NSR Query Results

Output year order : Descending
Format : Normal

NSR database version of May 20, 2024.

Search: Author = S.Patra

Found 170 matches.

    Showing 1 to 100.


Back to query form

2024RA16      Phys.Rev. C 109, 044613 (2024)

Sh.Rana, M.Bhuyan, S.K.Patra, R.Kumar

Nuclear incompressibility and its enduring impact on fusion cross sections

doi: 10.1103/PhysRevC.109.044613
Citations: PlumX Metrics

2024TA02      Nucl.Phys. A1042, 122805 (2024)

N.S.Tawade, R.Tripathi, T.N.Nag, S.Patra, C.S.Datrik, P.K.Pujari, R.G.Thomas, G.Mishra, A.Kumar, S.De, H.Kumawat

Measurement of fast neutron induced (n, γ) reaction cross-section of 152Sm, 154Sm and 150Nd in the energy range of 0.8 to 2 MeV

NUCLEAR REACTIONS 152,154Sm, 150Nd, 86Sr, 127I(n, γ), Sr(n, n')87Sr, E=0.8-2 MeV; measured reaction products, Eγ, Iγ; deduced σ and uncertainties. Comparison with available data. Folded tandem ion accelerator (FOTIA), Bhabha Atomic Research Centre, Mumbai, India.

doi: 10.1016/j.nuclphysa.2023.122805
Citations: PlumX Metrics

2023KA03      Phys.Rev. C 107, 014613 (2023)

S.Kaur, N.Kaur, R.Kaur, B.B.Singh, S.K.Patra

Fusion enhancement within a collective clusterization approach applied to the isotopic chain of neutron-rich light-mass compound nuclei

NUCLEAR REACTIONS 12C(12C, X)24Mg, 12C(13C, X)25Mg, 12C(14C, X)26Mg, 12C(15C, X)27Mg, E(cm)=10-15 MeV; calculated fusion σ, fragment mass distribution from Mg compound nucleus fragmentation, fragmentation potential, cluster preformation probability, scattering potential, variation of neck length parameter. Calculations in the framework of dynamical cluster decay model (DCM). Comparison to experimental data.

doi: 10.1103/PhysRevC.107.014613
Citations: PlumX Metrics

2023PA24      Nucl.Phys. A1038, 122722 (2023)

J.A.Pattnaik, R.N.Panda, M.Bhuyan, S.K.Patra

Surface and decay properties of newly synthesized 207, 208Th isotopes for various α-decay chains

RADIOACTIVITY 207Th, 203Ra, 199Rn, 195Po, 208Th, 204Ra, 200Rn, 196Po(α); analyzed available data; deduced the ground, first excited, and second excited states binding energies using the effective field theory motivated relativistic mean-field based IOPB-I force parameter.

doi: 10.1016/j.nuclphysa.2023.122722
Citations: PlumX Metrics

2023PA27      Pramana 97, 136 (2023)

J.A.Pattnaik, K.C.Naik, R.N.Panda, M.Bhuyan, S.K.Patra

Structure and reaction studies of Z-120 isotopes using non-relativistic and relativistic mean-field formalisms

NUCLEAR STRUCTURE Z=120; calculated neutron, proton and total density distributions, nuclear charge radius and neutron skin thickness, neutron separation energy and pairing gap, symmetry energy and its coefficients within the effective field theory motivated relativistic mean-field (E-RMF) and the non-relativistic Skyrme–Hartree–Fock (SHF) approaches.

doi: 10.1007/s12043-023-02619-9
Citations: PlumX Metrics

2023RA06      Eur.Phys.J.Plus 138, 467 (2023)

A.A.Rather, M.Ikram, I.A.Rather, M.Imran, A.A.Usmani, B.Kumar, K.P.Santhosh, S.K.Patra

Theoretical studies on structural properties and decay modes of 284-375119 isotopes

RADIOACTIVITY 284,285,286,287,288,289,290,291,292,293,294,295,296,297,298,299,300,301,302,303,304,305,306,307,308,309,310,311,312,313,314,315,316,317,318,319,320,321,322,323,324,325,326,327,328,329,330,331,332,333,334,335,336,337,338,339,340,341,342,343,344,345,346,347,348,349,350,351,352,353,354,355,356,357,358,359,360,361,362,363,364,365,366,367,368,369,370,371,372,373,374,375119(α), (SF); calculated T1/2, binding energy, quadrupole deformation parameter, separation energies, density profile and shape co-existence within the axially deformed relativistic mean field with NL3* parametrisation.

doi: 10.1140/epjp/s13360-023-03959-6
Citations: PlumX Metrics

2022BH05      Phys.Rev. C 106, 044602 (2022)

M.Bhuyan, S.Rana, N.Jain, R.Kumar, S.K.Patra, B.V.Carlson

Medium-dependent relativistic NN potential: Application to fusion dynamics

NUCLEAR REACTIONS 40Ca(16O, X), E(cm)=20-40 MeV;58Ni(40Ca, X), E(cm)=65-100 MeV;90Zr(40Ca, X), E(cm)=65-120 MeV;144Sm(16O, X), E(cm)=55-80 MeV;208Pb(16O, X), E(cm)=70-90 MeV;208Pb(48Ca, X), E(cm)=170-220 MeV; calculated positions and heights of the fusion barriers, fusion σ(E). Calculations using R3Y NN potential described in terms of density-dependent nucleonmeson couplings within the framework of the relativistic-Hartree-Bogoliubov (RHB) approach. Comparison to the available experimental data and calculations using different forms of the NN potential (R3Y, DDR3Y, M3Y, and DDM3Y).

doi: 10.1103/PhysRevC.106.044602
Citations: PlumX Metrics

2022JA07      Phys.Rev. C 105, 034605 (2022)

S.Jain, R.Kumar, S.K.Patra, M.K.Sharma

Investigation of octupole deformed fragments decaying from even-even isotopes of 222-230Th

NUCLEAR REACTIONS 208Pb(16O, X)224Th*, E*=22.65-25.29 MeV; 208Pb(14O, X)222Th*, (18O, X)226Th*, (20O, X)228Th*, (22O, X)230Th*, E*=24.37 MeV; calculated fragmentation potentials and preformation probabilities as functions of mass and charge distributions, fission σ(E) using dynamical cluster-decay model (DCM), with collective clusterization approach of quantum mechanical fragmentation theory, including quadrupole (β2) and octupole (β3) deformations of fission fragments. Comparison with available experimental data.

doi: 10.1103/PhysRevC.105.034605
Citations: PlumX Metrics

2022KA06      Nucl.Phys. A1018, 122361 (2022)

S.Kaur, R.Kaur, B.B.Singh, S.K.Patra

Decay analysis of 24, 25Mg* compound nuclei

NUCLEAR REACTIONS 12C(12C, X)24Mg, 12C(13C, X)25Mg, E not given; analyzed available data; deduced preformation probabilities, σ, level density parameters.

doi: 10.1016/j.nuclphysa.2021.122361
Citations: PlumX Metrics

2022KU15      Phys.Rev. C 105, 045804 (2022)

A.Kumar, H.C.Das, J.A.Pattnaik, S.K.Patra

Systematic study for the surface properties of neutron stars

doi: 10.1103/PhysRevC.105.045804
Citations: PlumX Metrics

2022PA04      Phys.Rev. C 105, 014318 (2022)

J.A.Pattnaik, J.T.Majekodunmi, A.Kumar, M.Bhuyan, S.K.Patra

Appearance of a peak in the symmetry energy at N=126 for the Pb isotopic chain within the relativistic energy density functional approach

NUCLEAR STRUCTURE 180,190,208,236,266Pb; calculated relativistic mean field densities and weight functions using the NL3 and G3 parameter sets. 180,182,184,186,188,190,192,194,196,198,200,202,204,206,208,210,212,214,216,218,220,222,224,226,228,230,232,234,236,238,240,242,244,246,248,250,252,254,256,258,260,262,264,266Pb; calculated nuclear symmetry energies using the relativistic energy density and Bruckner energy density functionals, with G3 and NL3 parameter sets, surface and volume symmetry using Danielewicz's liquid drop prescription with G3 and NL3 parameter sets. Coherent density fluctuation model parametrization procedure based on newly derived relativistic energy density functional by 2021Ku07: Phys. Rev. C 103, 024305 from the effective field theory.

doi: 10.1103/PhysRevC.105.014318
Citations: PlumX Metrics

2022PA06      Can.J.Phys. 100, 102 (2022)

J.A.Pattnaik, R.N.Panda, M.Bhuyan, S.K.Patra

Surface properties for Ne, Na, Mg, Al, and Si isotopes in the coherent density fluctuation model using the relativistic mean-field densities

NUCLEAR STRUCTURE 29F, 28Ne, 29,30Na, 31,35,36Mg; analyzed available data; calculated surface properties, such as symmetry energy, neutron pressure, and symmetry energy curvature coefficients using the coherent density fluctuation model (CDFM).

doi: 10.1139/cjp-2021-0231
Citations: PlumX Metrics

2022PA08      Phys.Rev. C 105, 024316 (2022)

V.Parmar, M.K.Sharma, S.K.Patra

Properties of hot finite nuclei and associated correlations with infinite nuclear matter

NUCLEAR STRUCTURE 56Fe, 90Zn, 208Pb, 236U; calculated level density parameters, excitation energy as function of temperature. 236U; calculated fissility parameter, liquid-drop fission barrier. 208Pb; calculated limiting temperature, chemical potential, radius, lifetime of nuclear liquid drop, liqiud density, gas density, pressure. A=50-250; calculated limiting temperature, limiting excitation energy per nucleon, lifetime of nuclear liquid drop. Effective relativistic mean-field theory (E-RMF). Comparison to experimental data.

doi: 10.1103/PhysRevC.105.024316
Citations: PlumX Metrics

2022PA28      Chin.Phys.C 46, 094103 (2022)

J.A.Pattnaik, R.N.Panda, M.Bhuyan, S.K.Patra

Constraining the relativistic mean-field models from PREX-2 data: effective forces revisited

NUCLEAR STRUCTURE 16O, 40,48Ca, 90Zr, 116,132Sn, 208Pb, 304120; analyzed available PREX-2 data; deduced binding energies, neutron distribution radii using the relativistic mean-field (RMF) model with G3 and IOPB-I force parameters.

doi: 10.1088/1674-1137/ac6f4e
Citations: PlumX Metrics

2022RA32      Eur.Phys.J. A 58, 241 (2022)

S.Rana, R.Kumar, S.K.Patra, M.Bhuyan

Fusion dynamics of astrophysical reactions using different transmission coefficients

NUCLEAR REACTIONS 12C, 16O(12C, X), 16O(16O, X), E(cm)<12 MeV; calculated fusion σ within l-summed Wong model using the Hill-Wheeler, Ahmed and Kemble transmission coefficients. Comparison with experimental data.

doi: 10.1140/epja/s10050-022-00893-6
Citations: PlumX Metrics

2022TA06      Eur.Phys.J. A 58, 80 (2022)

N.S.Tawade, S.Patra, R.Tripathi, H.Kumawat, T.Patel, P.K.Pujari

Determination of (n, 2n) reaction cross-section for 154Sm, 150Nd and 82Se at 14.6 MeV neutron energy

NUCLEAR REACTIONS 154Sm, 150Nd, 82Se(n, 2n), E=14.6 MeV; measured reaction products, Eγ, Iγ; deduced σ. Comparison with ENDF library, TALYS calculations.

doi: 10.1140/epja/s10050-022-00720-y
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 dataset33177.

2021BH10      J.Phys.(London) G48, 075105 (2021)

M.Bhuyan, B.Maheshwari, H.A.Kassim, N.Yusof, S.K.Patra, B.V.Carlson, P.D.Stevenson

The kinks in charge radii across N = 82 and 126 revisited

NUCLEAR STRUCTURE 126,128,130,132,134,136,138Sn, 202,204,206,208,210,212,214Pb; analyzed available data; deduced isotopic shift over the isotopic chains, energy levels, J, π, yrast states within the relativistic mean-field (RMF) and relativistic-Hartree-Bogoliubov (RHB) approach.

doi: 10.1088/1361-6471/abf7d7
Citations: PlumX Metrics

2021BH11      J.Phys.(London) G48, 088001 (2021)

M.Bhuyan, R.Kumar, S.K.Patra

Comment on 'Detail study of application of the relativistic mean-field effective NN forces for heavy-ion fusion within a dynamical model'

doi: 10.1088/1361-6471/ac0582
Citations: PlumX Metrics

2021BI05      Can.J.Phys. 99, 312 (2021)

S.K.Biswal, S.K.Singh, M.Bhuyan, R.N.Panda, S.K.Patra

A bridge between finite and infinite nuclear matter

NUCLEAR STRUCTURE 40P, 40S, 40Ca, 112,116,120,124Sn, 208Pb; calculated binding energies from nuclear matter equation of state (EOS). Comparison with available data.

doi: 10.1139/cjp-2020-0104
Citations: PlumX Metrics

2021GR02      Nucl.Phys. A1011, 122198 (2021)

N.Grover, V.Parmar, S.K.Patra, M.K.Sharma

Decay dynamics of 9Be + 89Y reaction in view of complete and incomplete fusion mechanisms

NUCLEAR REACTIONS 89Y(9Be, X)98Tc/5He/4He/1NN, E=32.6 MeV; calculated fragmentation potential as a function of fragment mass, preformation probability, neck length parameter, evaporation residue σ using optimum orientations approach of dynamical cluster decay model (DCM).

doi: 10.1016/j.nuclphysa.2021.122198
Citations: PlumX Metrics

2021KA24      Phys.Rev. C 103, 054608 (2021)

M.Kaur, B.B.Singh, S.K.Patra

Role of microscopic temperature-dependent binding energies in the decay of 32Si* formed in the 20O + 12C reaction

NUCLEAR REACTIONS 12C(20O, X)32Si*, E(cm)=7.35, 9.29 MeV; calculated fragmentation potential, mass dependence of fragmentation potential, macroscopic and microscopic binding energies for some isobars of A=10, 14, 18, 22, 26 and 30 at T=0 and 3.09 MeV, preformation probability potentials for the emission of 3H, 4He and 5He, fusion cross-sections for light-charged particles. Relativistic mean-field (RMF) calculations using quantum mechanical fragmentation-based dynamical cluster-decay model (DCM), and Davidson mass formula.

doi: 10.1103/PhysRevC.103.054608
Citations: PlumX Metrics

2021KU07      Phys.Rev. C 103, 024305 (2021)

A.Kumar, H.C.Das, M.Kaur, M.Bhuyan, S.K.Patra

Application of the coherent density fluctuation model to study the nuclear matter properties of finite nuclei within the relativistic mean-field formalism

NUCLEAR STRUCTURE 16O, 40,48Ca, 56Ni, 90Zr, 116Sn, 208Pb; proton and neutron surface diffusion parameters, nuclear incompressibilities, symmetric energies, neutron pressure, slope and curvature parameters, density distributions of 16O and 208Pb. Coherent density fluctuation model (CDFM) for nuclear matter (NM) properties of finite nuclei within the effective relativistic mean-field (E-RMF) formalism with NL3 and G3 parameter sets. Comparison with calculations using Bruckner energy density functional within CDFM, and discussed resolution of Coster-Band problem.

doi: 10.1103/PhysRevC.103.024305
Citations: PlumX Metrics

2021KU25      Nucl.Phys. A1015, 122315 (2021)

A.Kumar, H.C.Das, M.Bhuyan, S.K.Patra

Thermal impacts on the properties of nuclear matter and young neutron star

doi: 10.1016/j.nuclphysa.2021.122315
Citations: PlumX Metrics

2021KU28      Phys.Rev. C 104, 055804 (2021)

A.Kumar, H.C.Das, S.K.Patra

Incompressibility and symmetry energy of a neutron star

doi: 10.1103/PhysRevC.104.055804
Citations: PlumX Metrics

2021NA04      Phys.Rev. C 103, 034612 (2021)

T.N.Nag, R.Tripathi, S.Patra, A.Mhatre, S.Santra, P.C.Rout, A.Kundu, D.Chattopadhyay, A.Pal, P.K.Pujari

Fission fragment mass distribution in the 32S + 144Sm reaction

NUCLEAR REACTIONS 144Sm(32S, F), E=150.4, 155.9, 161 MeV; measured fission fragments in coincidence using two multiwire proportional counters (MWPCs) at the BARC-TIFR Pelletron-LINAC facility of TIFR-Mumbai; deduced time-of-flight (TOF) of the scattered beam particles, fission fragment mass distribution, centroid values of the heavy and the light mass peaks of fission fragment mass distributions, neutron and proton numbers corresponding to the centroid values of light and heavy mass peaks for asymmetric fission for different fissioning systems in the present reaction and others in the literature. Comparison with fits using one- and two-Gaussian functions.

doi: 10.1103/PhysRevC.103.034612
Citations: PlumX Metrics

2021PA19      Phys.Rev. C 103, 055817 (2021)

V.Parmar, M.K.Sharma, S.K.Patra

Thermal effects in hot and dilute homogeneous asymmetric nuclear matter

doi: 10.1103/PhysRevC.103.055817
Citations: PlumX Metrics

2021PA21      Can.J.Phys. 99, 412 (2021)

M.Panigrahi, R.N.Panda, M.Bhuyan, S.K.Patra

Exploring the α-decay chain of 302122 within relativistic mean-field formalism

NUCLEAR STRUCTURE 272,274,276,278,280,282,284,286,288,290,292,294,296,298,300,302,304,306,308,310,312,314,316,318,320,322,324,326,328,330,332122; calculated binding energy, radii, deformation parameter, two-neutron separation energy using the axially deformed relativistic mean-field formalism with NL3* force parameter.

doi: 10.1139/cjp-2020-0296
Citations: PlumX Metrics

2021PA47      Phys.Scr. 96, 12539 (2021)

J.A.Pattnaik, M.Bhuyan, R.N.Panda, S.K.Patra

Isotopic shift in magic nuclei within relativistic mean-field formalism

NUCLEAR STRUCTURE 38,40,42,44,46,48,50,52,54,56Ca, 100,102,104,106,108,110,112,114,116,118,120,122,124,126,128,130,132,134,136,138Sn, 182,184,186,188,190,192,194,196,198,200,202,204,206,208,210,212,214Pb; analyzed available data. Z=120; calculated ground-state properties such as binding energy, root-mean-square radius, pairing energy, nucleons density distribution, symmetry energy, and single-particle energies employing the relativistic mean-field approximation.

doi: 10.1088/1402-4896/ac3a4d
Citations: PlumX Metrics

2021RA09      Nucl.Phys. A1010, 122189 (2021)

I.A.Rather, A.A.Usmani, S.K.Patra

Effect of inner crust EoS on neutron star properties

doi: 10.1016/j.nuclphysa.2021.122189
Citations: PlumX Metrics

2021RA11      Phys.Rev. C 103, 055814 (2021)

I.A.Rather, U.Rahaman, M.Imran, H.C.Das, A.A.Usmani, S.K.Patra

Rotating neutron stars with quark cores

doi: 10.1103/PhysRevC.103.055814
Citations: PlumX Metrics

2021SI01      Nucl.Phys. A1006, 122080 (2021)

T.A.Siddiqui, A.Quddus, S.Ahmad, S.K.Patra

Microscopic description of structural, surface, and decay properties of Z=124, 126 superheavy nuclei

NUCLEAR STRUCTURE 284,285,286,287,288,289,290,291,292,293,294,295,296,297,298,299,300,301,302,303,304,305,306,307,308,309,310,311,312,313,314,315,316,317,318,319,320,321,322,323,324,325,326,327,328,329,330,331,332,333,334,335,336,337,338,339,340,341,342,343,344124, 288,289,290,291,292,293,294,295,296,297,298,299,300,301,302,303,304,305,306,307,308,309,310,311,312,313,314,315,316,317,318,319,320,321,322,323,324,325,326,327,328,329,330,331,332,333,334,335,336,337,338,339,340,341,342,343,344126; calculated binding energies, deformation parameters, charge and matter radii within the frame-work of covariant density functional theory (CDFT).

doi: 10.1016/j.nuclphysa.2020.122080
Citations: PlumX Metrics

2020BH02      Phys.Rev. C 101, 044603 (2020); Errata Phys.Rev. C 104, 059901 (2021)

M.Bhuyan, R.Kumar, S.Rana, D.Jain, S.K.Patra, B.V.Carlson

Effect of density and nucleon-nucleon potential on the fusion cross section within the relativistic mean field formalism

NUCLEAR STRUCTURE 26Mg, 31Al, 39,46K, 48Ca, 64Ni, 154Sm, 181Ta, 197Au, 238U, 248Cm; calculated total radial density distributions, neutron and proton equivalent diffusiveness parameters using relativistic mean field formalism with NL3* interaction. Comparison with experimental data.

NUCLEAR REACTIONS 154Sm, 238U, 248Cm(48Ca, X), E(cm)=135-234 MeV; 238U(64Ni, X), E(cm)=245-305 MeV; 248Cm(26Mg, X), E(cm)=105-150 MeV; 181Ta(46K, X), (39K, X), E(cm)=140-176 MeV; 197Au(31Al, X), E(cm)=105-160 MeV; calculated σ(E), barrier heights, fusion barrier distributions. Comparison with experimental fusion cross section data. Relativistic mean field formalism using the double-folding procedure, and R3Y and M3Y interactions. Discussion of the role of nucleon-nucleon potential and nucleon densities in fusion cross sections.

doi: 10.1103/PhysRevC.101.044603
Citations: PlumX Metrics

2020BI13      Nucl.Phys. A1004, 122042 (2020)

S.K.Biswal, M.K.Abu El Sheikh, N.Biswal, N.Yusof, H.A.Kassim, S.K.Patra, M.Bhuyan

Nuclear matter properties of finite nuclei using relativistic mean field formalism

NUCLEAR STRUCTURE N=20, 40, 82, 126; analyzed available data; calculated variation of the symmetry energy with density in the symmetric nuclear matter, symmetry energy for N = 20, 40, 82, 126, and 172 (predicted) isotonic chains as a function of neutron skin-thickness as calculated using the RMF model.

doi: 10.1016/j.nuclphysa.2020.122042
Citations: PlumX Metrics

2020KA20      Phys.Rev. C 101, 034614 (2020)

R.Kaur, S.Kaur, B.B.Singh, B.S.Sandhu, S.K.Patra

Clustering effects in the exit channels of 13, 12C + 12C reactions within the collective clusterization mechanism of the dynamical cluster decay model

NUCLEAR REACTIONS 12C(12C, X)24Mg*, (12C, 6Li), (12C, 7Li), (12C, 7Be), (12C, 8Be), (12C, 9Be), (12C, X)25Mg*, (13C, 6Li), (13C, 7Li), (13C, 7Be), (13C, 8Be), (13C, 9Be), E*=53.9 MeV; calculated fragmentation potential, fragment preformation probability, l-summed preformation probability, scattering potential, barrier potential, penetration probability, and σ(25Mg*)/σ(24Mg*). Dynamical cluster decay model (DCM). Comparison with experimental data, and with other theoretical predictions. Discussed role of α-clustering in heavy-ion reactions.

doi: 10.1103/PhysRevC.101.034614
Citations: PlumX Metrics

2020KA28      Nucl.Phys. A1000, 121871 (2020)

M.Kaur, A.Quddus, A.Kumar, M.Bhuyan, S.K.Patra

Effect of temperature on the volume and surface contributions in the symmetry energy of rare earth nuclei

doi: 10.1016/j.nuclphysa.2020.121871
Citations: PlumX Metrics

2020KA50      J.Phys.(London) G47, 105102 (2020)

M.Kaur, A.Quddus, A.Kumar, M.Bhuyan, S.K.Patra

On the symmetry energy and deformed magic number at N = 100 in rare earth nuclei

NUCLEAR STRUCTURE 160Nd, 162Sm, 164Gd, 166Dy; calculated ground state neutron single particle spectra, variation of nuclear symmetry energy within the coherent density fluctuation model with relativistic mean densities with NL3 and IOPB-I parameter sets.

doi: 10.1088/1361-6471/ab92e4
Citations: PlumX Metrics

2020QU04      J.Phys.(London) G47, 045105 (2020)

A.Quddus, M.Bhuyan, S.K.Patra

Effective surface properties of light, heavy, and superheavy nuclei

NUCLEAR STRUCTURE 16,28O, 40,48Ca, 68Ni, 90Zr, 100,132Sn, 208Pb; calculated binding energy per particle, charge radius. Comparison with available data.

doi: 10.1088/1361-6471/ab4f3e
Citations: PlumX Metrics

2020RA16      Int.J.Mod.Phys. E29, 2050044 (2020)

I.A.Rather, A.Kumar, H.C.Das, M.Imran, A.A.Usmani, S.K.Patra

Constraining bag constant for hybrid neutron stars

doi: 10.1142/S0218301320500445
Citations: PlumX Metrics

2020RA18      J.Phys.(London) G47, 105104 (2020)

I.A.Rather, A.A.Usmani, S.K.Patra

Study of nuclear matter properties for hybrid EoS

doi: 10.1088/1361-6471/aba116
Citations: PlumX Metrics

2020SE04      Nucl.Phys. B954, 115000 (2020)

S.Senapati, C.Majumdar, P.Pritimita, S.Patra

A comparative study of 0νββ decay in symmetric and asymmetric left-right model

RADIOACTIVITY 76Ge, 136Xe(2β-); calculated neutrinoless mode T1/2, lepton number violating and effective Majorana neutrino mass parameters.

doi: 10.1016/j.nuclphysb.2020.115000
Citations: PlumX Metrics

2020SI21      J.Phys.(London) G47, 115103 (2020)

T.A.Siddiqui, A.Quddus, S.Ahmad, S.K.Patra

A search for neutron magicity in the isotopic series of Z = 122, 128 superheavy nuclei

NUCLEAR STRUCTURE N=158-218; analyzed available data; calculated neutron pairing energy, two-neutron-separation energy, single-particle energy levels, total shell-correction energy using density-dependent meson-exchange (DD-ME) and point-coupling (DD-PC) models within the framework of covariant density functional theory (CDFT); deduced N=168, 174, 178 as deformed neutron-magic numbers.

doi: 10.1088/1361-6471/ab8914
Citations: PlumX Metrics

2019BH08      Phys.Rev. C 100, 054312 (2019)

M.Bhuyan, B.V.Carlson, S.K.Patra, RajK.Gupta

Neck configuration of Cm and Cf nuclei in the fission state within the relativistic mean field formalism

NUCLEAR STRUCTURE 242,244,246,248Cm, 248,250,252,254Cf; calculated potential energy surfaces, binding energies, rms charge radii, quadrupole deformation parameters β2, first and second barrier heights, static fission paths as a function of quadrupole deformation, total matter density distribution of the fission states, neutron and proton densities in the neck region, fission neck length parameters using relativistic mean field formalism with NL3 parameter set. Comparison with FRDM calculations and available experimental values; investigated the mechanism of fission decay and the shape of the fissioning nucleus by following the static fission path to the configuration before the breakup.

doi: 10.1103/PhysRevC.100.054312
Citations: PlumX Metrics

2019KA41      Nucl.Phys. A990, 94 (2019)

A.Kaur, G.Kaur, S.K.Patra, M.K.Sharma

Across barrier fission analysis of At* isotopes formed in 3, 4, 6, 8He+209Bi reactions

doi: 10.1016/j.nuclphysa.2019.07.001
Citations: PlumX Metrics

2019NA11      Nucl.Phys. A987, 295 (2019)

T.Naz, M.Bhuyan, S.Ahmad, S.K.Patra, H.Abusara

Correlation among the nuclear structure and effective symmetry energy of finite nuclei

NUCLEAR STRUCTURE Th, U; calculated even-mass isotopes Potential Energy Surfaces (PES), gs binding energy, mass excess, symmetry energy, deformation using Relativistic Mean-Field (RMF) theory, axially and axially deformed Relativistic Hartree Bogoliubov approaches with non-linear (NL3*) force, Density-Dependent Meson Exchange (DD-ME) and Point Coupling (DD-PC). Compared with other published calculations.

doi: 10.1016/j.nuclphysa.2019.04.011
Citations: PlumX Metrics

2019NA32      Int.J.Mod.Phys. E28, 1950100 (2019)

K.C.Naik, M.Kaur, A.Kumar, S.K.Patra

Density dependence of symmetry energy in deformed 162Sm nucleus

NUCLEAR STRUCTURE 162Sm; calculated axially deformed density, symmetry energy values.

doi: 10.1142/S0218301319501003
Citations: PlumX Metrics

2019QU02      Phys.Rev. C 99, 044314 (2019)

A.Quddus, M.Bhuyan, S.Ahmad, B.V.Carlson, S.K.Patra

Temperature-dependent symmetry energy of neutron-rich thermally fissile nuclei

NUCLEAR STRUCTURE 234,236,250U, 240Pu; calculated nuclear densities, effective symmetry energy coefficients and curvatures, binding energies, charge radius, and β deformation parameter at finite temperature, neutron pressure and symmetry energy coefficients as function of neutron skin thickness using temperature-dependent relativistic mean field model (TRMF) with FSUGarnet, IOPB-I, and NL3 parameters. Comparison with available experimental data.

doi: 10.1103/PhysRevC.99.044314
Citations: PlumX Metrics

2019QU03      Nucl.Phys. A987, 222 (2019)

A.Quddus, K.C.Naik, R.N.Panda, S.K.Patra

Temperature dependent study of neutron-rich thermally fissile 244-262Th and 246-264U nuclei within E-TRMF model

NUCLEAR STRUCTURE 227,228,229,230,231,232,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262Th, 246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264U; calculated gs binding energy, mass excess, charge radius, neutron skin thickness using NL3, FSLGarnet and IOPB-I force parameters, excitation energy E* vs nuclear temperature, nuclear shell correction, 2n separation energy vs temperature, entropy (squared) vs excitation E*, neutron energy spectrum of selected levels, quadrupole and hexadecapole deformations and rms neutron and rms proton radii, level density parameter vs temperature, asymmetry energy coefficient vs temperature and vs mass number.

doi: 10.1016/j.nuclphysa.2019.04.004
Citations: PlumX Metrics

2019SA24      Chin.Phys.C 43, 044102 (2019)

T.Sahoo, R.N.Panda, S.K.Patra

Proton emission from the drip-line nuclei I-Bi using the WKB approximation with relativistic mean-field densities

RADIOACTIVITY 109I, 112,113Cs, 117La, 131Eu, 140Ho, 144,145,146,147Tm, 150,151Lu, 155,156,157Ta, 160,161Re, 164,165,166,167Ir, 170,171Au, 176,177Tl, 185Bi(p); calculated binding energy per nucleon, turning points and the potential barrier height, T1/2. Comparison with experimental data.

doi: 10.1088/1674-1137/43/4/044102
Citations: PlumX Metrics

2019SW02      Int.J.Mod.Phys. E28, 1950041 (2019)

R.R.Swain, B.B.Sahu, P.K.Moharana, S.K.Patra

Nuclear structure and α-decay study of Og isotopes

RADIOACTIVITY 290,292,294,296,298,300,302,304,306,308,310Og(α); calculated T1/2, Q-value. Comparison with available data.

doi: 10.1142/S0218301319500411
Citations: PlumX Metrics

2018BH01      Phys.Rev. C 97, 024322 (2018)

M.Bhuyan, B.V.Carlson, S.K.Patra, S.-G.Zhou

Surface properties of neutron-rich exotic nuclei within relativistic mean field formalisms

NUCLEAR STRUCTURE 70,72,74,76,78,80,82,84,86Fe, 72,74,76,78,80,82,84,86,88Ni, 74,76,78,80,82,84,86,88,90Zn, 76,78,80,82,84,86,88,90,92Ge, 78,80,82,84,86,88,90,92,94Se, 80,82,84,86,88,90,92,94,96Kr; calculated binding energies, charge radii, and quadrupole deformation parameter β2 for ground states, S(2n), total density distribution, symmetry energy and neutron pressure as function of neutron skin thickness. Calculations based on axially deformed self-consistent relativistic mean field for the nonlinear NL3* and density-dependent DD-ME1 interactions. Comparison with available experimental data.

doi: 10.1103/PhysRevC.97.024322
Citations: PlumX Metrics

2018DE06      Phys.Rev. D 97, 035005 (2018)

F.F.Deppisch, C.Hati, S.Patra, P.Pritimita, U.Sarkar

Neutrinoless double beta decay in left-right symmetric models with a universal seesaw mechanism

doi: 10.1103/PhysRevD.97.035005
Citations: PlumX Metrics

2018KU05      Phys.Rev. C 97, 045806 (2018)

B.Kumar, S.K.Patra, B.K.Agrawal

New relativistic effective interaction for finite nuclei, infinite nuclear matter, and neutron stars

NUCLEAR STRUCTURE 16O, 40,48Ca, 68Ni, 90Zr, 100,132Sn, 208Pb; calculated binding energy per particle, charge radius, and neutron-skin thicknesses. 40,48Ca, 58,60,64Ni, 59Co, 54,56,57Fe, 90,96Zr, 112,116,120,124Sn, 106,116Cd, 122,124,126,128,130Te, 209Bi, 208Pb, 232Th, 238U; calculated neutron skin thicknesses. 36,38,40,42,44,46,48,50,52,54,56,58Ca, 50,52,54,56,58,60,62,64,66,68,70,72,74,76,78,80Ni, 80,82,84,86,88,90,92,94,96,98,100,102,104,106,108,110,112Zr, 102,104,106,108,110,112,114,116,118,120,122,124,126,128,130,132,134,136,138,140Sn, 188,190,192,194,196,198,200,202,204,206,208,210,212,214,216,218,220Pb, 290,292,294,296,298,300,302,304,306,308,310,312,314,316,318,320,322,324,326,328,330,332,334,336,338120; calculated S(2n). Effective-field-theory relativistic mean-field (E-RMF) model using Institute of Physics Bhubaneswar-I (IOPB-I) interaction. Comparison with results from NL3, FSUGarnet, and G3 models, and with experimental values. Applied IOPB-I to evaluate properties of infinite nuclear matter and neutron stars.

doi: 10.1103/PhysRevC.97.045806
Citations: PlumX Metrics

2018MA58      Phys.Rev. C 98, 035804 (2018)

T.Malik, N.Alam, M.Fortin, C.Providencia, B.K.Agrawal, T.K.Jha, B.Kumar, S.K.Patra

GW170817: Constraining the nuclear matter equation of state from the neutron star tidal deformability

doi: 10.1103/PhysRevC.98.035804
Citations: PlumX Metrics

2018NA19      Braz.J.Phys. 48, 342 (2018)

K.C.Naik, R.N.Panda, A.Quddus, S.K.Patra

Astrophysical S-factor of some (p, γ) Reactions

doi: 10.1007/s13538-018-0569-5
Citations: PlumX Metrics

2018PA09      Int.J.Mod.Phys. E27, 1850012 (2018)

M.Panigrahi, R.N.Panda, B.Kumar, S.K.Patra

Decay properties and reaction dynamics of zirconium isotopes in the relativistic mean-field model

doi: 10.1142/S021830131850012X
Citations: PlumX Metrics

2018PA44      Phys.Atomic Nuclei 81, 417 (2018)

R.N.Panda, M.Panigrahi, M.K.Sharma, S.K.Patra

Evidence of a Proton Halo in 23Al: A Mean Field Analysis

NUCLEAR REACTIONS 12C(22Al, x), (23Al, x), (24Al, x), (25Al, x), (26Al, x), (27Al, x), (28Al, x), (29Al, x), (30Al, x), (31Al, x), (32Al, x), (33Al, x), (34Al, x), (35Al, x), (36Al, x), (37Al, x), (38Al, x), (39Al, x), (40Al, x), (41Al, x), (42Al, x), (43Al, x), (44Al, x), E not given; calculated binding energy, mass excess, deformation β2, charge radius rch using Relativistic Mean Field (RMF) theory, Glauber technique and NL3 parameter set for both spherical and deformed nuclei, spherical neutron ρn and proton ρp radial density distributions, 1p, 2p and 1n separation energies for deformed different Al isotopes; compared with published data and published FRDM calculations. (23Al, x), (24Al, x), (25Al, x), (26Al, x), (27Al, x), (28Al, x), E nt given; calculated Coulomb-modified reaction cross section σR for spherical and for deformed case, depletion factor; compared with data. (23Al, x), E=30, 74 MeV/nucleon; calculated σR vs difussenes parameter, longitudinal momentum distribution of 22Mg; compared with data; deduced possible 23Al proton halo using enhanced sR, high radius, narrow longitudinal momentum distribution and small proton separation energy.

doi: 10.1134/s1063778818040154
Citations: PlumX Metrics

2018QU03      J.Phys.(London) G45, 075102 (2018)

A.Quddus, K.C.Naik, S.K.Patra

Study of hot thermally fissile nuclei using relativistic mean field theory

NUCLEAR STRUCTURE 208Pb, 234,236U, 240Pu; calculated the ground state binding energy per nucleon, charge radii, excitation and two-neutron separation energies, quadrupole and hexadecapole deformations parameters, asymmetry energy coefficient. FSUGarnet and IOPB-I parameter sets.

doi: 10.1088/1361-6471/aac3a5
Citations: PlumX Metrics

2018SW01      Chin.Phys.C 42, 084102 (2018)

R.Swain, S.K.Patra, B.B.Sahu

Nuclear structure and decay modes of Ra isotopes within an axially deformed relativistic mean field model

RADIOACTIVITY 210,212,214,218,220,222,224Ra(8Be), (α), 226Ra(α), 210,212,214,218,220Ra(12C), (14C), 224,226Ra(16C), 210,212Ra(16O), 218,220,222,224Ra(18O), 222,224,226Ra(20O), 226Ra(22O); calculated Q-values, T1/2. Comparison with available data.

doi: 10.1088/1674-1137/42/8/084102
Citations: PlumX Metrics

2017BO13      Phys.Lett. B 771, 318 (2017)

D.Borah, S.Patra

Universal seesaw and 0νββ in new 3331 left-right symmetric model

doi: 10.1016/j.physletb.2017.05.059
Citations: PlumX Metrics

2017KA05      Phys.Rev. C 95, 014611 (2017)

M.Kaur, B.B.Singh, S.K.Patra, R.K.Gupta

Clustering effects and decay analysis of the light-mass N=Z and N ≠ Z composite systems formed in heavy ion collisions

NUCLEAR REACTIONS 10B(10B, X)20Ne*, E(cm)=12-25 MeV; 16O(12C, X)28Si*, E(cm)=50.14-68.57 MeV; 28Si(12C, X)40Ca*, E(cm)=53.90 MeV; 10B(11B, X)21Ne*, E(cm)=13.09-26.19 MeV; 11B(11B, X)22Ne*, E(cm)=12-25 MeV; 11B(28Si, X)39K*, E(cm)=45.94 MeV; 12C(27Al, X)39K*, E(cm)=50.53 MeV; calculated preformation and penetration probabilities as function of fragment or cluster mass, scattering and fragment potentials for the decay of α- and non-α conjugate systems, fission-fusion σ(E). Dynamical cluster-decay model (DCM) based on quantum-mechanical fragmentation theory (QMFT). Comparison with experimental data.

doi: 10.1103/PhysRevC.95.014611
Citations: PlumX Metrics

2017KU01      Phys.Rev. C 95, 015801 (2017)

B.Kumar, S.K.Biswal, S.K.Patra

Tidal deformability of neutron and hyperon stars within relativistic mean field equations of state

doi: 10.1103/PhysRevC.95.015801
Citations: PlumX Metrics

2017KU14      Nucl.Phys. A966, 197 (2017)

B.Kumar, S.K.Singh, B.K.Agrawal, S.K.Patra

New parameterization of the effective field theory motivated relativistic mean field model

NUCLEAR STRUCTURE 16O, 40,48Ca, 68Ni, 90Zr, 100,132Sn, 208Pb; calculated binding energy, Q, charge radius, neutron skin thickness using newly invented (by the authors) parameterization; deduced parameters. A=16-220; calculated binding energy, Q, neutron skin, symmetry energy. Results compared with NL3, FSUGold, FSUGarnet, G2 parameters sets, applied also to neutron star calculations.

doi: 10.1016/j.nuclphysa.2017.07.001
Citations: PlumX Metrics

2017KU21      Phys.Rev. C 96, 034623 (2017)

B.Kumar, M.T.Senthil Kannan, M.Balasubramaniam, B.K.Agrawal, S.K.Patra

Relative mass distributions of neutron-rich thermally fissile nuclei within a statistical model

RADIOACTIVITY 236,250U, 232,254Th(SF); calculated binary mass distributions and relative fragmentation yields of fission fragments from A=66 to 181 at temperatures T=1-3 MeV using the statistical model, with level density parameters from temperature-dependent relativistic mean field formalism (TRMF) and finite range droplet model (FRDM).

doi: 10.1103/PhysRevC.96.034623
Citations: PlumX Metrics

2017SE11      Phys.Rev. C 95, 064613 (2017)

M.T.Senthil Kannan, B.Kumar, M.Balasubramaniam, B.K.Agrawal, S.K.Patra

Relative fragmentation in ternary systems within the temperature-dependent relativistic mean-field approach

RADIOACTIVITY 252Cf, 242Pu, 236U(SF); calculated relative fragmentation probabilities in ternary fission, level density parameters. Temperature-dependent relativistic mean-field (TRMF) model for ternary fragmentation of heavy nuclei with the level density approach.

doi: 10.1103/PhysRevC.95.064613
Citations: PlumX Metrics

2016IK02      Int.J.Mod.Phys. E25, 1650103 (2016)

M.Ikram, Asloob A.A.Rather, B.Kumar, S.K.Biswal, S.K.Patra

Quest for magicity in hypernuclei

NUCLEAR STRUCTURE 16,17O, 40,41,48,49Ca, 56,57Ni, 90,91Zr, 124,125,132,133Sn, 208,209Pb, 292,293,304,305,378,379120; calculated binding energies, charge and matter radii, separation energy for hypernuclei; deduced magic numbers.

doi: 10.1142/S0218301316501032
Citations: PlumX Metrics

2016KU04      Int.J.Mod.Phys. E25, 1650020 (2016)

B.Kumar, S.K.Biswal, S.K.Singh, C.Lahiri, S.K.Patra

Modes of decay in neutron-rich nuclei

NUCLEAR STRUCTURE 208Pb, 232,234,236,238,240,254,256,258Th, 230,232,234,236,248,250,252,254,256U; calculated matter density distributions.

RADIOACTIVITY 216,232,254Th, 218,238,256U(α); calculated penetrability parameter using WKB approximation, T1/2. Comparison with available data.

doi: 10.1142/S0218301316500208
Citations: PlumX Metrics

2016LA05      Int.J.Mod.Phys. E25, 1650015 (2016)

C.Lahiri, S.K.Biswal, S.K.Patra

Effects of NN potentials on p Nuclides in the A ∼ 100-120 region

NUCLEAR STRUCTURE A = 100-120; calculated S-factors, astrophysical reaction rates using microscopical optical model potential with the Hauser-Feshbach reaction code TALYS. Comparison with experimental data.

doi: 10.1142/S0218301316500154
Citations: PlumX Metrics

2016MA54      Int.J.Mod.Phys. E25, 1650062 (2016)

S.Mahapatro, C.Lahiri, B.Kumar, R.N.Mishra, S.K.Patra

Nuclear structure and decay properties of even-even nuclei in Z=70-80 drip-line region

NUCLEAR STRUCTURE 150,152,154,156,158,160,162,164,166,168,170,172,174,176,178,180,182,184,186,188,190,192,194,196,198,200,202,204,206,208,210,212,214,216,218,220,222,224,226,228,230,232,234,236,238,240Yb, 152,154,156,158,160,162,164,166,168,170,172,174,176,178,180,182,184,186,188,190,192,194,196,198,200,202,204,206,208,210,212,214,216,218,220,222,224,226,228,230,232,234,236,238,240,242Hf, 154,156,158,160,162,164,166,168,170,172,174,176,178,180,182,184,186,188,190,192,194,196,198,200,202,204,206,208,210,212,214,216,218,220,222,224,226,228,230,232,234,236,238,240,242,244W, 156,158,160,162,164,166,168,170,172,174,176,178,180,182,184,186,188,190,192,194,196,198,200,202,204,206,208,210,212,214,216,218,220,222,224,226,228,230,232,234,236,238,240,242,244,246Os, 158,160,162,164,166,168,170,172,174,176,178,180,182,184,186,188,190,192,194,196,198,200,202,204,206,208,210,212,214,216,218,220,222,224,226,228,230,232,234,236,238,240,242,244,246,248Pt, 160,162,164,166,168,170,172,174,176,178,180,182,184,186,188,190,192,194,196,198,200,202,204,206,208,210,212,214,216,218,220,222,224,226,228,230,232,234,236,238,240,242,244,246,248,250Hg; calculated binding energy, neutron, proton, charge rms radii, quadrupole moment and hexadecoupole deformation parameters. Comparison with FRDM calculations, experimental data.

doi: 10.1142/S0218301316500622
Citations: PlumX Metrics

2016MO20      Phys.Rev. C 93, 064303 (2016)

C.Mondal, B.K.Agrawal, M.Centelles, G.Colo, X.Roca-Maza, N.Paar, X.Vinas, S.K.Singh, S.K.Patra

Model dependence of the neutron-skin thickness on the symmetry energy

NUCLEAR STRUCTURE 132Sn, 208Pb; calculated symmetry-energy coefficient and symmetry-energy slope parameter as a function of neutron-skin thickness using several microscopic mean-field models.

doi: 10.1103/PhysRevC.93.064303
Citations: PlumX Metrics

2016RA40      Eur.Phys.J. A 52, 372 (2016)

A.A.Rather, M.Ikram, A.A.Usmani, B.Kumar, S.K.Patra

Structural and decay properties of Z = 132, 138 superheavy nuclei

NUCLEAR STRUCTURE Z=132, 138; calculated binding energy, mass excess, deformation, radius vs neutron number, α-decay, β-decay, SF T1/2 using axially deformed relativistic mean-field with NL3*.

doi: 10.1140/epja/i2016-16372-x
Citations: PlumX Metrics

2016SH05      Phys.Rev. C 93, 014322 (2016)

M.K.Sharma, R.N.Panda, M.K.Sharma, S.K.Patra

Search for halo structure in 37Mg using the Glauber model and microscopic relativistic mean-field densities

NUCLEAR STRUCTURE 24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40Mg; calculated binding energies, charge radii, density profiles as function of radial distance. 35,36,37,38,39,40Mg; comparison of RMF densities with spherical equivalent densities. Relativistic mean field formalism (RMF) formalism. Comparison with experimental data.

NUCLEAR REACTIONS 12C(24Mg, X), (25Mg, X), (26Mg, X), (27Mg, X), (28Mg, X), (29Mg, X), (30Mg, X), (31Mg, X), (32Mg, X), (33Mg, X), (34Mg, X), (35Mg, X), (36Mg, X), (37Mg, X), (38Mg, X), (39Mg, X), (40Mg, X), E=240 MeV/nucleon; calculated reaction σ, σ(θ) for 34,35,36,37,38Mg projectiles. 12C(37Mg, X), E=30-1000 MeV/nucleon; calculated rms radius and reaction cross section as a function of diffuseness parameter, one neutron removal cross sections including total, elastic and inelastic parts. 12C(37Mg, 36Mg), E=240 MeV/nucleon; calculated longitudinal momentum distribution. Glauber model in conjunction with densities from relativistic mean field formalism. Comparison with experimental data.

doi: 10.1103/PhysRevC.93.014322
Citations: PlumX Metrics

2015BH01      J.Phys.(London) G42, 15105 (2015)

M.Bhuyan, S.K.Patra, R.K.Gupta

The evaporation residue in the fission state of barium nuclei within relativistic mean-field theory

NUCLEAR STRUCTURE 112,114,116,118,120,122,124,126,128,130,132,134Ba; the binding energy, deformation parameter, charge radius and the nucleonic density distributions. An axially deformed relativistic mean field formalism with NL3 parameter set.

doi: 10.1088/0954-3899/42/1/015105
Citations: PlumX Metrics

2015BH08      Int.J.Mod.Phys. E24, 1550028 (2015)

M.Bhuyan, S.Mahapatro, S.K.Singh, S.K.Patra

The structural and decay properties of Francium isotopes

RADIOACTIVITY 182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240Fr(α); calculated Q-values, T1/2, binding energies, rms charge radii, quadrupole deformation. Relativistic Mean Field (RMF) theory, Finite Range Droplet Model (FRDM), comparison with experimental data.

doi: 10.1142/S0218301315500287
Citations: PlumX Metrics

2015IK01      Int.J.Mod.Phys. E24, 1550019 (2015)

M.Ikram, S.K.Singh, S.K.Biswal, S.K.Patra

Effects of isovector scalar δ-meson on Λ-hypernuclei

NUCLEAR STRUCTURE 6H, 7,8He, 7Li, 9Be, 10B, 16N, 16O, 28Si, 32S, 40Ca, 51V, 89Y, 139La, 208Pb; calculated hypernuclei binding energies, rms radii, orbitals, spin-orbit potentials. Comparison with available data.

doi: 10.1142/S0218301315500196
Citations: PlumX Metrics

2015KU08      Int.J.Mod.Phys. E24, 1550017 (2015)

B.Kumar, S.K.Singh, S.K.Patra

Shape coexistence and parity doublet in Zr isotopes

NUCLEAR STRUCTURE 80,82,84,86,88,90,92,94,96,98,100,102,104,106,108,110,112Zr; calculated rms radii, binding energies, deformation parameters. Relativistic (RMF) and nonrelativistic (SHF) mean-field formalisms with Bardeen-Cooper-Schrieffer (BCS) and Bogoliubov pairing. Comparison with available data.

doi: 10.1142/S0218301315500172
Citations: PlumX Metrics

2015KU28      Phys.Rev. C 92, 054314 (2015)

B.Kumar, S.K.Biswal, S.K.Singh, S.K.Patra

Examining the stability of thermally fissile Th and U isotopes

NUCLEAR STRUCTURE 216,218,220,222,224,226,228,230,232,234,236,238U, 216,218,220,222,224,226,228,230,232,234,236,238,240Th; calculated binding energies, charge radii, quadrupole deformation parameter β2, potential energy surfaces. Relativistic mean-field theory (RMF) with axially deformed basis. Pairing correlations. Comparison with finite-range droplet model (FRDM) calculations, and with available experimental values. 232Th, 236U; calculated single-particle energy levels as function of quadrupole deformation parameter.

RADIOACTIVITY 222,224,226,228,230,232,234,236,238,240,242U, 216,218,220,222,224,226,228,230,232,234,236,238Th(α); calculated Q(α) and half-lives. 244,246,248,250,252,254,256,258,260,262,264,266,268,270Th, 240,242,244,246,248,250,252,254,256,258,260,262,264,266,268U(β-); calculated half-lives. 228,230,232,234Th, 232,234,236,238,240Th(SF); calculated fission barriers. Relativistic mean-field (RMF) theory. Comparison with other theoretical calculations, and with available experimental values.

doi: 10.1103/PhysRevC.92.054314
Citations: PlumX Metrics

2015ME09      Phys.Rev. C 92, 054305 (2015)

M.S.Mehta, H.Kaur, B.Kumar, S.K.Patra

Properties of superheavy nuclei with Z = 124

NUCLEAR STRUCTURE 278,280,282,284,286,288,290,292,294,296,298,300,302,304,306,308,310,312,314,316,318,320,322,324,326,328,330,332,334,336,338,340120, 282,284,286,288,290,292,294,296,298,300,302,304,306,308,310,312,314,316,318,320,322,324,326,328,330,332,334,336,338,340,342,344124; calculated ground-state binding energies, S(2n), quadrupole deformation parameter β2, two-dimensional density contours for 284,290,292,304,318120 and 288,294,296,308,322124, neutron and proton density distributions for 296,308,322124. Relativistic mean field model with NL3 parametrization.

RADIOACTIVITY 232U, 236Pu, 240Cm, 244Cf, 248Fm, 252No, 256Rf, 260Sg, 264Hs, 268Ds, 272Cn, 276Fl, 280Lv, 284Og, 288120, 292122, 296124(α); calculated Q(α), T1/2(α) using relativistic mean field model with NL3 parametrization. Comparison with the macro-microscopic finite range droplet model (FRDM), and with available experimental data.

doi: 10.1103/PhysRevC.92.054305
Citations: PlumX Metrics

2015SH21      Chin.Phys.C 39, 064102 (2015)

M.K.Sharma, R.N.Panda, M.K.Sharma, S.K.Patra

Nuclear structure study of some bubble nuclei in the light mass region using mean field formalism

NUCLEAR STRUCTURE 9,10,11,12Be, 12,13,14,15B, 12,13,14,15,16,17,18,19,20C, 20,21,22,23N, 20,21,22,23,24O, 23,24,25,26,27F, 28,29,30,31,32Ne, 32,33,34,35Mg, 32,33,34,35Si, 34,35,36,37S, 34,36,38,40,42,44,46,48Ar; calculated binding energy, charge radius. RMF(NL3) and HF(SEI-I) formalisms.

doi: 10.1088/1674-1137/39/6/064102
Citations: PlumX Metrics

2014BI06      Int.J.Mod.Phys. E23, 1450017 (2014)

S.K.Biswal, M.Bhuyan, S.K.Singh, S.K.Patra

Search of double shell closure in the superheavy nuclei using a simple effective interaction

NUCLEAR STRUCTURE 258Md, 258,261Rf, 259,260Db, 260,261Sg, 264,265Hs, 269Ds, 285,286,287,288,289Fl, 208Pb, 298Fl, 304120, 310126; calculated binding energies, ground state densities, two-neutron separation energies, pairing gap, single particle energy levels. Simple effective interaction, comparison with available data.

doi: 10.1142/S0218301314500177
Citations: PlumX Metrics

2014SA19      Phys.Rev. C 89, 034614 (2014)

B.B.Sahu, S.K.Singh, M.Bhuyan, S.K.Biswal, S.K.Patra

Importance of nonlinearity in the NN potential

NUCLEAR STRUCTURE 20Ne, 38Ar, 66Zn, 90Zr, 105Sb, 112Cs, 114Cd, 144Sm, 147Tm, 198Hg, 238U; calculated ground state binding energies, charge radii, and quadrupole deformation parameter using SH, L1 and NL3 interactions, and compared with experimental data. 16O, 208Pb, 270Ds; calculated binding energy from different fields of RMF Hamiltonian density with NL3 force, and compared with experimental data.

RADIOACTIVITY 105Sb, 109I, 112,113Cs, 117La, 131Eu, 140,141Ho, 145,146,147Tm(p); calculated half-lives of proton emitters. Relativistic mean field theory (RMFT) with nonlinear self-coupling of the scalar meson field using NR3Y+EX, M3Y+EX and LR3Y+EX nucleon-nucleon interactions. Comparison with experimental data.

doi: 10.1103/PhysRevC.89.034614
Citations: PlumX Metrics

2014SI10      Phys.Rev. C 89, 044001 (2014)

S.K.Singh, S.K.Biswal, M.Bhuyan, S.K.Patra

Effects of δ mesons in relativistic mean field theory

doi: 10.1103/PhysRevC.89.044001
Citations: PlumX Metrics

2013SH05      Int.J.Mod.Phys. E22, 1350005 (2013)

M.K.Sharma, M.S.Mehta, S.K.Patra

Nuclear reaction cross-section for drip-line nuclei in the framework of Glauber model using relativistic and nonrelativistic densities

NUCLEAR STRUCTURE 12,19,20,21,22C, 21,22,23N, 20,21,22,23,24O, 23,24,25,26,27,28,29F, 28,29,30,31,32Ne, 27,28,29,30,31,32,33,34,35Na, 30,31,32,33,34,35,36,37,38,39,40,41,42Mg, 33,34,35,36,37,38,39,40,41,42,43,44Al; calculated binding energy, charge radii, deformation parameter. Relativistic mean field, Skyrme HF, comparison with available data.

doi: 10.1142/S0218301313500055
Citations: PlumX Metrics

2013SH17      Phys.Rev. C 87, 044606 (2013)

M.K.Sharma, S.K.Patra

Nuclear reaction cross sections from a simple effective density using a Glauber model

NUCLEAR STRUCTURE 4,5,6He, 10,11Li, 10,11Be, 12,14,15,18,19,21,22C, 22,23O, 30,31Ne; calculated binding energy, matter rms radius, β2, S(n), S(2n). Relativistic mean field (RMF), Hartee-Fock (HF). Comparison with experimental data.

NUCLEAR REACTIONS 12C(6He, X), (11Li, X), (11Be, X), (12C, X), (15C, X), (19C, X), (22C, X), (23O, X), (31Ne, X), E<1200 MeV/nucleon; calculated total reaction σ(E). Glauber model calculations. Comparison with available experimental data.

doi: 10.1103/PhysRevC.87.044606
Citations: PlumX Metrics

2013SI05      Int.J.Mod.Phys. E22, 1350001 (2013)

S.K.Singh, M.Ikram, S.K.Patra

Ground state properties and bubble structure of synthesized superheavy nuclei

NUCLEAR STRUCTURE Z=105-120; calculated binding energy, neutron, proton, and total matter density. Relativistic mean field, Skyrme HF calculations.

RADIOACTIVITY 266,267,268,269,270Db, 258,260,262,271Sg, 270,272,274Bh, 264,268,270,272,275Hs, 274,275,276,278Mt, 270,279,281Ds, 277,278,279,280,281,282Rg, 282,283,284,285,294Cn, 282,284,285,286Nh, 286,287,288,289,296,298Fl, 287,288,289,290,291Mc, 290,291,292,293Lv, 293,294,297Ts, 294,297Og, 292,293,304120(α); calculated Q-value, life time. FRDM, Relativistic mean field, Skyrme HF calculations. Comparison with available data.

doi: 10.1142/S0218301313500018
Citations: PlumX Metrics

2012AH03      Int.J.Mod.Phys. E21, 1250092 (2012)

S.Ahmad, M.Bhuyan, S.K.Patra

Properties of Z = 120 nuclei and the α-decay chains of the 292-304120 isotopes using relativistic and nonrelativistic formalisms

NUCLEAR STRUCTURE 280,282,284,286,288,290,292,294,296,298,300,302,304,306,308,310,312,314,316,318,320,322,324120, 288Og, 284Lv, 280Fl, 276Cn, 272Ds, 268Hs, 264Sg, 260Rf, 256No, 300Og, 296Lv, 292Fl, 288Cn, 284Ds, 280Hs, 276Ds; calculated binding energies, quadrupole deformation parameters, two-neutron separation and pairing energies. Nonrelativistic Skyrme-Hartree-Fock and the axially deformed relativistic mean field formalisms, comparison with available data.

doi: 10.1142/S0218301312500929
Citations: PlumX Metrics

2012GH05      Phys.Rev. C 85, 064327 (2012)

S.K.Ghorui, B.B.Sahu, C.R.Praharaj, S.K.Patra

Examining the stability of Sm nuclei around N = 100

NUCLEAR STRUCTURE 150,152,154,156,158,160,162,164Sm; calculated binding energies, levels, J, π, B(E2), rms charge radius, quadrupole moment, total density distribution, quadrupole deformation parameter, prolate deformed HF neutron and proton orbits. Deformed Hartree-Fock, Skyrme Hartree-Fock+BCS, and relativistic mean-field calculations. Comparison with experimental data. Island of stability near the neutron drip line for N=100, Z AP 62.

doi: 10.1103/PhysRevC.85.064327
Citations: PlumX Metrics

2012GH07      Int.J.Mod.Phys. E21, 1250070 (2012)

S.K.Ghorui, P.K.Raina, P.K.Rath, A.K.Singh, Z.Naik, S.K.patra, C.R.Praharaj

Rotational bands and electromangnetic transitions of some even-even neodymium nuclei in projected Hartree-Fock model

NUCLEAR STRUCTURE 150,152,154,156,158,160Nd; calculated level energies, J, π, quadrupole moments, deformation parameters, B(E2), K-isomer bands. Self-consistent Hartree-Fock and angular momentum projection model.

doi: 10.1142/S021830131250070X
Citations: PlumX Metrics

2012PA47      Iader.Fiz.Enerh. 13, 228 (2012); Nuc.phys.atom.energ. 13, 228 (2012)

R.N.Panda, M.Bhuyan, S.K.Patra

Multifragmentation Fission in Neutron-rich Uranium and Thorium Nuclei

NUCLEAR STRUCTURE 242,244,246,248,250,252,254,256,258,260,262Th, 244,246,248,250,252,254,256,258,260,262,264U; calculated binding energies, deformation parameters, matter radius. Relativistic mean field theory calculations. Comparison to experimental data.

NUCLEAR REACTIONS 242,244,246,248,250,252,254,256,258,260,262Th, 244,246,248,250,252,254,256,258,260,262,264U(6Li, X), (11Li, X), (16O, X), (24O, X), E<1 GeV; calculated σ. Relativistic mean field theory calculations.

doi: 10.15407/jnpae
Citations: PlumX Metrics

2012SI01      J.Phys.(London) G39, 025101 (2012)

B.B.Singh, M.Bhuyan, S.K.Patra, R.K.Gupta

Optical potential obtained from relativistic-mean-field theory-based microscopic nucleon-nucleon interaction: applied to cluster radioactive decays

RADIOACTIVITY 222Ra(14C), 230U(22Ne), 231Pa(23F), 232U(24Ne), 236Pu(28Mg), 238Pu(30Mg); calculated WKB penetration probabilities for the M3Y+EX interaction optical model potentials. Comparison with the M3Y+EX NN-interaction potential.

doi: 10.1088/0954-3899/39/2/025101
Citations: PlumX Metrics

2011BH04      Int.J.Mod.Phys. E20, 1227 (2011)

M.Bhuyan, S.K.Patra, P.Arumugam, R.K.Gupta

Nuclear sub-structure in 112-122Ba nuclei within relativistic mean field theory

NUCLEAR STRUCTURE 112,114,116,118,120,122Ba; calculated binding energies, rms radii, deformation parameters, clustering structures. Relativistic mean field theory.

doi: 10.1142/S021830131101837X
Citations: PlumX Metrics

2011BH05      Phys.Rev. C 84, 014317 (2011)

M.Bhuyan, S.K.Patra, R.K.Gupta

Relativistic mean-field study of the properties of Z = 117 nuclei and the decay chains of the 293, 294117 isotopes

NUCLEAR STRUCTURE 286,288,290,292,294,296,298,300,302,304,306,308,310Ts; calculated binding energies, S(2n), pairing energy, β2 parameter, charge and matter rms radii. Axially deformed relativistic mean-field (RMF) model with NL3 interaction. Comparison with FRDM predictions.

RADIOACTIVITY 293,294Ts, 289,290Mc, 285,286Nh, 282Rg, 278Mt, 274Bh(α); calculated half-life, Qα. Axially deformed relativistic mean-field (RMF) model. Comparison with FRDM predictions.

doi: 10.1103/PhysRevC.84.014317
Citations: PlumX Metrics

2011PR17      J.Phys.:Conf.Ser. 312, 092052 (2011)

C.R.Praharaj, S.K.Patra, R.K.Bhowmik, Z.Naik

Band structures and deformations of rare-earth nuclei

NUCLEAR STRUCTURE Gd, Dy, Er, Yb; calculated quadrupole deformation. 164Er, 164Hf; calculated rotational bands. 169Re; calculated prolate shape levels, J, π, K-bands. 172Hf; calculated levels, J, π, isomeric bands. 172,173,178Hf, 177Lu, 179W; calculated bandhead, quadrupole moment, magnetic moment of isomeric configuration. Gd, Dy; calculated B(E2). Deformed HF and angular momentum projection. Compared with available data.

doi: 10.1088/1742-6596/312/9/092052
Citations: PlumX Metrics

2011SA50      Int.J.Mod.Phys. E20, 2217 (2011)

B.K.Sahu, M.Bhuyan, S.Mahapatro, S.K.Patra

The α-decay chains of the 287, 288115 isotopes using relativistic mean field theory

RADIOACTIVITY 287Mc, 283Nh, 279Rg, 275Mt, 271Bh, 288Mc, 284Nh, 280Rg, 276Mt, 272Bh(α); calculated Q-value, T1/2, rms radii, binding energies, two-neutron separation energy, quadrupole deformation parameter. RMF approach.

doi: 10.1142/S0218301311020277
Citations: PlumX Metrics

2011SA60      Phys.Rev. C 84, 054604 (2011)

B.Sahu, S.K.Agarwalla, S.K.Patra

Half-lives of proton emitters using relativistic mean field theory

RADIOACTIVITY 105Sb, 109I, 112,113Cs, 117,117mLa, 131Eu, 140,141,141mHo, 145,146,146m,147,147mTm, 150,150m,151,151mLu, 155,156,156m,157Ta, 160,161,161mRe, 164,165,165m,166,166m,167,167mIr, 171,171mAu, 177,177mTl, 185Bi(p); calculated half-lives using M3Y + EX and R3Y + EX NN interactions within the WKB approximation. Comparison with experimental data.

doi: 10.1103/PhysRevC.84.054604
Citations: PlumX Metrics

2011SH26      J.Phys.(London) G38, 095103 (2011)

A.Shukla, S.Aberg, S.K.Patra

Nuclear structure and reaction properties of even-even oxygen isotopes towards drip line

NUCLEAR STRUCTURE 12C, 12,14,16,18,20,22,24,26,28O; calculated rms matter and charge radii, deformations, two neutron separation energies.

NUCLEAR REACTIONS 12C(12O, X), (14O, X), (16O, X), (18O, X), (20O, X), (22O, X), (24O, X), (26O, X), (28O, X), E=1000 MeV/nucleon; calculated σ.

doi: 10.1088/0954-3899/38/9/095103
Citations: PlumX Metrics

2011SI13      Int.J.Mod.Phys. E20, 1003 (2011)

B.Singh, S.K.Patra, R.K.Gupta

Importance of preformation probability in cluster radioactive-decays using relativistic mean field theory within the preformed cluster model

RADIOACTIVITY 222Ra(14C), 230U(22Ne), 231Pa(23F), 232U(24Ne), 236Pu(28Mg), 238Pu(30Mg); calculated decay constants, Q-values. Preformed cluster model.

doi: 10.1142/S0218301311019143
Citations: PlumX Metrics

2011SI14      Phys.Rev. C 83, 064601 (2011)

B.B.Singh, B.B.Sahu, S.K.Patra

α-decay and fusion phenomena in heavy ion collisions using nucleon-nucleon interactions derived from relativistic mean-field theory

NUCLEAR REACTIONS 208Pb(12C, X), E(cm)=55-90 MeV; 208Pb(16O, X), E(cm)=70-110 meV; calculated barrier energies, fusion cross sections, fusion barrier distribution. Double-folding model for relativistic mean field-3-Yukawa (R3Y) interaction, comparison with Michigan-3-Yukawa (M3Y) effective NN interactions, and with experimental data.

RADIOACTIVITY 221Fr, 221,222,223,224,226Ra, 223,225Ac, 226,228,230Th, 230,232,233,234,236,238U, 231Pa, 237Np, 236,238Pu, 241Am, 242Cm(α); calculated penetrability. Comparison with experimental data.

doi: 10.1103/PhysRevC.83.064601
Citations: PlumX Metrics

2010BH09      Phys.Rev. C 82, 064602 (2010)

M.Bhuyan, R.N.Panda, T.R.Routray, S.K.Patra

Application of relativistic mean field and effective field theory densities to scattering observables for Ca isotopes

NUCLEAR REACTIONS 40,42,44,48Ca(polarized p, p), E=300, 800, 1000 MeV; calculated proton and neutron density distributions, σ(θ), analyzing powers, spin observable Q value as function of scattering angle using relativistic mean field (RMF) theory with NL3 and G2 parameter sets. Comparison with experimental data.

doi: 10.1103/PhysRevC.82.064602
Citations: PlumX Metrics

2010CE01      J.Phys.(London) G37, 075107 (2010)

M.Centelles, S.K.Patra, X.Roca-Maza, B.K.Sharma, P.D.Stevenson, X.Vinas

The influence of the symmetry energy on the giant monopole resonance of neutron-rich nuclei analyzed in Thomas-Fermi theory

NUCLEAR STRUCTURE 90Zr, 208,266Pb; calculated neutron skin thickness, energy per particle, giant monopole resonance. Relativistic extended Thomas-Fermi method.

doi: 10.1088/0954-3899/37/7/075107
Citations: PlumX Metrics

2010DA03      Phys.Rev. C 81, 014311 (2010)

L.S.Danu, D.C.Biswas, A.Saxena, A.Shrivastava, A.Chatterjee, B.K.Nayak, R.G.Thomas, R.K.Choudhury, R.Palit, I.Mazumdar, P.Datta, S.Chattopadhyay, S.Pal, S.Bhattacharya, S.Muralithar, K.S.Golda, R.K.Bhowmik, J.J.Das, R.P.Singh, N.Madhavan, J.Gerl, S.K.Patra, L.Satpathy

Fine structure dips in the fission fragment mass distribution for the 238U(18O, f) reaction

NUCLEAR REACTIONS 238U(18O, F)Sr/Zr/Mo/Ru/Pd/Cd/Sn/Te/Xe/Ba/Ce/Nd/Sm, E=100 MeV; measured Eγ, Iγ, γγ-coin, fission fragment mass distribution and yields of Sr (A=90-96), Zr (A=96-102), Mo (A=98-108), Ru (A=104-112), Pd (A=108-116), Cd (A=114-122), Sn (A=116-128), Te (A=124-134), Xe (A=130-138), Ba (A=136-144), Ce (A=142-148), Nd (A=146-152) and Sm (A=150-158) using INGA array. Discussed effect of nuclear structure in the dynamical evolution of fissioning nucleus. 128Te; measured Eγ and γγ-coin.

doi: 10.1103/PhysRevC.81.014311
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 datasetD6108.

Back to query form    [Next]

Note: The following list of authors and aliases matches the search parameter S.Patra: , S.K.PATRA