238 Am ε decay

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	E. Browne, J. K. Tuli	NDS 127, 191 (2015)	1-Jun-2014

Parent: ²³⁸Am: E=0.0; $J^{\pi}=1^+$; $T_{1/2}=98 \text{ min } 2$; $Q(\varepsilon)=2260 \ 50$; $\%\varepsilon+\%\beta^+$ decay=100.0

²³⁸Pu Levels

E(level)	$J^{\pi \dagger}$	T _{1/2}	Comments
0.0	0+‡	87.74 y <i>4</i>	
44.11 6	2+‡		
145.99 10	4 ^{+‡}		
605.13 7	1-#		
661.38 10	3 ^{-#}		
941.50 14	0^{+}		
962.85 7	1- b		
983.09 14	2+ [@]		
985.53 10	2 ^{-b}		
1028.57 13	2+ ^{<i>c</i>}		
1174.4 4	(2^{+})		
1228.66 22	0+&		
1264.21 23	$2^{+}^{\&}$		
1310.3? 3	$1^+, 2^+$		
1426.61 25	0^{+u}		
1447.25 19	1 ⁻ 2 ⁺		
1458.31 22	2 · 1 -		
1596.4.3	(2^+)		
1621.29.13	1-		
1636.42 14	1-		
1651.2 4	$1,2^{+}$		
1726.36 22	$1,2^{+}$		
1783.6 <i>3</i>	$1,2^{+}$		
1898.26? 19	2-		E(level): proposed by the evaluators based on energy fit of three transitions.
[†] From Ado	nted Lev	els.	

- [‡] Band 1 K=0. [#] Band 2 K=0. [@] Band 3 K=0.

- & Band 4 K=0.
- ^a Band 5 K=0.
- ^b K=1: ν 7/2[743]- ν 5/2[622]. ^{*c*} K=2.

ε, β^+ radiations

I β normalization: ε intensities have been deduced from γ -transition intensities requiring an intensity balance at each level. ε intensity to the ground state has been calculated by comparing x-ray intensities expected from ε captures and internal conversion with the measured x-ray intensities.

$^{238}\mathrm{Am}\,\varepsilon$ decay (continued)

ε, β^+ radiations (continued)

E(decay)	E(level)	$I\beta^+$ †	$\mathrm{I}\varepsilon^{\dagger}$	Log ft	$\mathrm{I}(\varepsilon + \beta^+)^{\dagger}$	Comments
$(3.6 \times 10^2 5)$	1898.26?		0.66 8	6.75 19	0.66 8	εK=0.64 4; εL=0.260 25; εM+=0.100 12
$(4.8 \times 10^2 5)$	1783.6		0.087 18	7.94 16	0.087 18	εK=0.686 16; εL=0.228 11; εM+=0.085 5
$(5.3 \times 10^2 5)$	1726.36		0.76 10	7.12 12	0.76 10	εK=0.700 12; εL=0.219 9; εM+=0.081 4
$(6.1 \times 10^2 5)$	1651.2		0.112 20	8.09 12	0.112 20	εK=0.713 9; εL=0.210 6; εM+=0.077 3
$(6.2 \times 10^2 5)$	1636.42		1.89 24	6.89 11	1.89 24	εK=0.715 8; εL=0.208 6; εM+=0.0765 24
$(6.4 \times 10^2 5)$	1621.29		4.1 5	6.58 10	4.1 5	εK=0.717 8; εL=0.207 5; εM+=0.0759 23
$(6.6 \times 10^2 5)$	1596.4		0.151 20	8.05 10	0.151 20	εK=0.720 7; εL=0.205 5; εM+=0.0749 21
$(7.0 \times 10^2 5)$	1559.85		0.58 8	7.52 10	0.58 8	εK=0.725 6; εL=0.202 4; εM+=0.0737 18
$(8.0 \times 10^2 5)$	1458.31		0.160 23	8.21 9	0.160 23	εK=0.734 5; εL=0.195 3; εM+=0.0709 13
$(8.1 \times 10^2 5)$	1447.25		1.12 14	7.38 9	1.12 14	εK=0.734 4; εL=0.195 3; εM+=0.0707 12
$(8.3 \times 10^2 5)$	1426.61		0.34 5	7.92 9	0.34 5	εK=0.736 4; εL=0.194 3; εM+=0.0702 12
$(9.5 \times 10^{2} \ddagger 5)$	1310.3?		1.73 22	7.35 8	1.73 22	εK=0.743 3; εL=0.1890 19; εM+=0.0681 9
$(1.00 \times 10^3 5)$	1264.21		0.35 5	8.09 8	0.35 5	εK=0.7452 25; εL=0.1874 17; εM+=0.0674 8
$(1.03 \times 10^3 5)$	1228.66		0.59 8	7.89 8	0.59 8	εK=0.7468 23; εL=0.1863 16; εM+=0.0669 7
$(1.09 \times 10^3 5)$	1174.4		0.092 16	8.75 9	0.092 16	εK=0.7489 20; εL=0.1848 14; εM+=0.0663 6
$(1.23 \times 10^3 5)$	1028.57		0.24 4	8.45 9	0.24 4	εK=0.7537 15; εL=0.1814 11; εM+=0.0648 5
$(1.27 \times 10^3 5)$	985.53		2.3 3	7.50 7	2.3 3	εK=0.7549 14; εL=0.1806 10; εM+=0.0645 5
$(1.28 \times 10^3 5)$	983.09		0.26 6	8.45 11	0.26 6	εK=0.7550 14; εL=0.1806 10; εM+=0.0644 5
$(1.30 \times 10^3 5)$	962.85		54 6	6.15 7	54 6	εK=0.7555 14; εL=0.1802 10; εM+=0.0643 4
$(1.32 \times 10^3 5)$	941.50		0.64 10	8.09 8	0.64 10	εK=0.7560 13; εL=0.1798 9; εM+=0.0641 4
$(1.60 \times 10^3 5)$	661.38		0.19 10	$9.7^{1u} 3$	0.19 10	εK=0.7344 19; εL=0.1948 14; εM+=0.0708 6
$(1.65 \times 10^3 5)$	605.13	0.010 4	14.8 18	6.94 6	14.8 18	av E β =312 23; ε K=0.7620 7; ε L=0.1752 6; ε M+=0.06214 25
$(2.22 \times 10^3 5)$	44.11	0.04 4	66	≥7.2	66	av Eβ=559 22; εK=0.7631 5; εL=0.1698 5; εM+=0.05991 19
$(2.26 \times 10^3 5)$	0.0	0.08 8	11 11	≥7.0	11 11	av Eβ=578 22; εK=0.7627 6; εL=0.1694 5; εM+=0.05975 19

[†] Absolute intensity per 100 decays.
[‡] Existence of this branch is questionable.

$\gamma(^{238}{\rm Pu})$

I γ normalization: Normalization obtained from K x ray/G. $\gamma\gamma$, γ ce: 1972Ah04.

ω

ce intensities were normalized such that $\alpha(K)(962.8\gamma)=0.0035$ (E1 theory).

Eγ	x- Iγ (rel I(962.	ray: ative to 8γ)=100)							
99.5 1	82 5		Kαa	x rav	197	'2Ah04			
103.8 1	124 8		$K\alpha_1$	x ray	197	'2Ah04			
117.1 2	46 3		$K\beta_1'$	x ray	1972	2Ah04			
120.6 2	16 1		$K\beta_2'$	x ray	1972	2Ah04			
E_{γ}^{\dagger}	Ιγ #&	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_{f}^{π}	Mult.@	δ	α^{a}	Comments
44.1 <i>1</i>	0.23 3	44.11	2+	0.0	0+	E2		775	Mult.: α (L12)exp=296 30\$ L12:L3:M:N=68 7\$ 57 6\$ 43 5\$ 14.6 15. α : value given is the E2 theory value lowered by 3% (see 1987Ra01).
101.9 <i>1</i>	0.24 2	145.99	4+	44.11	2^{+}	E2		14.8	Mult.: from L3/L12=0.62 9\$.
									I_{γ} : photon obscured by K x rays. Value is from Ice(L)=2.6 3 and α (L). From an intensity balance at the 146 level one deduces $I\gamma$ =0.137 13, suggesting additional feeding to the 146 level.
301.5 1	1.80 15	962.85	1-	661.38	3-	E2		0.213	$\alpha(K)=0.0779\ 24;\ \alpha(L)=0.098\ 3;\ \alpha(M)=0.0268\ 8;\ \alpha(N+)=0.0102\ 3$
									Mult.: from α (K)exp=0.089 9 and K:L12:L3:M:N= 0.16 2:0.15 2:0.055 6:0.075 8: \approx 0.034.
324.2 3	0.22 3	985.53	2-	661.38	3-	M1+E2	2.8 8	0.29 6	$\alpha(K)=0.15$ 7; $\alpha(L)=0.084$ 8; $\alpha(M)=0.0224$ 17; $\alpha(N+)=0.0085$ 6 α : δ gives $\alpha=0.27$ +7-4.
									Mult.: $\alpha(L12)\exp\approx0.15$ and M/L12 ≈0.37 agree with mult=M1; however, $\alpha(K)\exp$ in β^- decay gives mult=M1+E2 with δ =2.8 8. If mult were M1, the ce(K) line would have had an intensity of 0.18, a value large enough to have been seen. Note that the ce(K) line of the 301.5 γ , with Ice(K)=0.16 is reported. The evaluators adopt the assignment from β^- decay.
357.7 1	7.5 5	962.85	1-	605.13	1-	M1+E2	2.43 20	0.224 15	$\alpha(K)=0.139 \ 13; \ \alpha(L)=0.0620 \ 17; \ \alpha(M)=0.0163 \ 4; \ \alpha(N+)=0.00618 \ 14$ Mult., δ : from $\alpha(K)$ exp=0.16 2, L12/K=0.41 4, and also $\alpha(K)$ exp=0.13 2 from β^- decay.
380.3 2	0.159 13	985.53	2-	605.13	1-	[M1]		0.665	$\alpha(K)=0.526 \ 16; \ \alpha(L)=0.104 \ 4; \ \alpha(M)=0.0254 \ 8; \ \alpha(N+)=0.0094 \ 3$
									 E_γ,I_γ: transition not observed. Iγ is from Iγ/Iγ(941γ)=0.0199 10 in β⁻ decay and Eγ is a rounded-off value from β⁻ decay. Mult.: from Ice(L12)≈0.035 and deduced Iγ, one gets α(L12)exp≈0.22 compared with theory values of 0.034 for E2 and 0.10 for M1. The placement requires ΔJ=1 and Δπ=no.
515.4 2	1.40 13	661.38	3-	145.99	4+	E1+M2	0.114 17	0.023 3	$\alpha(\bar{K})=0.0178\ 22;\ \alpha(L)=0.0039\ 6$ Mult., δ : from $\alpha(K)\exp=0.018\ 2.\ 1990Si11$ report $\delta=-0.2\ +2-5$ in β^- decay.

					23	³⁸ Am ε decay	(continued)		
						γ ⁽²³⁸ Pu) (co	ontinued)		
${\rm E_{\gamma}}^{\dagger}$	I_{γ} #&	E _i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	Mult. [@]	δ	α^{a}	$I_{(\gamma+ce)}^{\&}$	Comments
561.0 <i>1</i>	39.0 23	605.13	1-	44.11 24	E1		0.0116		α (K)=0.0093 3; α (L)=0.00170 6 Mult.: from α (K)exp=0.0092 10. M/L \approx 0.087.
^x 565.8 3	0.55 7								
574.0 3	0.4 1	1559.85	1-	985.53 2-	M1+E2	3.2 5	0.055 6		$\alpha(K)=0.0385; \alpha(L)=0.01278$ Mult : from $\alpha(K)\exp=0.0384$
597.0.3	0.52.6	1559.85	1-	962.85 1	[M1+E2]		0.12.8		$\alpha(K) = 0.097; \alpha(L) = 0.02011$
605.1 <i>I</i>	27.0 16	605.13	1-	0.0 04	E1		0.0101		$\alpha(\mathbf{K}) = 0.00810 \ 25; \ \alpha(\mathbf{L}) = 0.00146 \ 5$
617.4 2	2.6 2	661.38	3-	44.11 2 ⁴	E1+M2	0.077 17	0.0122 13		Mult.: from α (K)exp=0.0078 8. K:L12:M=0.21 2:0.035 4:0.024 3. δ (M2/E1)<0.05. α (K)=0.0097 9; α (L)=0.00188 23
									Mult., δ : from α (K)exp=0.0096 <i>10</i> . 1990Si11 report $\delta = -0.2 + l - 2$ in β^{-} decay.
633.0 ^{‡b} 5	≈0.2	1596.4	(2^{+})	962.85 1-					
653.3 ^{‡b} 5	≈0.2	1636.42	1-	983.09 24					
658.4 2	0.64 7	1621.29	1-	962.85 1	E0+E2+M1		1.39 14		Mult.: from α(K)exp=1.08 11. K:L12:M=0.69 7:0.147
^x 665.2 2					E0				Mult.: no photon was observed. Ice(K)=0.052 6.
673.4 2		1636.42	1-	962.85 1-	E0			0.15 2	Mult.: no photons were observed.
									$I_{(\gamma+ce)}$: Ice(K)=0.12, Ice(L12)=0.026.
679.5 4	0.91 9	1621.29	1-	941.50 04	E1		0.00809		$\alpha = 0.00809; \ \alpha(K) = 0.00654 \ 20; \ \alpha(L) = 0.00117 \ 4$
x740 2					FO				Mult: from $\alpha(\mathbf{K}) \exp\{0.009$. Mult: no photon was observed. Lee(K)=0.024.3
821.5 4	1.1 <i>I</i>	1426.61	0^{+}	605.13 1	E0 E1		0.00574		α =0.00574; α (K)=0.00465 14; α (L)=0.00082 3
	0.40.0		a +				0.01=1		Mult.: from $\alpha(K) \exp < 0.008$.
(837.1 2)	0.13 3	983.09	2+	145.99 41	[E2]		0.0176		$\alpha(K)=0.0126 4$; $\alpha(L)=0.00375 12$ E. L.: transition was not observed in a decay. by is
									deduced from $I\gamma(837\gamma)/I\gamma(939\gamma)=1.06\ 25\ \text{in }\alpha$
									decay and $E\gamma$ is a rounded-off value from β^- decay
<u>8410</u>		1447 25	1-	605 12 1-	EO			0 106 11	and α decay.
841.94		1447.23	1	005.15 1	EU			0.100 11	$I_{(\alpha + \alpha)}$: Ice(K)=0.084.9 and assumptions that
									L/K=0.22 and $M+/L=0.3$.
(882.6 1)	0.0153 15	1028.57	2+	145.99 4 ⁴	E2		0.0159		$\alpha(K)=0.0115$ 4; $\alpha(L)=0.00328$ 10
									E_{γ} , I_{γ} : not observed in ε decay. E is a rounded-on value from β^- decay, and I_{γ} is from
									$I\gamma/I\gamma(984\gamma+1028\gamma)=0.01866 \ 19 \text{ in }\beta^- \text{ decay.}$
X00122	0 47 6								Mult.: from β^- decay.
884.3 3	0.476	941 50	0^{+}	44 11 24	(E2)		0.0154		$\alpha(K) = 0.0112.4$; $\alpha(L) = 0.00314.10$
071.0 2	2.02	211.00	Ŭ		(22)				Mult.: from $\alpha(K)$ exp \approx 0.008 mult=E1 or E2. The
x908 8 2	0787				M1		0.0646		placement requires $\Delta \pi = no$. $\alpha(K) = 0.0513 I_0 \alpha(L) = 0.0100 3$
700.0 2	0.707				1411		0.0010		Mult.: $\alpha(K)$ exp=0.055 6\$.

4

From ENSDF

L

$^{238}\mathrm{Am}\,\varepsilon$ decay (continued)

$\gamma(^{238}Pu)$ (continued)

E_{γ}^{\dagger}	Ι _γ #&	E _i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	Mult. [@]	δ	α^{a}	$I_{(\gamma+ce)}^{\&}$	Comments
918.7 <i>1</i>	82 5	962.85	1-	44.11 2+	E1		0.00471		α =0.00471; α (K)=0.00383 <i>12</i> ; α (L)=0.00067 <i>2</i> Mult.; from α (K)exp=0.0037 <i>4</i> . δ (M2/E1)<0.05.
935.2 [‡] <i>b</i> 3 939.0 2	≈0.3 0.121 <i>13</i>	1898.26? 983.09	2 ⁻ 2 ⁺	962.85 1 ⁻ 44.11 2 ⁺	E0+E2		4.4 4		I _{γ} : no photons were observed in ε decay. I γ is deduced from Ice(K)=0.42 4 and Ice(L)=0.082 δ (with M+/L taken as 0.3) and α =4 4 4 from
941.4 <i>1</i>	8.0 5	985.53	2-	44.11 2+	[E1+M2]	-0.17 +1-2	0.0081 5		β^- decay. Mult.: from β^- decay. α =0.0081 5; α (K)=0.0064 7; α (L)=0.00127 8 Mult., δ : from β^- decay.
941.5 2		941.50	0^{+}	$0.0 0^+$	E0			1.18 11	Mult.: no photons observed. Ice(K)=0.93 10, Ice(L12)=0.19 2
954.7 <i>3</i> 962.8 <i>1</i>	≈0.3 100	1559.85 962.85	1- 1-	$\begin{array}{ccc} 605.13 & 1^{-} \\ 0.0 & 0^{+} \end{array}$	[M1+E2] E1		0.035 <i>22</i> 0.00434		$\alpha(K)=0.028 \ 18; \ \alpha(L)=0.006 \ 3$ $\alpha=0.00434; \ \alpha(K)=0.00353 \ 11; \ \alpha(L)=0.00061 \ 2$ Mult.: from β^- decay. Ice(K) normalized to 0.35. K:L12:L3:M= (0.35):0.066
(983.0 3)	0.34 9	983.09	2+	0.0 0+	[E2]		0.0129		$\gamma \approx 0.005: 0.013 \ 2.$ $E_{\gamma}, I_{\gamma}: \text{ transition was not observed in } \varepsilon \text{ decay.}$ $I_{\gamma} \text{ is deduced from } I_{\gamma}/I_{\gamma}(939\gamma) = 2.8 \ 8 \text{ in } \alpha$ decay, and Eq. is from α decay.
984.0 5	0.41 5	1028.57	2+	44.11 2+	M1+E2	>+23	0.0129		$\alpha(K)=0.0096; \ \alpha(L)=0.00252 \ l$ Mult.: from β^- decay. $\alpha(K)\exp\approx 0.012$ in ε decay
1016.2 2	1.0 1	1621.29	1-	605.13 1-	E0+E2+M1		0.66 7		Mult.: from α (K)exp=0.51 5. K:L12:M=0.51 5:0 103 U 0 025 3
1028.5 4	0.41 6	1028.57	2^{+}	0.0 0+	E2		0.0119		$\alpha(K)=0.0089 \ 3; \ \alpha(L)=0.00226 \ 7$ Mult : from β^{-}_{-} decay
1031.3 <i>3</i>		1636.42	1-	605.13 1-	E0			0.188 19	Mult.: no photons were observed. $L_{1} = \frac{1}{2} \log(1/2) = 0.034$
^x 1097.3 3	1.1 <i>I</i>				(E2)		0.0105		$a_{(y+ce)}$. Ice(K)=0.165, Ice(L)=0.004. $a(K)=0.00793\ 24;\ a(L)=0.00194\ 6$ Mult: $a(K)=0.00793\ 24;\ a(L)=0.00194\ 6$
1118.2 <i>3</i> 1130.2 <i>5</i> 1174.5 <i>5</i>	0.63 7 0.18 <i>3</i> 0.15 <i>3</i>	1264.21 1174.4 1174.4	2^+ (2 ⁺) (2 ⁺)	$\begin{array}{ccc} 145.99 & 4^+ \\ 44.11 & 2^+ \\ 0.0 & 0^+ \end{array}$	[E2]		0.0102		$\alpha(K)=0.00768\ 23;\ \alpha(L)=0.00186\ 6$
1184.5 3	1.90 16	1228.66	0+	44.11 2+	E2		0.0091		α =0.0091; α (K)=0.00695 21; α (L)=0.00163 5 Mult.: from α (K)exp=0.0074 8. L12/K \approx 0.31
1220.1 <i>3</i> x1226.4 <i>3</i>	0.50 <i>6</i> 0.16 <i>3</i>	1264.21	2+	44.11 2+	E0+E2+M1		0.26 3		Mult.: from α (K)exp=0.21 2, L12/K=0.17 3.
1228.7 3		1228.66	0^+	0.0 0+	E0			0.175 16	Mult.: no photons were observed. $I_{(\gamma+ce)}$: Ice(K)=0.143 15, Ice(L12)=0.024 3.
$x_{1231.3}$ 3	0.15 3	1000 0/2	2-	((1.20			0.0005		
1237.0+0 3	0.89 8	1898.26?	2-	661.38 3-	MI		0.0285		$\alpha(K)=0.022777; \alpha(L)=0.00440744$ Mult.: from $\alpha(K)\exp=0.022.$

S

²³⁸Am ε decay (continued)

$\gamma(^{238}\text{Pu})$ (continued)

E_{γ}^{\dagger}	Ι _γ #&	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. [@]	α^{a}	$I_{(\gamma+ce)}$ &	Comments
1266.2 <i>3</i>	6.0 4	1310.3?	1+,2+	44.11	2+	M1	0.0268		α (K)=0.0213 7; α (L)=0.00413 13 Mult.: from α (K)exp=0.021 2. K:L12:M=0.123:0.02: \approx 0.0054.
1293.2 ^{‡b} 3	1.1 <i>1</i>	1898.26?	2^{-}	605.13	1-	M1	0.0254		$\alpha(K)=0.0202\ 6;\ \alpha(L)=0.00391\ 12$ Mult.: from $\alpha(K)\exp=0.020\ 2.\ L12/K\approx0.14.$
x1368.8 5	≈ 0.2	1447 25	1-	44 11	2+	E1	0.00220		$\alpha = 0.00220$; $\alpha(K) = 0.00187.6$; $\alpha(L) = 0.00032.1$
1403.2 5	2.4 2	1447.23	1	44.11	2	L1	0.00229		Mult.: from α (K)exp \approx 0.0013.
1414.0 3	≈0.1	1458.31	2+	44.11	2^{+}	E0+E2+M1	≈0.27		Mult.: from $\alpha(K) \exp \approx 0.22$. L12/K ≈ 0.18 . Ice(K)=0.022 3.
1426.6 3		1426.61	0^{+}	0.0	0^{+}	E0		0.093 10	Mult.: no photons were observed.
1447.3 3	1.5 1	1447.25	1-	0.0	0+	E1	0.00217		$I_{(y+ce)}$: Ice(K)=0.075 8, Ice(L12)=0.0133 14. α=0.00217; α(K)=0.00177 6; α(L)=0.00030 1 Mult.: from α(K)exp<0.002.
1450.4 ^{‡b} 5	≈0.2	1596.4	(2^{+})	145.99	4+				
1458.5 <i>3</i>	0.44 5	1458.31	2+	0.0	0^{+}		0.0062		
^x 1501.7 5						E0			Mult.: no photon was observed. Ice(K)=0.053 6.
1515.9 <i>3</i>	0.41 5	1559.85	1-	44.11	2^{+}				
^x 1551.0 5						E0			Mult.: no photon was observed. Ice(K)=0.008.
1552.2 <i>3</i>	0.26 4	1596.4	(2^{+})	44.11	2^{+}				
1560.0 <i>3</i>	0.34 5	1559.85	1-	0.0	0^{+}				
1577.3 <i>3</i>	10.3 8	1621.29	1-	44.11	2+	E1	0.00154		α =0.00154; α (K)=0.00154 5 Mult.: from α (K)exp \approx 0.001.
1592.5 3	1.70 17	1636.42	1-	44.11	2^{+}				
1596.5 5	≈0.08	1596.4	(2^{+})	0.0	0^{+}				
1607.0 4	0.34 5	1651.2	1,2 ⁺	44.11	2^{+}				
1621.4 4	≈0.06	1621.29	1-	0.0	0^{+}				
1636.6 <i>3</i>	4.5 4	1636.42	1-	0.0	0^{+}	E1			Mult.: from $\alpha(K) \exp \approx 0.0013$.
1651.4 5	0.06 2	1651.2	$1,2^{+}$	0.0	0^{+}				
1682.2 <i>3</i>	1.70 17	1726.36	$1,2^{+}$	44.11	2+	E1,E2			Mult.: from $\alpha(K) \exp \approx 0.0029$.
1726.4 3	1.0 <i>I</i>	1726.36	$1,2^{+}$	0.0	0^{+}				
1739.4 4	0.10 2	1783.6	$1,2^{+}$	44.11	2+				
^x 1761.5 4	0.32 4								
1783.6 4	0.21 5	1783.6	$1,2^{+}$	0.0	0^+				
^x 1789.0 5	≈0.04								
^x 1835.1 5	0.12 3								

[†] Measurements of 1972Ah04 (semi) are given here. $E\gamma$'s measured by 1972PoZS agree with those of 1972Ah04.

[‡] Unplaced by authors. Placement suggested by the evaluators on the basis of energy fit (2002Ch52). [#] From 1972Ah04. Measurements of 1972PoZS are in agreement with those of 1972Ah04. [@] From ce measurements of 1972Ah04 (semi) in ²³⁸Am ε decay, and from ²⁴²Cm α decay, ²³⁸Np β decay data.

[&] For absolute intensity per 100 decays, multiply by 0.28 3.

6

$^{238}\mathrm{Am}\,\varepsilon$ decay (continued)

 $\gamma(^{238}Pu)$ (continued)

^{*a*} Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

^b Placement of transition in the level scheme is uncertain.

 $x \gamma$ ray not placed in level scheme.

238 Am ε decay

 $^{238}_{94}\rm{Pu}_{144}$

238 Am ε decay

