Skip to main content
Log in

Self-consistent calculations of alpha-decay energies

  • Nuclei
  • Theory
  • Published:
Physics of Atomic Nuclei Aims and scope Submit manuscript

Abstract

On the basis of the self-consistent theory of finite Fermi systems, the energies of alphadecay chains were calculated for several new superheavy nuclei discovered recently in experiments of the Dubna-Livermore Collaboration headed by Yu.Ts. Oganessian. The approach in question is implemented on the basis of the generalized method of the density functional proposed by Fayans and his coauthors. The version used here relies on the functional DF3-a proposed recently for describing a wide array of nuclear data, including data on superheavy nuclei. A detailed comparison of the results obtained on this basis with the predictions of different approaches, including the self-consistent Skyrme-Hartree-Fock method, the micro-macro method in the version developed by Sobiczewski and his coauthors, and the phenomenological method of Liran and his coauthors, is performed. The resulting alpha-decay energies are used to calculate respective lifetimes with the aid of the phenomenological Parkhomenko-Sobiczewski formula.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. W. D. Myers and W. J. Swiatecki, Nucl. Phys. 81, 1 (1966).

    Google Scholar 

  2. V.M. Strutinskiĭ, Sov. J. Nucl. Phys. 3, 449 (1966).

    Google Scholar 

  3. Yu. Ts. Oganessian et al., Phys. Rev. C 74, 044602 (2006).

    Article  ADS  Google Scholar 

  4. Yu. Ts. Oganessian et al., Phys. Rev. Lett. 104, 142502 (2010).

    Article  ADS  Google Scholar 

  5. Yu. Ts. Oganessian et al., Phys. Rev. C 79, 024603 (2009).

    Article  ADS  Google Scholar 

  6. Yu. Ts. Oganessian et al., Phys. Rev. C 83, 054315 (2011).

    Article  ADS  Google Scholar 

  7. Yu. Ts. Oganessian et al., Phys. Rev. Lett. 108, 022502 (2012).

    Article  ADS  Google Scholar 

  8. V. E. Viola, Jr. and G. T. Seaborg, J. Inorg. Nucl. Chem. 28, 741 (1966).

    Article  Google Scholar 

  9. A. Parkhomenko and A. Sobiczewski, Acta Phys. Polon. B 36, 3095 (2005).

    ADS  Google Scholar 

  10. P. Moeller, J. R. Nix, W. D. Myers, and W. J. Swiatecki, At. Data Nucl. Data Tables 59, 185 (1995).

    Article  ADS  Google Scholar 

  11. I. Muntian, S. Hofmann, Z. Patyk, and A. Sobiczewski, Acta Phys. Polon. B 34, 2073 (2003).

    ADS  Google Scholar 

  12. I. Muntian, Z. Patyk, and A. Sobiczewski, Phys. At. Nucl. 66, 1015 (2003).

    Article  Google Scholar 

  13. S. Liran, A. Marinov, and N. Zeldes, Phys. Rev. C 62, 047301 (2000).

    Article  ADS  Google Scholar 

  14. D. Vautherin and D. M. Brink, Phys. Rev. C 5, 626 (1972).

    Article  ADS  Google Scholar 

  15. J. Dechargé and D. Gogny, Phys. Rev. C 21, 1568 (1980).

    Article  ADS  Google Scholar 

  16. W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965).

    Article  MathSciNet  ADS  Google Scholar 

  17. P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964).

    Article  MathSciNet  ADS  Google Scholar 

  18. S. Goriely, N. Chamel, and J. M. Pearson, Phys. Rev. Lett. 102, 152503 (2009).

    Article  ADS  Google Scholar 

  19. http://www-astro.ulb.ac.be/Html/masses.html

  20. S. Goriely, F. Tondeur, and J. M. Pearson, At. Data Nucl. Data Tables 77, 311 (2001).

    Article  ADS  Google Scholar 

  21. V. A. Khodel and E. E. Saperstein, Phys. Rep. 92, 183 (1982).

    Article  ADS  Google Scholar 

  22. A. B. Migdal, Theory of Finite Fermi Systems and Applications to Atomic Nuclei (Nauka, Moscow, 1965; Interscience, New York, 1967).

    Google Scholar 

  23. S. A. Fayans and V. A. Khodel, JETP Lett. 17, 444 (1973).

    ADS  Google Scholar 

  24. A. V. Smirnov, S. V. Tolokonnikov, and S. A. Fayans, Sov. J. Nucl. Phys. 48, 995 (1988).

    Google Scholar 

  25. S. A. Fayans, JETP Lett. 68, 169 (1998).

    Article  ADS  Google Scholar 

  26. S. A. Fayans, S. V. Tolokonnikov, E. L. Trykov, and D. Zawischa, Nucl. Phys. A 676, 49 (2000).

    Article  ADS  Google Scholar 

  27. S. V. Tolokonnikov and E. E. Sapershtein, Phys. At. Nucl. 73, 1684 (2010).

    Article  Google Scholar 

  28. G. Audi, A. H. Wapstra, and C. Thibault, Nucl. Phys. A 729, 337 (2003).

    Article  ADS  Google Scholar 

  29. G. Audi, O. Bersillon, J. Blachot, and A. H. Wapstra, Nucl. Phys. A 729, 3 (2003).

    Article  ADS  Google Scholar 

  30. A. Sobiczewski, Acta Phys. Polon. B 41, 157 (2010).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. E. Saperstein.

Additional information

Original Russian Text © S.V. Tolokonnikov, Yu.S. Lutostansky, E.E. Saperstein, 2013, published in Yadernaya Fizika, 2013, Vol. 76, No. 6, pp. 758–765.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tolokonnikov, S.V., Lutostansky, Y.S. & Saperstein, E.E. Self-consistent calculations of alpha-decay energies. Phys. Atom. Nuclei 76, 708–715 (2013). https://doi.org/10.1134/S1063778813060136

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063778813060136

Keywords

Navigation