay, and ε decay, except where from in-beam studies as noted
I(γ): Branching ratios are from β- decay, α decay, and ε decay

Additional Gamma data:

E(level)
(keV)
E(γ)
(keV)
MultipolarityMixing
Ratio
Additional Data
     44.065    44.06 2 E2 B(E2)(W.u.)=285 5, α=775, α(L)=566, α(M)=157
    145.936   101.88 3 E2 α=14.8, α(L)=10.7, α(M)=2.99, α(N+)=1.15
    303.36   157.42 5 E2 α=2.24, α(K)=0.197, α(L)=1.48, α(M)=0.412, α(N+)=0.157
    512.55   209.20 14 E2 α=0.73
    605.18   561.17 5 E1 α=0.0116, α(K)=0.0093, α(L)=0.00170
   605.18 5 E1 α=0.0101
    661.44   515.53 7 E1+M20.114 17α=0.023 3
   617.41 5 E1+M20.077 17α=0.0122 13
    941.47   897.33 10 (E2) α=0.0154
    962.783   301.5 1 E2 α=0.213, α(K)=0.0780, α(L)=0.098, α(M)=0.0269, α(N+)=0.0103
   357.62 7 M1+E22.43 20α=0.224 15
   918.69 4 E1 α=0.00471
   962.77 3 E1 α=0.00434, α(K)=0.00353, α(L)=612E-6
    968.2   924[E1] B(E1)(W.u.)>2.0E-8
   968.9 4 [M2] B(M1)(W.u.)>0.016, α=0.122
    983.09   321.75 20 [E1] B(E1)(W.u.)=4.7E-5 24, α=0.036
   378.05 13 [E1] B(E1)(W.u.)=6.8E-5 22, α=0.0255
   837.11 15 [E2] B(E2)(W.u.)=3.1 10, α=0.0176
   938.95 10 E0+E2 α=4.4 4
   983.0 3 [E2] B(E2)(W.u.)=3.9 12, α=0.0129
    985.45   323.98 9 M1+E22.8 8α=0.29 6
   380.29 13 [M1] α=0.665
   941.38 5 [E1+M2]-0.17 +1 -2α=0.0083 6
   1028.537   882.63 3 E2 α=0.0159, α(K)=0.0115, α(L)=0.00328
   984.45 2 M1+E2+23 GTα=0.00129
  1028.54 2 E2 α=0.0119, α(K)=0.0089, α(L)=0.00226
   1069.929   923.98 2 M1+E2+44 +72-8α=0.00145
  1025.87 2 M1+E2+31 GTα=0.00119
   1082.55   114.4 4 (E2) B(E2)(W.u.)=0.46 6, α=8.67
   319.29 11 M1+E21.0 5α=0.66 23
   421.14 11 [M1] α=0.29
   936.61 6 E1+M2-0.24 4B(E1)(W.u.)=2.01E-8 12, α=0.009 5
   1202.45   119.9 1 M1(+E2)0.38 LTα=3.81 21, α(L)=2.69, α(M)=0.657, α(N+)=0.246
   132.49 11 [E1] α=0.271
   174.0 2 [E1] α=0.143
   1228.65  1184.55 21 E2 α=0.0091, α(K)=0.00695, α(L)=0.00163
   1264.20  1118.25 21 [E2] α=0.0102
  1220.15 21 E0+E2+M1 α=0.26 3
   1310.3  1266.2 3 M1 α=0.0268, α(K)=0.0213, α(L)=0.00413
   1426.61   821.5 4 E1 α=0.00574, α(K)=0.00465, α(L)=818E-6
   1447.24  1403.2 3 E1 α=0.00229, α(K)=0.00187, α(L)=316E-6
  1447.3 3 E1 α=0.00217, α(K)=0.00177, α(L)=300E-6
   1559.82   574.0 3 M1+E23.2 5α=0.055 6
   597.0 3 [M1+E2] α=0.12 8
   954.7 3 [M1+E2] α=0.035 22
   1621.29   658.4 2 E0+E2+M1 α=1.39 14
   679.5 4 E1 α=0.00809, α(K)=0.00654, α(L)=0.00117
  1016.2 2 E0+E2+M1 α=0.66 7
  1577.3 3 E1 α(K)=0.00154
   1898.42  1237.0 3 M1 α=0.0285, α(K)=0.0227, α(L)=0.00440
  1293.2 3 M1 α=0.0254, α(K)=0.0202, α(L)=0.00391

Additional Level data and comments:

E(level)Comments
      0.0T1/2(SF)=4.77×1010 y 14 (1972Ha11), 4.63×1010 y 12 (1975GaZX), 5.1×1010 y 6 (1961Dr04).
E(level): Kπ=0+ GS band.
T1/2(level): 86.41 y 30 specific activity 238Pu/242Cm (1957Ho71), 87.77 y 2 by calorimetry (1973JoYT), 86.98 y 39 by specific activity (1976Po08), 87.71 y 3 specific activity 238Pu/242Cm (1977Di04), 87.98 y 51 relative activity using T1/2(239Pu)=24110 y (1981Ag06).
     44.065E(level): Kπ=0+ GS band.
Jπ(level): E2 to g.s.
T1/2(level): weighted average of 177 ps 5 from aga9ta0 in 242Cm α decay, and 174 ps 3 from B(E2) in Coulomb excitation.
    145.936E(level): Kπ=0+ GS band.
Jπ(level): E2 to 2+. Coul. ex.
    303.36E(level): Kπ=0+ GS band.
    512.55E(level): Kπ=0+ GS band.
Jπ(level): E2 γ to 303 level.
    605.18E(level): Kπ=0- OCTUPOLE-VIBRATIONAL band.
Jπ(level): E1 to g.s.. The intensity ratio for the transitions to 0+ and 2+ agree with theory for K=0, not with K=1.
    661.44B(E3)=0.71 12
E(level): Kπ=0- OCTUPOLE-VIBRATIONAL band.
Jπ(level): E1+M2 γ’s to 2+ and 4+.
    763.24E(level): Kπ=0- OCTUPOLE-VIBRATIONAL band.
Jπ(level): M1+E2 γ from (4)- determines π=-. γ’s to 4+ and 6+ then give J=5. Member of K=0 octupole band.
    771.9E(level): Kπ=0+ GS band.
    911.6E(level): Kπ=0- OCTUPOLE-VIBRATIONAL band.
    941.47E(level): Kπ=0+ BETA-VIBRATIONAL band.
Jπ(level): E0 to g.s.
    962.783E(level): Kπ=1- ν 7/2(743)-NU 5/2(622) band.
Jπ(level): E1 to g.s.. The configuration was proposed by 1972Ah04 on the basis of log ft ratios in ε decay and energy calculations of 1964So02.
    968.2Jπ(level): 114.4γ from (4)- is probably E2. γ to 2+. 1972Wi22 propose K=2, Jπ=2-.
T1/2(level): from delayed ceγ coincidence.
    983.09E(level): Kπ=0+ BETA-VIBRATIONAL band.
Jπ(level): E0+E2 to 2+.
T1/2(level): from B(E2) in Coulomb excitation.
    985.45E(level): Kπ=1- ν 7/2(743)-NU 5/2(622) band.
Jπ(level): M1 to 3-. log ft=7.5 (log f1ut=8.2) from 1+ rules out 3- and 4- M1. The log ft for the ε feeding rules out Jπ=3-,4-.
   1028.537E(level): Kπ=2+. From 239Pu(207Pb,208Pbγ).
Jπ(level): E2 to g.s.
   1069.929E(level): Kπ=2+. From 239Pu(207Pb,208Pbγ).
Jπ(level): M1+E2 γ’s to 2+ and 4+ log ft for the β- feeding, photon intensity ratios, and band parameter suggest K=2, Jπ=3+.
   1077.7E(level): Kπ=0+ GS band. From 239Pu(207Pb,208Pbγ).
   1082.55E(level): Kπ=4- ν 7/2(743)+NU 1/2(631) STATE.
Jπ(level): E1+M2 to 4+. Configuration proposed by 1972Wi22.
T1/2(level): from βγ(t) in 238Np decay (1970Be57).
   1102.4E(level): Kπ=0- OCTUPOLE-VIBRATIONAL band. From 239Pu(207Pb,208Pbγ).
   1125.75E(level): Kπ=2+. From 239Pu(207Pb,208Pbγ).
Jπ(level): γ’s to 2+ and 4+. Possible member of K=2 band.
   1134Jπ(level): L(p,t)=(0).
   1174.4Jπ(level): from γ transitions to 0+, 2+ states Jπ=1|+,2+. Intensity ratio is not in good agreement with Alaga rule for J=1, but it agrees well for J=2.
   1202.45E(level): Kπ=3- ν 7/2(743)-NU 1/2(631) STATE.
Jπ(level): M1(+E2) to (4)-. γ to 2+.
   1228.65E(level): Kπ=0+.
Jπ(level): E0 to g.s.
   1264.20E(level): Kπ=0+.
Jπ(level): E0+E2+M1 to 2+.
   1310.3Jπ(level): M1 to 2+. log ft=7.4 from 1+ rules out 3+.
   1340.4E(level): Kπ=0- OCTUPOLE-VIBRATIONAL band. From 239Pu(207Pb,208Pbγ).
   1426.4E(level): Kπ=0+ GS band.
   1426.61E(level): From 239Pu(207Pb,208Pbγ). Kπ=0+.
Jπ(level): E0 to g.s.
   1447.24Jπ(level): E0 to 1- intensity ratio of gammas to g.s. band suggests K=0.
   1458.29E(level): Kπ=0+.
Jπ(level): E0+E2+M1 to 2+ energy spacing of the 1426 and 1458 levels and the ratio of ft’s for the ε feedings to these levels suggest that they are members of a band.
   1559.82Jπ(level): M1+E2 to 2-. γ to g.s. gammas to 0+, 1-, 2+ levels.
   1596.3Jπ(level): gammas to 0+, 2+, and possibly 4+. J=1 is not ruled out if the placement of 1450γ to 4+ is not correct.
   1621.29Jπ(level): E1 to 0+ E0+M1+E2 transitions with about equal intensity to K,Jπ=0,1- and 1,1- states imply that the configuration of the 1621 state is probably a mixture of K=0 and K=1.
   1621.8E(level): Kπ=0- OCTUPOLE-VIBRATIONAL band. From 239Pu(207Pb,208Pbγ).
   1636.40Jπ(level): E1 to 0+ E0 transitions with about same intensity to K,Jπ=0,1- and 1,1- states imply that the configuration of the 1636.6 state is a mixture of K=0 and K=1.
   1651.2Jπ(level): γ’s to 0+ and 2+.
   1726.34Jπ(level): γ’s to 0+ and 2+.
   1783.5Jπ(level): γ’s to 0+ and 2+.
   1815.5E(level): Kπ=0+ GS band. From 239Pu(207Pb,208Pbγ).
   1898.42Jπ(level): M1 γ’s to 1- and 3-.
   1944.6E(level): Kπ=0- OCTUPOLE-VIBRATIONAL band. From 239Pu(207Pb,208Pbγ).
   2241.7E(level): Kπ=0+ GS band. From 239Pu(207Pb,208Pbγ).
   2308.2E(level): Kπ=0- OCTUPOLE-VIBRATIONAL band. From 239Pu(207Pb,208Pbγ).
   2400Assignment: 236U(α,2n) excit (1973Li01).
E(level):
T1/2(level): 0.5 ns 2 236U(α,2n) (1973Li01), 0.7 ns 2 238Pu(d,pn) (1974MeYP).
   2702.3E(level): Kπ=0+ GS band. From 239Pu(207Pb,208Pbγ).
   2708.7E(level): Kπ=0- OCTUPOLE-VIBRATIONAL band. From 239Pu(207Pb,208Pbγ).
   3143.8E(level): Kπ=0- OCTUPOLE-VIBRATIONAL band. From 239Pu(207Pb,208Pbγ).
   3195.4E(level): Kπ=0+ GS band. From 239Pu(207Pb,208Pbγ).
   3500Assignment: 236U(α,2n) excit (1971Br39,1973Li01).
E(level):
T1/2(level): 6.5 ns 15 236U(α,2n) (1970Bu02,1971Br39), 5.0 ns 20 236U(α,2n) (1973Li01). Other measurements: 1973Na35, 1969Me11.
   3610.6E(level): Kπ=0- OCTUPOLE-VIBRATIONAL band. From 239Pu(207Pb,208Pbγ).
   3717.1E(level): Kπ=0+ GS band. From 239Pu(207Pb,208Pbγ).
   4105.2E(level): Kπ=0- OCTUPOLE-VIBRATIONAL band. From 239Pu(207Pb,208Pbγ).
   4263.7E(level): Kπ=0+ GS band. From 239Pu(207Pb,208Pbγ).
   4623.2E(level): Kπ=0- OCTUPOLE-VIBRATIONAL band. From 239Pu(207Pb,208Pbγ).
   4833.3E(level): Kπ=0+ GS band. From 239Pu(207Pb,208Pbγ).
   5161.3E(level): Kπ=0- OCTUPOLE-VIBRATIONAL band. From 239Pu(207Pb,208Pbγ).
   5426.5E(level): Kπ=0+ GS band. From 239Pu(207Pb,208Pbγ).

Additional Gamma comments:

E(level)E(gamma)Comments
    512.55    209.20E(γ): From 248Cm a decay
M(γ): from ce(L2)/ce(L3) in (α,4nγ)
    661.44    515.53I(γ): from ε decay. Values of ≈0.64 from β- decay and 0.67 from α decay depend on splitting the intensity of the doubly placed 713γ on the basis of model-dependent arguments
    617.41E(γ): Multiply placed with intensity suitably divided
I(γ): Multiply placed with intensity suitably divided
    763.24    459.80I(γ): from ε and α decay, see comment on 515γ from the 661 level
    617.36E(γ): Multiply placed with intensity suitably divided
I(γ): Multiply placed with intensity suitably divided
    771.9    259.4E(γ): From 239Pu(207Pb,208Pbγ)
    941.47    336.38I(γ): from 242Cm α decay, if I(897.33γ)=100.
    985.45    380.29M(γ): From 1981Le15
   1028.537   1028.54M(γ): from 1981Le15
   1077.7    305.9E(γ): From 239Pu(207Pb,208Pbγ)
   1102.4    190.8E(γ): From 239Pu(207Pb,208Pbγ)
    330.5E(γ): From 239Pu(207Pb,208Pbγ)
    589.9E(γ): From 239Pu(207Pb,208Pbγ)
   1340.4    262.6E(γ): From authors’ figure, not in their table.
   1426.4    348.8E(γ): From 239Pu(207Pb,208Pbγ)
   1815.5    389.0E(γ): From 239Pu(207Pb,208Pbγ). From 239Pu(207Pb,208Pbγ)
   2241.7    426.2E(γ): From 239Pu(207Pb,208Pbγ)
   3195.4    493.10E(γ): From 239Pu(207Pb,208Pbγ)
   3717.1    521.7E(γ): From 239Pu(207Pb,208Pbγ)
   4263.7    546.6E(γ): From 239Pu(207Pb,208Pbγ)
   4623.2    518.0E(γ): From 239Pu(207Pb,208Pbγ)
   4833.3    569.6E(γ): From 239Pu(207Pb,208Pbγ)
   5161.3    538.5E(γ): From 239Pu(207Pb,208Pbγ)
   5426.5    592.2E(γ): From 239Pu(207Pb,208Pbγ)

General Comments:

Energies of vibrational states (K=0+, 2+, 0-, 1-, 2-, 3-), and B(E2), B(E3) values for the excitation of 2+, 3- levels have been calculated by 1965So04, 1970Ne08, 1971Ko31, 1975LeZR, 1975IvZZ. See also 1969Bl13, 1992Ra14, 1993Sa15, 1994Mi14 see 1964So02 for calculated energies of two-quasiparticle states in 238Pu and also for structure of some collective states.
Discovery of 238Pu: 2013Fr02
Alpha Decay: 2014Ba07, 2013De12, 2013Fe03, 2013Is13, 2013Se17, 2012Is08, 2011Ni11, 2011Qi06, 2011Zh36, 2010Le01, 2010Ni02, 2010Wa23, 2010Wa31, 2009De32, 2009Dr05, 2009Ni06, 2009Wa01, 2009Zh28, 2006Ch34, 2006De05, 2006Ha20, 2006Ha53, 2006Xu08, 2006Xu15, 2005Sh42, 2004Ca24, 2004ChZY, 2004Le07, 2003Ba64, 2003Jo04.
Nuclear reactions: 2013Bo29, 2010Wa07, 2002Be08, 2002Lo18
239Pu(n,2n): 2002Be08.
238U β-β- Decay: 2012Zu07,2010Ba07, 2006Ba35, 2005Tr01, 2004Ra13, 2003Cr04, 2002Hi09
Cluster Decay
238Pu(32Si): 2014Ba09, 2013Qi04, 2013Zd01, 2013Zd02, 2012Ku23, 2012Ba35, 2012Mi17, 2012Sa31, 2012So15, 2012Ta10, 2010Si12, 2010Zh51, 2009Ar11, 2009Qi07, 2009Ro16, 2008Bh05, 2005Bh02, 2005Ku04, 2005Ku32, 2004Ba64, 2004Re22, 2002Ba80.
238Pu(28Mg): 2013Na25, 2012Sa31, 2012So15, 2011Sh13, 2010Sa29, 2010Zh51, 2009Ar11, 2009Qi07, 2009Ro16, 2008Bh05, 2002Ba80, 2002Du16
238Pu(30Mg): 2013Qi04, 2013Zd01, 2013Zd02, 2012Ba35, 2012Ku29, 2012Ku16, 2012Qi01, 2012Sa31 2012Si01 2012So15 2011Si13, 2010Sa29, 2010Si12. 2009Ar05, 2009Ar11, 2009Ro16 2008Bh05 2005Ku32, 2004Ba64, 2004He16, 2002Du16, 2002Ba80.
238Pu(34Si): 2009Qi07.
Nuclear Structure: 2014Lu01, 2013Af01, 2013Bo24, 2013Li30, 2013Ni02, 2013To12, 2012Ib02, 2012Ko06, 2012Lu02, 2012Mi06, 2012Pr09, 2012Ro29, 2012Ro34, 2011Af04, 2011Bo12, 2011In03, 2011Li44, 2011Ri05, 2011Wa30, 2010Bu02, 2010Is01, 2010Ko36, 2010Ra10, 2010Vr01, 2009So02, 2008Bu11, 2007Ba18, 2007Bo46, 2007Sh17, 2006De23, 2006Ra21, 2006Sa35, 2005Al40, 2005Bu38, 2005Du18, 2005La04, 2005Za02, 2004Go33, 2004Sa55, 2003Bu11, 2003Bu27, 2003Mi18, 2003Ra17, 2003Za01, 2002Do15, 2002Ma85, 2002Ra25, 2002Re31
Isomer energy calculations - 1992Bh03. Other: 2011He12.
Fission Isomers and Super Deformed Bands: 2002Si26.
Quadrupole moments calculations - 1992Bh04.