Microscopic description of cluster radioactivity in actinide nuclei

M. Warda and L. M. Robledo
Phys. Rev. C 84, 044608 – Published 13 October 2011

Abstract

Cluster radioactivity is the emission of a fragment heavier than an α particle and lighter than mass 50. The range of clusters observed in experiments goes from 14C to 32Si while the heavy mass residue is always a nucleus in the neighborhood of the doubly-magic 208Pb nucleus. Cluster radioactivity is described in this paper as very asymmetric nuclear fission. A new fission valley leading to a decay with large fragment mass asymmetry matching the cluster radioactivity products is found. The mass octupole moment is found to be more convenient than the standard quadrupole moment as the parameter driving the system to fission. The mean-field Hartree-Fock-Bogoliubov theory with the phenomenological Gogny interaction has been used to compute the cluster emission properties of a wide range of even-even actinide nuclei from 222Ra to 242Cm, where emission of the clusters has been experimentally observed. Computed half-lives for cluster emission are compared with experimental results. The noticeable agreement obtained between the predicted properties of cluster emission (namely, cluster masses and emission half-lives) and the measured data confirms the validity of the proposed methodology in the analysis of the phenomenon of cluster radioactivity. A continuous fission path through the scission point has been described using the neck parameter constraint.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
8 More
  • Received 5 July 2011

DOI:https://doi.org/10.1103/PhysRevC.84.044608

©2011 American Physical Society

Authors & Affiliations

M. Warda*

  • Katedra Fizyki Teoretycznej, Uniwersytet Marii Curie–Skłodowskiej, ul. Radziszewskiego 10, PL-20-031 Lublin, Poland

L. M. Robledo

  • Departamento de Física Teórica (Módulo 15), Universidad Autónoma de Madrid, E-28049 Madrid, Spain

  • *warda@kft.umcs.lublin.pl
  • luis.robledo@uam.es

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 84, Iss. 4 — October 2011

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review C

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×