$^{242}\mathbf{Cm}~\alpha$ decay

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	E. Browne, J. K. Tuli	NDS 127, 191 (2015)	1-Jun-2014

Parent: ²⁴²Cm: E=0.0; $J^{\pi}=0^+$; $T_{1/2}=162.86 \text{ d } 8$; $Q(\alpha)=6215.56 8$; $\% \alpha \text{ decay}=100.0$ ²⁴²Cm- $T_{1/2}$: From 2002Ch52 evaluation. $Q(\alpha) 6215.56 8 \text{ from 1995Au04.}$ $\alpha \gamma$: 1963Bj03, 1964Ba31. $\gamma \gamma$: 1960As10, 1955As64. Ag(θ): 1953Mo74. $T_{1/2}$ from 1986LoZT.

X-Rays: $M_{\alpha,\beta}:L_e:L_{\alpha}:L_{\eta,\beta}:L_{\gamma}=$ 30 3:4.9 8: 66. 7: 100 16: 23. 3 (1990Po14).

²³⁸Pu Levels

E(level)	$J^{\pi \dagger}$	T _{1/2}	Comments
0.0	0^{+}	87.74 y 4	
44.08 <i>3</i>	2^{+}	177 ps 5	T _{1/2} : from 1970To08. Other: 183 ps 15 (1960Be25).
146.00 5	4+		
303.42 7	6+		
513.62 16	8+		
605.08 7	1-		
661.28 <i>11</i>	3-		
763.22 12	5-		
941.44 9	0^{+}		
962.72 8	1-		
983.00 9	2^{+}		
1018.6? <i>3</i>			
1028.62 5	2^{+}		
1125.79 17	(4^{+})		
1228.69 22	0^{+}		
1264 29 22	2^{+}		

[†] From Adopted Levels.

α radiations

$\mathrm{E}\alpha^{\dagger}$	E(level)	$I\alpha^{\ddagger\#}$	HF	Comments
4869.43 23	1264.29	5.2×10 ⁻⁷ 15	5.9 18	
4904.44 23	1228.69	5.5×10 ⁻⁷ 15	10 <i>3</i>	
5005.64 19	1125.79	3.1×10 ⁻⁷ 8	88 <i>23</i>	
5101.21 10	1028.62	3.7×10 ⁻⁶ 8	32 7	
5111.1 <i>3</i>	1018.6?	$\leq 2 \times 10^{-7}$	≥686	
5146.07 12	983.00	$1.7 \times 10^{-6} 4$	137 <i>33</i>	Ia: 1966Ba07 report Ia $\leq 5 \times 10^{-6}$.
5165.95 16	962.72	1.13×10 ⁻⁶ 21	278 52	
5186.95 <i>12</i>	941.44	3.6×10 ⁻⁵ 7	11.9 24	I α : weighted average of 3.4×10 ⁻⁵ 8 (1963Bj01), 2.5×10 ⁻⁵ 8 (1966Ba07, with a 30% uncertainty assigned by the evaluators), and 3.5×10 ⁻⁵ 7 from the γ intensities.
5366.22 15	763.22	$2.2 \times 10^{-7} 3$	24432	
5462.47 14	661.28	1.26×10 ⁻⁵ 24	1712 32	
5517.75 11	605.08	2.5×10 ⁻⁴ 5	183 22	I α : weighted average of 2.8×10 ⁻⁴ 5 (1963Bj01), 2.5×10 ⁻⁴ 6 (1966Ba07, with a 20% uncertainty assigned by the evaluators), and 2.6×10 ⁻⁴ 5 from the γ intensities.
5607.76 16	513.62	2×10^{-5}	7544	Eα: 1966Ba07 report 5614.
			Continue	ed on next page (footnotes at end of table)

$^{242}\mathbf{Cm}~\alpha$ decay (continued)

α radiations (continued)

$E\alpha^{\dagger}$	E(level)	$I\alpha^{\ddagger\#}$	HF	Comments		
				I <i>α</i> : from 1966Ba07.		
5816.39 11	303.42	0.0046 5	458 50	Eα: measured values are 5811 (1953As14), 5809 2 (1958Ko87), and 5816 (1966Ba07).		
				Ia: from 1958Ko87. Other: 0.0046 (1966Ba07).		
5969.24 9	146.00	0.035 2	395 <i>23</i>	Eα: measured values are 5964 (1953As14), 5961 2 (1958Ko87), 5971 3 (1963Dz07), and 5971.4 (1966Ba07).		
				<i>Iα</i> : from 1963Dz07. Other: 0.035 (1953As14), 0.030 <i>I</i> (1958Ko87), 0.036 (1966Ba07).		
6069.43 12	44.08	25.92 6	1.733 5	$E\alpha$: energy adjusted by 1991Ry01 due to change in calibration energy. I α : from 1998Ya17. Others: 26.3 5 (1953As14), 26.5 5 (1958Ko87), and 25.8		
6112.72 8	0.0	74.08 7	1.000	(1966Ba07). E α : from 1991Ri01. I α : from 1998Ya17. Others: see 44 level. Σ I(a to g.s. +44 level)=100.		

[†] Except for the g.s. and 44 level, the E α values are obtained from Q(α) and the E(level) values. Experimental values are listed where available. Values are reported by 1971Gr17 (s), 1971Bb10 (s), 1966Ba07 (s), 1963Bj03 ($\alpha\gamma$), 1963Dz07 (s), 1958Ko87 (s), and 1953As14 (s).

[±] Deduced from level scheme of 1981Le15, unless otherwise noted. See also 2002Ch52.
[#] Absolute intensity per 100 decays.

 $\gamma(^{238}\text{Pu})$

I γ normalization, I(γ +ce) normalization: 1981Le15 deduce I γ (561 γ)=0.00015% 4 based on their relative I γ data and a previous unpublished value by the authors, based on $\alpha\gamma$, of the sum of intensities per 100 α decays for the 515, 561, 605, and 617 γ 's.

E_{γ}^{\dagger}	I_{γ} [‡] <i>b</i>	E _i (level)	\mathbf{J}_i^{π}	$E_f J_f^{\pi}$	Mult. [#]	δ#	α^{c}	$I_{(\gamma+ce)}^{b}$	Comments
44.08 [@] 3	0.03345 ^{&} 8	44.08	2+	0.0 0+	E2		775	25.96 6	ce(L)/(γ +ce)=0.729 6; ce(M)/(γ +ce)=0.202 4; ce(N+)/(γ +ce)=0.067 2 α : the value given is the E2 theory value lowered by 3% (see 1987Ra01). I $_{\gamma}$: an unweighted average of the directly measure I γ values gives I γ =0.033 3.
101.93 4	0.00253& 12	146.00	4+	44.08 2+	E2		14.8	0.040 & 2	I_{γ} : a weighted average of the directly measured values is 0.0033 8. An unweighted average is 0.0055 13.
157.42 5	0.00142 ^{&} 15	303.42	6+	146.00 4+	[E2]		2.24	0.0046 ^{&} 5	I_{γ} : a weighted average of the directly measured values is 0.0020 5.
210.20 14	1.2×10^{-5}	513.62	8+	303.42 6+	E2		0.73	2×10^{-5}	E_{γ} : from in-beam studies. Not seen in α decay.
336.38 15	7×10 ⁻⁷ 3	941.44	0^{+}	605.08 1-	[E1]				I_{γ} : $I_{\gamma}(336)/I_{\gamma}(561)=0.0045$ 15.
357.62 [@] 7	4.5×10 ⁻⁸ 9	962.72	1-	605.08 1-	M1+E2	2.43 20	0.224 15		I _γ : from Iγ/Iγ(919γ+963γ)=0.0424 11 in β ⁻ decay. Note that there is an unplaced 358.0 5 transition with Iγ= 5.9×10^{-7} 25, part of which probably corresponds to the 358γ from the 962 level.
459.80 20	6×10^{-8} 3	763.22	5-	303.42 6+					I_{γ} : $I_{\gamma}(459.8)/I_{\gamma}(561)=0.00038$ 16.
515.25 19	4.5×10^{-6} 12	661.28	3-	146.00 4+	E1+M2	0.114 17	0.023 3		I_{γ} : $I_{\gamma}(515)/I_{\gamma}(561)=0.0297$ 20.
561.02 10	$1.5 \times 10^{-4} 4$	605.08	1-	44.08 2+	E1		0.0116		
605.04 10	1.0×10 + 3	605.08	1	0.0 0	EI		0.0101		I_{γ} : $I_{\gamma}(605)/I_{\gamma}(561)=0.698\ 20.$
617.22^{u} 12	$7.9 \times 10^{-6} da$ 21	661.28	3-	44.08 2+	E1+M2	0.077 17	0.0122 13		I_{γ} : $I_{\gamma}(617)/I_{\gamma}(561)=0.0525\ 20.$
617.22 ^{<i>a</i>} 12	1.6×10^{-7}	763.22	5-	146.00 4+					I_{γ} : $I_{\gamma}(617)/I_{\gamma}(561)=0.0011.$
837.01 15	$1.9 \times 10^{-7} 6$	983.00	2+	146.00 4+	[E2]		0.0176		I_{γ} : $I_{\gamma}(837)/I_{\gamma}(561)=0.00124\ 20.$
(882.63-3)	6.7×10 ⁻⁶ 15	1028.62	2*	146.00 4+	(E2)		0.0159		E_{γ}, I_{γ} : not seen in α decay. E is from β ⁻ decay, and Iγ is from Iγ/Iγ(984γ+1028γ)=0.01866 19 in β ⁻ decay.
897.33 10	$2.2 \times 10^{-5} 6$	941.44	0^+	44.08 2+	(E2)		0.0154		I_{γ} : $I_{\gamma}(897)/I_{\gamma}(561)=0.145$ 10.
918.7 2	5.4×10^{-7} 15	962.72	1-	44.08 2+	E1		0.00471		I_{γ} : $I_{\gamma}(918)/I_{\gamma}(561)=0.0036$ 3.
938.91 10	1.8×10 ⁻⁷ 6	983.00	2+	44.08 2+	E0+E2		4.4 4		α: from β^- decay. I _γ : Iγ(939)/Iγ(561)=0.00117 20.

ω

242 Cm α decay (continued)									
						γ ⁽²³⁸ Pu) (continued)		
${\rm E_{\gamma}}^{\dagger}$	$I_{\gamma}^{\ddagger b}$	E _i (level)	\mathbf{J}_i^{π}	$E_f J_f^{\pi}$	Mult. [#]	δ#	α ^{C}	$I_{(\gamma+ce)}^{b}$	Comments
941.5 2		941.44	0+	0.0 0+	E0			1.3×10 ⁻⁵ 4	E _γ : from ε decay. I _(γ+ce) : from I(γ+ce)/Iγ(897γ)=0.59 8 in ε decay. 1960As10 report 0.62 in α decay. The value of 1.4 2 in β^- decay appears to be discrepant.
962.8 2	5.3×10 ⁻⁷ 15	962.72	1^{-}	$0.0 0^+$	E1		0.00434		I_{γ} : $I_{\gamma}/I_{\gamma}(561\gamma) = 0.0035 \ 3.$
974.5 ^e 3	$\leq 2 \times 10^{-7}$	1018.6?		44.08 2+					,
979.80 20	2.6×10 ⁻⁷ 8	1125.79	(4^{+})	146.00 4+					I_{γ} : $I_{\gamma}(979)/I_{\gamma}(561)=0.00173 \ 30.$
983.0 <i>3</i>	5.0×10 ⁻⁷ 18	983.00	2^{+}	$0.0 0^+$	[E2]		0.0129		I_{γ} : $I_{\gamma}(983)/I_{\gamma}(561)=0.0033$ 8.
984.5 <i>1</i>	2.0×10 ⁻⁶ 6	1028.62	2+	44.08 2+	M1+E2	>+23	0.00129		I_{γ} : $I_{\gamma}(984)/I_{\gamma}(561)=0.0131$ 20.
1028.5 2	$1.6 \times 10^{-6} 5$	1028.62	2^{+}	$0.0 0^+$	E2		0.0119		I_{γ} : $I_{\gamma}(1028)/I_{\gamma}(561)=0.0105$ 10.
1081.7 <i>3</i>	5.0×10 ⁻⁸ 20	1125.79	(4^{+})	44.08 2+					I_{γ} : $I_{\gamma}(1081)/I_{\gamma}(561)=0.00033$ 10.
1118.3 <i>3</i>	1.7×10 ⁻⁷ 9	1264.29	2+	146.00 4+	[E2]				I_{γ} : $I_{\gamma}(1118)/I_{\gamma}(561)=0.0011$ 5.
1184.6 <i>3</i>	5.0×10^{-7} 15	1228.69	0^{+}	44.08 2+	E2				I_{γ} : $I_{\gamma}(1184)/I_{\gamma}(561)=0.0033$ 4.
1220.2 3	2.8×10^{-7} 9	1264.29	2+	44.08 2+	E0+E2+M1		0.26 3		I_{γ} : $I_{\gamma}(1220)/I_{\gamma}(561)=0.00187$ 30.
(1228.7 3)		1228.69	0^{+}	$0.0 0^+$	E0			4.6×10 ⁻⁸ 15	E_{γ} : from ε decay.
									$I_{(\gamma+ce)}$: from $I_{(\gamma+ce)}/I_{\gamma}(1184\gamma)=0.092$ 11 in ε decay.

4

[†] From 1981Le15, except where noted otherwise.

[‡] From 1981Le15, except where noted otherwise.

[#] From adopted gammas. ce measurements have been made in α decay by 1952Du12, 1956Ba95, 1956Sm18, 1960As10, and 1965Ak02.

[@] From β^- decay.

& $I(\gamma+ce)$ is deduced from the requirement of an intensity balance utilizing the γ branchings and the γ and α feedings. I γ is then deduced from $I(\gamma+ce)$ and α .

^{*a*} 1981Le15 report E=617.22 *12* with $I\gamma/I\gamma(561\gamma)=0.0536$ 20 for a doubly placed transition. The authors divide the intensity on the basis of model-dependent

arguments.

^b Absolute intensity per 100 decays.

^c Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

^d Multiply placed with intensity suitably divided.

^e Placement of transition in the level scheme is uncertain.

 $^{238}_{94} Pu_{144}\text{-}4$

 $^{238}_{94}\rm{Pu}_{144}\text{-}5$

242 Cm α decay

 $^{238}_{94}\rm{Pu}_{144}$

5