Elsevier

Nuclear Physics A

Volume 771, 29 May 2006, Pages 103-168
Nuclear Physics A

Structure properties of even–even actinides at normal and super deformed shapes analysed using the Gogny force

https://doi.org/10.1016/j.nuclphysa.2006.03.004Get rights and content

Abstract

Mean field and beyond mean field methods implemented with the D1S force are used in large scale calculations to study the structure properties of fifty five even–even actinides at normal and isomeric potential deformations. The mass region covered is spanned by the 226–236Th, 228–242U, 232–246Pu, 238–250Cm, 238–256Cf, 242–258Fm and 250–262No nuclides. Hartree–Fock–Bogolyubov (HFB) calculations performed with constraints placed on axial and triaxial quadrupole deformations as well as octupole deformations serve to build tensors of inertia and potential energy landscapes up to very large elongations. Long lived spin isomers are investigated through blocking calculations performed with and without breaking time reversal symmetry. Configuration mixing calculations are performed to make predictions for shape isomers and π=+ vibrations in the isomeric potentials and to calculate moments of inertia at low spin. Moments of inertia are also investigated through cranking HFB calculations to high frequency so as to explore in this regime pairing properties of the D1S force in the heavy mass region. The WKB method is adopted in half-life calculations for the γ-back and fission decay modes of shape isomers. All these predictions are challenged through extensive comparisons with measurements for multipole moments, moments of inertia, spin and shape isomers as well as superdeformed phonons, inner and outer potential barrier heights, and shape isomer lifetimes. Most predictions match the experimental data. Finally we predict a shallow minimum on top of the triaxial inner barriers of N154 nuclei. This topological property offers a possible explanation for the unexpected structures observed in fission transmissions measured a long time ago for 252Cf and neighboring nuclei.

References (103)

  • M. Bender et al.

    Nucl. Phys. A

    (2003)
    S. Ćwiok et al.

    Nucl. Phys. A

    (1996)
  • P.T. Greenlees

    Eur. Phys. J. A

    (2004)
  • I. Ahmad et al.

    Phys. Rev. C

    (2000)
  • J.-F. Berger et al.

    Acta Phys. Pol. B

    (2003)
    J. Dechargé et al.

    Nucl. Phys. A

    (2003)
    J.-F. Berger et al.

    Int. J. Mod. Phys. E

    (2004)
  • R. Smolańczuk et al.

    Phys. Rev. C

    (1995)
  • M. Warda et al.

    Phys. Rev. C

    (2002)
  • T. Bürvenich et al.

    Phys. Rev. C

    (2004)
    T. Bürvenich et al.

    Phys. Rev. C

    (2004)
  • J.-F. Berger et al.

    Comput. Phys. Commun.

    (1991)
  • J. Libert et al.

    Phys. Rev. C

    (1999)
  • M. Girod et al.

    Phys. Lett. B

    (1994)
  • P. Ring et al.

    The Nuclear Many-Body Problem

    (1980)
  • P.T. Greenlees

    J. Phys. G: Nucl. Part. Phys.

    (1998)
  • H.C. BrittB.B. Back et al.

    Phys. Lett. B

    (1973)
  • I. Ahmad et al.

    Phys. Rev. C

    (1980)
  • J.L.C. Ford et al.

    Phys. Rev. Lett.

    (1971)
  • P. Möller et al.

    At. Data Nucl. Data Tables

    (1995)
  • M. Seiwert et al.

    Phys. Rev. C

    (1981)
  • A. Ghiorso et al.

    Phys. Rev. C

    (1973)
  • P.A. Butler

    Phys. Rev. Lett.

    (2002)
  • B. Singh et al.

    Table of superdeformed nuclear bands and fission isomers

    Nucl. Data Sheets

    (2002)
  • R.B. Firestone
  • S. Eeckhaudt

    Eur. Phys. J. A

    (2005)
  • H.X. Zhang et al.

    Phys. Rev. C

    (1986)
  • P. Reiter et al.
  • P.G. Thirolf, D. Habs, see Ref. [70], p....
  • P.G. Thirolf, D. Habs, see Ref. [70], p....
  • H.C. Britt et al.

    Phys. Rev. Lett.

    (1978)
  • D.R. Inglis

    Phys. Rev.

    (1956)
  • D.J. Thouless et al.

    Nucl. Phys.

    (1962)
  • R.D. Humphreys

    Phys. Rev. C

    (2004)
  • S. Hofmann et al.

    Rev. Mod. Phys.

    (2000)
  • R.-D. Herzberg

    J. Phys. G: Nucl. Part. Phys.

    (2004)
  • R.-D. Herzberg

    Phys. Rev. C

    (2002)
  • M. Leino

    Nucl. Radiochem. Sci.

    (2002)
  • P. Reiter

    Phys. Rev. Lett.

    (2000)
  • S. Ćwiok et al.

    Phys. Rev. Lett.

    (1999)
  • A.V. Afanasjev et al.

    Phys. Rev. C

    (2003)
  • J.L. Egido et al.

    Phys. Rev. Lett.

    (2000)
    T. Duguet et al.

    Nucl. Phys. A

    (2001)
  • H.L. Hall et al.

    Phys. Rev. C

    (1989)
  • S. Bjørnholm et al.

    Rev. Mod. Phys.

    (1980)
  • F.R. Xu et al.

    Phys. Rev. Lett.

    (2004)
    S. Hofmann

    Eur. Phys. J. A

    (2001)
  • S. Ćwiok et al.

    Nature

    (2005)
    P.O. Hess et al.

    Phys. Rev. C

    (2003)
  • Z. Ren

    Phys. Rev. C

    (2002)
  • Z. Ren et al.

    Nucl. Phys. A

    (2001)
  • I. Muntian et al.

    Phys. Lett. B

    (2004)
  • Z. Ren et al.

    Phys. Rev. C

    (2002)
  • N. Tajima et al.

    Nucl. Phys. A

    (1996)
  • L. Bonneau et al.

    Eur. Phys. J. A

    (2004)
  • P. Möller et al.

    Phys. Rev. Lett.

    (2004)
  • M.G. Itkis et al.

    Phys. Rev. C

    (2002)
  • Cited by (0)

    View full text