$^{238}{\rm Np}\,\beta^-$ decay

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	E. Browne, J. K. Tuli	NDS 127, 191 (2015)	1-Jun-2014

Parent: ²³⁸Np: E=0.0; $J^{\pi}=2^+$; $T_{1/2}=2.099$ d 2; $Q(\beta^-)=1292.0$ 7; % β^- decay=100.0

²³⁸Np-T_{1/2}: From Adopted Levels; weighted average of 2.1023 d 7, 2.1024 d 9, 2.1026 d 9 (2006Re09), and 2.0980 d 3 (1990Ch35). Other values: 2.117 d 2 (1966Qa01), 2.10 d *I* (1950Fr53).

Additional information 1.

²³⁸ Pu	Levels
-------------------	--------

E(level)	J^{π}	T _{1/2}	Comments
0.0	0+‡	87.74 y <i>4</i>	
44.051 16	2+ ‡		
145.934 <i>21</i> 303.36 <i>6</i>	4+‡ 6+		
605.16 4	$1^{-#}$		
661.43 4	3-#		
763.21 15	5-#		
941.54 <i>13</i>	0+ <mark>&</mark>		
962.765 18	1 ^{-@}		
968.2 <i>3</i>	(2 ⁻)	<8.5 ns	$T_{1/2}$: from delayed ce γ coincidence.
983.02 6	2+ &		
985.47 <i>4</i>	2-@		
1028.542 18	2^{+a}		
1069.924 22	314		
1082.53 <i>4</i> 1202.62 <i>4</i>	$(4)^{-b}$ $(3)^{-c}$	8.5 ns 5	$T_{1/2}$: from $\beta\gamma(t)$ (50-300 β)(936.6 γ)(t) (1970Be57).
[†] From Add	pted Lev	els.	
‡ K=0 g.s.	band.		
[#] K=0 octup	pole-vibra	ational band.	
[@] K=1 band			
\propto K=0 β -vit	orational	band.	

^{*a*} K=2 band.

^b K=4 ν 7/2[743]+ ν 1/2[631] proposed by 1972Wi22.

^c K=3 ν 7/2[743]- ν 1/2[631] proposed by 1972Wi22.

β^- radiations

 β measurements: β feeding to each level has been deduced from γ -transition intensities. The measured β energies and intensities are compared below with the values deduced from level scheme.

195	0Fr53	1955Ra28	1956Ba9	5 1	1962	Bo03	f	rom le	evel s	cheme			
Ξ Εβ	 Ιβ	 Ιβ	 Εβ	I eta		 Εβ	- I,	 β	Eβ		$I\beta$		
258	5 <i>3</i> %	5 5%	$pprox 200? \ 250 10 \ 280 10$	8% 31% 20%	~	260	58%	222 2 4	2 263	11.3% 2	6 45.%	4	
1272	47%	45%	1133 2 1236 5	.8% 38%	:	≈ 1	240 4	329 2 2%	2 4 12	1.3% 248	1 2 40.	5%	10

E(decay)	E(level)	$I\beta^{-\dagger}$	Log ft	Comments
(89.4 7)	1202.62	0.54 <i>5</i>	6.6 <i>1</i>	av $E\beta$ =23.11 <i>19</i>
222 2	1069.924	11.51 <i>11</i>	6.5 <i>1</i>	av $E\beta$ =60.07 <i>21</i>
263 2	1028.542 985.47	44.8 5	6.1 <i>I</i> 8 2 <i>I</i>	av $E\beta = 72.20$ 21 $\delta(\Delta L = 1/\Delta L = 2) = 10 + \infty - 3$ (1990Si11), so the transition is mainly gamov-Teller. av $E\beta = 85.08.22$
(309.07)	983.02	0.26 <i>3</i>	8.6 <i>1</i>	av $E\beta = 85.83$ 22
(329.27)	962.765	1.254 <i>13</i>	7.9 <i>1</i>	av $E\beta = 91.97$ 22
(630.6 7)	661.43	0.0384 <i>21</i>	10.4 <i>1</i>	av $E\beta$ =189.34 24
(686.8 7)	605.16	0.102 <i>3</i>	10.1 <i>1</i>	av $E\beta$ =208.56 25
1248 2	44.051	41.1 <i>6</i>	8.4 <i>1</i>	av $E\beta$ =412.4 3
				$I\beta^-$: see comment on $I(\gamma+ce)(44.08\gamma)$.

[†] Absolute intensity per 100 decays.

Pu ₁₄₄ -	238 94
144	Pu
- <u>1</u> .	144
ω	ပ်

								γ ⁽²³⁸ Pu)		
Iγ normal 13 (200 γγ: 1971 Additiona 1981Le15	ization, I(γ 6Re09), 25. Wi03. I informatic normalized	+ce) normal .19% 21 (19 on 2. d experiment	ization: 90Ch35) al α to	From weig), and 23.89 α (K)(1028.	hted av $\% 6 (19)$ $54\gamma = 0$	verage of the 967Sc34) for 9.0088 (E2 th	following the 984.: neory).	g absolute γ- 5-keV gamm	ray intensitie a ray.	es: 24.99% 34 (2012Le03), 25.6% 4 (2010Le01), 25.17%
x-rays: r Εγ	neasuremen $I\gamma$	nts of 198	1Le15	for K $lpha$	x ray	and of 19	972Wi22	for K x	ray	
99.6 average 103.7 average 117.3 from 200 120.5 From RIC	0.769 8 RI from 2 1.16 8 RI from 2 0.295 06Re09. 0.119 (120.5) +	$Kα_2$ 2006Re09 a $Kα_1$ 2006Re09 a $Kβ_1'$ $Kβ_2'$ RI(121.7)	x and 198 x and 198 2 2 = 0.11	: ray 1Le15. : ray 1Le15. < ray < ray 9 (2006Re	209).					
F †	+ +h					-				
L_{γ}	I_{γ}	E_i (level)	J_i^{π}	E_{f}	\mathbf{J}_{f}^{π}	Mult. [@]	δ ^{&}	α^{c}	$I_{(\gamma+ce)}^{b}$	Comments
44.06 2	$\frac{1}{0.395} \frac{1}{6}$	$\frac{E_i(\text{level})}{44.051}$	$\frac{J_i^{\pi}}{2^+}$	<u> </u>	$\frac{J_f^{\pi}}{0^+}$	Mult. [@] E2	<u><u></u><u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u></u>	α ^c 775	$\frac{I_{(\gamma+ce)}b}{320.6\ 10}$	Comments Mult.: from α (M)exp=175 20 (1981Le15). I _($\gamma+ce$) : from Σ I($\gamma+ce$)[($\gamma+ce$) to g.s. excluding the 44.08 γ]=76.4 7, the normalization factor 0.2519 21, and the requirement of 100% feeding of the g.s. by $\gamma+ce$, one gets I($\gamma+ce$)(44 γ)=320.6 10 and I β (to 44 level)=41.0% 5. From α , one then gets I γ =0.413 5, including a 1% uncertainty assigned to the theoretical α value. 1990Ch35 report I γ =0.35 4, and 1981Le15, based on ce data, report 0.32 4. I $_{\gamma}$: From I(ce) and theoretical α value. α : value given is the E2 theory value lowered by 3% (see 10027 c01)
101.88 <i>3</i> 114.4 <i>4</i>	$\frac{1}{0.395} \frac{1}{6}$ 0.97 4 0.020 4	$\frac{E_i(\text{level})}{44.051}$ 145.934 1082.53	$\frac{J_{i}^{\pi}}{2^{+}}$	E _f 0.0 44.051 968.2	$\frac{J_f^{\pi}}{0^+}$	Mult. ^(@) E2 E2 (E2)	<u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u>	α ^c 775 14.8 8.67	$\frac{I_{(\gamma+ce)}b}{320.6\ 10}$	CommentsMult.: from $\alpha(M)exp=175\ 20\ (1981Le15)$. $I_{(\gamma+ce)}$: from $\Sigma I(\gamma+ce)[(\gamma+ce)$ to g.s. excluding the $44.08\gamma]=76.4\ 7$, the normalization factor 0.2519\ 21, andthe requirement of 100% feeding of the g.s. by $\gamma+ce$, onegets $I(\gamma+ce)(44\gamma)=320.6\ 10$ and $I\beta$ (to 44 level)=41.0% 5.From α , one then gets $I\gamma=0.413\ 5$, including a 1%uncertainty assigned to the theoretical α value.1990Ch35report $I\gamma=0.35\ 4$, and 1981Le15, based on ce data, report0.32\ 4. I_{γ} : From I(ce) and theoretical α value. α : value given is the E2 theory value lowered by 3% (see1987Ra01).Mult.: $\alpha(L)exp=11.2\ 6$; (L1+L2):L3=1.61\ 5\ (1981Le15). E_{γ}, I_{γ} : from 1972Wi22.Mult.: from an intensity balance at the 968 level, $\alpha \leq 16$;therefore, mult could be E1, M1 or E2. An intensitybalance at the 1083 level gives $\alpha=11\ 6$ which rules out E1and pure M1. The proposed level structure requires $\Delta J=2$.

 $^{238}{\rm Np}\,\beta^-$ decay (continued)

						238	Np β^- decay (co	ontinued)				
γ ⁽²³⁸ Pu) (continued)												
E_{γ}^{\dagger}	I_{γ} [‡] <i>b</i>	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Mult.@	<i>δ</i> &	α ^C	Comments			
132.77 50	0.0095 8	1202.62	(3)-	1069.924	3+	[E1]		0.271				
157.42 5	≈0.004	303.36	6+	145.934	4+	[E2]		2.243	E_{γ} , I_{γ} : from ²⁴² Cm α decay (1981Le15).			
174.08 5 ^x 220.87 11	0.091 2 0.0122 <i>14</i>	1202.62	(3)-	1028.542	2+	[E1] (M2)		0.143 11.45	α (K)exp=6.7 <i>15</i> , α (L)exp=4.0 <i>10</i> (1981Le15). E _{γ} ,I _{γ} : from 1972Wi22. 1981Le15 report I γ <0.14. Other: 2006Re09.			
301.37 7	0.043 3	962.765	1-	661.43	3-	E2		0.213	Mult.: from ε decay.			
319.26 <i>20</i> 321.8 <i>1</i>	0.033 <i>3</i> 0.0048 <i>20</i>	1082.53 983.02	$(4)^{-}$ 2 ⁺	763.21 661.43	5- 3-	M1+E2	1.0 5	0.66 23	Mult., δ : from α (K)exp=0.49 20 (1981Le15). I _{γ} : From 1981Le15. Other value: I γ =0.0048 8 (2006Re09).			
324.07 15	0.058 2	985.47	2-	661.43	3-	M1+E2	2.8 8	0.29 6	Mult.: from $\alpha(K)$ exp=0.17 5 (1981Le15).			
336.38 15	0.0009 5	941.54	0+	605.16	1-				E _γ : from ²⁴² Cm α decay (1981Le15). I _γ : from the intensity of the 897 γ and the branching ratio I(336 γ)/I(897 γ)=0.031 <i>15</i> in ²⁴² Cm α decay. (1981Le15).			
357.68 9	0.200 4	962.765	1-	605.16	1-	M1+E2	2.43 20	0.224 15	Mult.: from α (K)exp=0.13 2 (1981Le15) and data in ε decay.			
378.1 <i>1</i>	0.012 2	983.02	2+	605.16	1-				I_{γ} : From 1981Le15. Other value: I_{γ} =0.008 8 (2006Re09).			
380.33 10	0.043 3	985.47	2-	605.16	1-	[M1]		0.67	Mult.: see ε decay.			
421.05 10	0.086 3	1082.53	$(4)^{-}$	661.43	3-	[M1]		0.29	242			
459.80 20	0.012 1	763.21	5-	303.36	6+	T () (0)			E_{γ} : from ²⁴² Cm α decay (1981Le15).			
515.53 7 561.17 5	0.147 3 0.419 5	661.43 605.16	3^{-} 1^{-}	145.934 44.051	4+ 2+	$E1+M2^a$ $E1^a$	0.114 17	0.023 3 0.0116	δ: from α(K)exp in ε decay. 1990Si11 report δ=-0.2 +2-5. δ: 1990Si11 report δ=0.3 +∞-4. δ <0.05 from α(K)exp in ε decay.			
605.18 5	0.308 6	605.16	1-	0.0	0^{+}	E1 ^a		0.0101				
617.41 ^d 5	0.269 ^{d#} 6	661.43	3-	44.051	2^{+}	E1+M2 ^{<i>a</i>}	0.077 17	0.0122 13	δ: from α (K)exp in ε decay. 1990Si11 report $\delta = -0.2 + 1 - 2$.			
617.41 ^d	≈0.03 ^{d#}	763.21	5^{-}	145.934	4^{+}							
836.88 7	0.095 5	983.02	2^{+}	145.934	4+	[E2]		0.0176				
882.63 <i>3</i> x885.00 <i>15</i>	3.19 2 0.16 2	1028.542	2+	145.934	4+	E2		0.0159	Mult.: from α (K)exp=0.0115 8 (1981Le15). E _{γ} ,I _{γ} : from 2006Re09.			
897.55 30	0.032 3	941.54	0^{+}	44.051	2^{+}	(E2)		0.0154	Mult.: from ε decay.			
918.70 <i>4</i>	2.10 2	962.765	1-	44.051	2+	E1		0.00471	Mult.: from α (K)exp=0.0036 8 (1981Le15). δ : 1990Si11 report δ =-0.02 +11-3. δ <0.05 from α (K)exp in a decay			
923.99 2	10.33 5	1069.924	3+	145.934	4+	M1+E2	+44 +72-8	0.0145	Mult.: from α (K)exp=0.0099 4 (1981Le15) δ ; from 1990Si11.			
924	0.26	968.2	(2 ⁻)	44.051	2+				$E\gamma$ and $I\gamma$ measured by 1970Be57 in delayed $ce\gamma$ coincidence.			
936.60 5	1.43 [#] 1	1082.53	$(4)^{-}$	145.934	4^{+}	[E1+M2]	-0.24 4	0.009 5	δ: From 1990Si11.			
938.85 <i>30</i>	0.117 7	983.02	2+	44.051	2+	E0+E2		4.4 4	Mult.: from <i>α</i> (K)exp=3.5 <i>4</i> , K/L=5.2 2 (1981Le15); K:L12:M12=72:21:7.5 (1960Al29).			

4

²³⁸₉₄Pu₁₄₄-4

From ENSDF

 $^{238}_{94}\mathrm{Pu}_{144}\text{-}4$

							238 Np β^- decay (c	continued)		
							γ ⁽²³⁸ Pu) (cont	inued)		
E_{γ}^{\dagger}	$I_{\gamma}^{\ddagger b}$	E _i (level)	\mathbf{J}_i^{π}	E _f	\mathbf{J}_f^{π}	Mult. [@]	δ&	α ^C	$I_{(\gamma+ce)}^{b}$	Comments
941.41 4	1.98 2	985.47	2-	44.051	2+	[E1+M2]	-0.17 + l - 2	0.0079 6		δ: from 1990Si11.
941.5 <i>3</i>		941.54	0^{+}	0.0	0^{+}	E0			0.042 3	Mult.: no photons were observed, Ice(K)=0.0338 25 (1981Le15).
962.76 2	2.56 2	962.765	1-	0.0	0^{+}	E1		0.0043		Mult.: from α (K)exp=0.0021 <i>10</i> (1981Le15).
968.2 4	0.032 14	968.2	(2^{-})	0.0	0^{+}	[M2]		0.122		
983.0 <i>3</i>	0.27 8	983.02	2+	0.0	0^{+}	[E2]		0.0129		E_{γ}, I_{γ} : from α decay. $I_{\gamma}/I_{\gamma}(837\gamma)=2.7$ 8.
984.45	100 <i>I</i>	1028.542	2+	44.051	2+	M1+E2	>+23	0.0129		Mult.: from α (K)exp=0.0096 3; K/L=4.4 2; (L1+L2)/L3=19 2; L/M=3.4 2 (1981Le15) α (K)exp=0.0100 from absolute Ice measurements of 1962Bo03, and absolute I(γ)=23.8 6 measurements of 1967Sc34.
		10/0 00 1	a+		a +			0.0110		δ: From 1990Si11.
1025.87 2	34.8 2	1069.924	3-	44.051	2*	M1+E2	>+31	0.0119		Mult.: from α (K)exp=0.0091 4, K/L=4.3 3 (1981Le15).
1029 52 2	7052	1029 542	2+	0.0	0+	EO		0.0110		$0: \text{ IFOM } 1990\text{S111.}$ $M_{2}\text{I}_{4} = f_{12} = K/L + 4.2.2 \text{ (1081L - 15)}$
1028.33 2	12.5 5	1020.342	Z .	0.0	0.	$\mathbf{E} \mathbf{Z}$		0.0119		Mult.: If $M/L=4.2 \ge (1981Le15)$.

[†] From 2006Re09, unless otherwise noted. Others: 1981Le15, 1972Wi22. include their E γ values from α decay in these weighted averages See also 1970Be57 (semi), 1970Pa22 (semi), 1962Bo03 (s ce), 1960Al29 (s ce), 1956Ba95 (s ce), 1967Sc34 and 1969GuZW (semi) see also γ and ce's observed in ²³⁸Am ε decay, ²⁴²Am α decay. Other measurements: 1950Fr53 (s ce), 1955Ra27 (s ce), 1959Ga13 (s ce).

[‡] Weighted average from 2006Re09, 2010Le01, 1990Ch35, 1981Le15, and 1971We22, unless otherwise noted. The I γ are normalized to I γ (984 γ)=100 others: 2009So02, 1970Pa22, 1970Be57, 1969GuZW, 1967Sc34.

[#] $I\gamma=0.269$ 6 for the doubly placed 617 transition. 1981Le15 divide the intensity based on band structure considerations whereby one expects $I\gamma/I\gamma(459.8\gamma)$ from the 763 5- level to be \approx 3. The evaluators assign an uncertainty of 50% to this estimate in order to deduce $I\gamma$ for placement from the 661 3- level.

[@] From ce data of 1956Ba95, 1960Al29, 1962Bo03, 1981Le15. See also ε decay.

& Values of 1990Si11 are from low temperature nuclear orientation of ²³⁸Np(Gd).

^{*a*} From ce data in ²⁴²Cm α decay.

S

^b For absolute intensity per 100 decays, multiply by 0.2515 13.

^c Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

^d Multiply placed with intensity suitably divided.

 $x \gamma$ ray not placed in level scheme.

Decay Scheme

6

 $^{238}_{94}\mathrm{Pu}_{144}\text{-}6$