²³⁹Pu(²⁰⁷Pb,²⁰⁸Pbγ) **2007WaZV**

History					
Туре	Author	Citation	Literature Cutoff Date		
Full Evaluation	E. Browne, J. K. Tuli	NDS 127, 191 (2015)	1-Jun-2014		

2007WaZV: ²³⁹Pu(²⁰⁷Pb,²⁰⁸Pb γ), Gammasphere; measured $\gamma\gamma\gamma$. Extended Yrast band beyond 26⁺ given by 1993De12. Observed K^{π}=0⁻ octupole band. No transitions observed from Yrast to K^{π}=0⁻ band. The intesities given relative within the same

band. 1993De12: (¹¹⁷Sn,¹¹⁸Snγ) E(¹¹⁷Sn)=630 MeV. Includes ²³⁹Pu(⁹⁰Zr,⁹¹Zr) data as quoted by 1993De12 from M. A. Stoyer, LBL-29357 (1990), Reference 3 in 1993De12.

²³⁸ Pu Levels	

E(level) [†]	\mathbf{J}^{π}	E(level) [†]	\mathbf{J}^{π}	E(level) [†]	\mathbf{J}^{π}	E(level) [†]	\mathbf{J}^{π}
0.0‡	0^{+}	771.3 [‡] <i>13</i>	10+	1944.3 [#] 14	15-	3716.2 [‡] <i>17</i>	24+
43.4 [‡] 10	2^{+}	910.9 [#] 13	7^{-}	2241.2 [‡] 15	18^{+}	4104.8 [#] 17	25^{-}
145.3 [‡] 12	4+	1077.2 [‡] 14	12^{+}	2307.8 [#] 15	17^{-}	4262.8 [‡] 18	26^{+}
302.2 [‡] 13	6+	1101.8 [#] <i>13</i>	9-	2701.8 [‡] 16	20^{+}	4622.8 [#] 19	27^{-}
511.9 [‡] <i>13</i>	8+	1339.8 [#] 14	11^{-}	2708.3 [#] 15	19-	4832.4 [‡] <i>19</i>	28^{+}
(605.2 [#])	1-	1426.0 [‡] <i>14</i>	14^{+}	3143.4 [#] 16	21-	5161.3 [#]	(29 ⁻)
(661.4 [#])	3-	1621.3 [#] 14	13-	3194.5 [‡] 16	22^{+}	5426.5? [‡] 9	(30^{+})
(763.2 [#])	5-	1815.0 [‡] <i>15</i>	16+	3610.2 [#] 16	23-		

[†] From least-squares fit to $E\gamma$.

[‡] Band(A): g.s. Band.

[#] Band(B): $K^{\pi}=0^{-}$ Octupole Vibrational Band.

Eγ	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	Mult. [‡]	Comments
(43.4)		43.4	2+	$0.0 \ 0^{+}$		
101.9 5	100 13	145.3	4^{+}	43.4 2+	E2	
156.9 5	125 25	302.2	6+	145.3 4+	E2	$A_2=0.25 \ 13; \ A_4=-0.2 \ 2$
190.8 6	84 26	1101.8	9-	910.9 7-		
209.70 5	155 <i>34</i>	511.9	8+	302.2 6+	E2	$A_2=0.24$ 3; $A_4=-0.11$ 4
238.0 6	130 44	1339.8	11-	1101.8 9-	E2	$A_2=0.21\ 2;\ A_4=-0.09\ 2$
259.4 5	164 36	771.3	10^{+}	511.9 8+	E2	$A_2=0.24$ 6; $A_4=-0.17$ 10
262.6 [#]		1339.8	11^{-}	$1077.2 \ 12^+$		E_{γ} : From authors' figure, not in their table.
281.5 6	163 63	1621.3	13-	1339.8 11-		$A_2=0.25$ 5; $A_4=-0.13$ 9
305.9 5	135 35	1077.2	12^{+}	771.3 10+	E2	$A_2=0.16 \ 3; \ A_4=-0.13 \ 4$
323.1 5	150 66	1944.3	15^{-}	1621.3 13-		
330.5 [#] 6	49 16	1101.8	9-	771.3 10+		
348.8 5	112 30	1426.0	14^{+}	$1077.2 \ 12^+$	E2	$A_2=0.24$ 5; $A_4=-0.14$ 7
363.5 5	127 61	2307.8	17^{-}	1944.3 15-	E2	$A_2=0.4$ 3; $A_4=-0.05$ 45
389.0 5	89 25	1815.0	16^{+}	1426.0 14+	E2	$A_2=0.18 \ II; A_4=-0.08 \ I7$
400.5 5	107 52	2708.3	19-	2307.8 17-	E2	$A_2=0.31$ 16; $A_4=-0.1$ 2
415.7 ^{#} 5	33 19	3610.2	23-	3194.5 22+		
426.2 5	57 17	2241.2	18^{+}	1815.0 16+	E2	$A_2=0.335; A_4=-0.158$
435.1 5	100 49	3143.4	21-	2708.3 19-	E2	$A_2=0.14$ 18; $A_4=-0.09$ 24
441.6 [#] 5	38 20	3143.4	21^{-}	2701.8 20+		
460.6 5	47 14	2701.8	20^{+}	2241.2 18+	E2	$A_2=0.24$ 4; $A_4=-0.04$ 6
466.8 5	82 28	3610.2	23-	3143.4 21-		$A_2 = 0.4 2; A_4 = -0.2 3$

 $\gamma(^{238}\text{Pu})$

Continued on next page (footnotes at end of table)

239 Pu(207 Pb, 208 Pb γ) 2007WaZV (continued) γ (²³⁸Pu) (continued) I_{γ}^{\dagger} Mult.[‡] Eγ E_i(level) \mathbf{J}_i^{π} \mathbf{E}_{f} \mathbf{J}_{f}^{π} Comments 467.1 5 41 69 2708.3 19-2241.2 18+ 492.7 5 26 10 3194.5 22^{+} 2701.8 20+ E2 A2=0.22 4; A4=-0.07 6 17^{-} 492.8 5 58 58 2307.8 1815.0 16+ 53 23 25^{-} 3610.2 23-A₂=0.5 3; A₄=-0.1 5 494.6 6 4104.8 E2 4622.8 27^{-} 4104.8 25-518.07 35 16 518.3 5 86 43 1944.3 15^{-} 1426.0 14+ 521.7 5 20.8 3716.2 24^{+} 3194.5 22+ E2 A2=0.20 9; A4=-0.15 11 538.5[#] 7 4622.8 27-5161.3 (29^{-}) 544.1 6 119 53 1077.2 12+ A₂=-0.26 16; A₄=-0.02 22 1621.3 13-E1 3716.2 24+ 546.6 5 14 6 4262.8 26^{+} 568.5 6 175 51 1339.8 11^{-} 771.3 10+ A2=-0.20 14; A4=0.05 17 E1 569.6 6 84 4832.4 28^{+} 4262.8 26+ 589.9 5 140 33 9-511.9 8+ E1 A₂=-0.4 2; A₄=0.1 2 1101.8 592.2[#] 6 2.0 14 5426.5? (30^{+}) 4832.4 28+ 608.7[#] 5

[†] Relative to $I_{\gamma}(101.9\gamma)$ in g.s. band and $I_{\gamma}(435.1\gamma)$ in $K^{\pi}=0^{-}$ band.

 7^{-}

[‡] From $\gamma(\theta)$. Quadrupole transitions are assumed to be E2 and dipoles as E1.

302.2 6+

[#] Placement of transition in the level scheme is uncertain.

910.9

99 25

2

²³⁸₉₄Pu₁₄₄

²³⁹Pu(²⁰⁷Pb,²⁰⁸Pbγ) 2007WaZV

²³⁸₉₄Pu₁₄₄