NSR Query Results

Output year order : Descending
Format : Normal

NSR database version of May 10, 2024.

Search: Author = M.Bhuyan

Found 56 matches.

Back to query form

2024AL02      Nucl.Phys. A1041, 122784 (2024)

T.Y.T.Alsultan, J.T.Majekodunmi, R.Kumar, B.T.Goh, M.Bhuyan

Impact of nuclear rotation corrections on alpha decay half-lives of superheavy nuclei within 98 ≤ Z ≤ 120

RADIOACTIVITY 228,230,232,234,236,238,240,242,244,246,248,250,252,254,256,258,260,262,264,266,268,270,272,274,276,278,280,282,284,286,288,290,292,294,296Cf, 232,234,236,238,240,242,244,246,248,250,252,254,256,258,260,262,264,266,268,270,272,274,276,278,280,282,284,286,288,290,292,294,296,298,300,302,304Fm, 238,240,242,244,246,248,250,252,254,256,258,260,262,264,266,268,270,272,274,276,278,280,282,284,286,288,290,292,294,296,298,300,302,304,306,308,310,312,314No, 244,246,248,250,252,254,256,258,260,262,264,266,268,270,272,274,276,278,280,282,284,286,288,290,292,294,296,298,300,302,304,306,308,310,312,314,316,318,320Rf, 250,252,254,256,258,260,262,264,266,268,270,272,274,276,278,280,282,284,286,288,290,292,294,296,298,300,302,304,306,308,310,312,314,316,318,320,322,324,326,328,330,332Sg, 336Sg, 258,260,262,264,266,268,270,272,274,276,278,280,282,284,286,288,290,292,294,296,298,300,302,304,306,308,310,312,314,316,318,320,322,324,326,328,330,332,334,336,338,340,342,344Hs, 262,264,266,268,270,272,274,276,278,280,282,284,286,288,290,292,294,296,298,300,302,304,306,308,310,312,314,316,318,320,322,324,326,328,330,332,334,336,338,340,342,344,346,348,350Ds, 270,272,274,276,278,280,282,284,286,288,290,292,294,296,298,300,302,304,306,308,310,312,314,316,318,320,322,324,326,328,330,332,334,336,338,340,342,344,346,348,350,352,354,356,358,360,362Cn, 274,276,278,280,282,284,286,288,290,292,294,296,298,300,302,304,306,308,310,312,314,316,318,320,322,324,326,328,330,332,334,336,338,340,342,344,346,348,350,352,354,356,358,360,362,364,366Fl, 374Fl, 282,284,286,288,290,292,294,296,298,300,302,304,306,308,310,312,314,316,318,320,322,324,326,328,330,332,334,336,338,340,342,344,346,348,350,352,354,356,358,360,362,364,366,368,370,372,374,376,378,380Lv, 288,290,292,294,296,298,300,302,304,306,308,310,312,314,316,318,320,322,324,326,328,330,332,334,336,338,340,342,344,346,348,350,352,354,356,358,360,362,364,366,368,370,372,374,376,378,380,382,384,386,388,390Og, 292,294,296,298,300,302,304,306,308,310,312,314,316,318,320,322,324,326,328,330,332,334,336,338,340,342,344,346,348,350,352,354,356,358,360,362,364,366,368,370,372,374,376,378,380,382,384,386,388,390,392,394,396,398120(α); calculated T1/2 using the axially deformed relativistic Hartree-Bogoliubov theory in the continuum (DRHBc) with the PC-PK1 parameter set. Comparison with available data.

doi: 10.1016/j.nuclphysa.2023.122784
Citations: PlumX Metrics

2024JA04      Phys.Rev. C 109, 034617 (2024)

N.Jain, M.Bhuyan, R.Kumar

Implementation of a microscopic nuclear potential in the coupled-channels calculations to study the fusion dynamics of oxygen-based reactions

doi: 10.1103/PhysRevC.109.034617
Citations: PlumX Metrics

2024RA16      Phys.Rev. C 109, 044613 (2024)

Sh.Rana, M.Bhuyan, S.K.Patra, R.Kumar

Nuclear incompressibility and its enduring impact on fusion cross sections

doi: 10.1103/PhysRevC.109.044613
Citations: PlumX Metrics

2023AL23      Phys.Part. and Nucl.Lett. 20, 969 (2023)

Th.Y.T.Alsultan, J.T.Majekodunmi, R.Kumar, B.T.Goh, M.Bhuyan

Study of Rotational Effect on Even-Even 254, 256Rf Isotopes of α-Particle Radioactivity Using Various Semi-Empirical Formulae

RADIOACTIVITY 254,256Rf, 250,252No, 246,248Fm, 242,244Cf(α); calculated T1/2 using deformed relativistic Hartree-Bogoliubov theory in the continuum (DRHBc) formalism with the PC-PK1 parameter set.

doi: 10.1134/S1547477123050059
Citations: PlumX Metrics

2023DA12      Nucl.Phys. A1037, 122703 (2023)

M.Das, J.T.Majekodunmi, N.Biswal, R.N.Panda, M.Bhuyan

Correlation between the nuclear structure and reaction dynamics of Ar-isotopes as projectile using the relativistic mean-field approach

NUCLEAR STRUCTURE 30,32,34,36,38,40,42,44,46,48,50,52,54,56,58,60Ar; analyzed available data; deduced nuclear properties, σ using the relativistic mean-field with the NL3* parameter set, several bulk properties such as binding energies, charge radii, quadrupole deformation parameter, two neutron separation energy, and differential two neutron separation energy with the shell closure parameter are probed for the mentioned isotopic chain.

doi: 10.1016/j.nuclphysa.2023.122703
Citations: PlumX Metrics

2023MA25      Nucl.Phys. A1034, 122652 (2023)

J.T.Majekodunmi, T.Y.T.Alsultan, K.Anwar, M.Nujud Badawi, D.Jain, R.Kumar, M.Bhuyan

The α-particle clustering and half-lives of the newly discovered 207, 208Th decay chains within relativistic-Hartree-Bogoliubov approach

NUCLEAR STRUCTURE 207,208Th; analyzed available data; deduced structural and decay properties of the ground state using the Relativistic-Hartree-Bogoliubov (RHB) formalism using the DD-ME2 parameter set within the preformed cluster-decay model (PCM).

doi: 10.1016/j.nuclphysa.2023.122652
Citations: PlumX Metrics

2023MA31      Europhys.Lett. 143, 24001 (2023)

J.T.Majekodunmi, R.Kumar, M.Bhuyan

Quest for a universal cluster preformation formula: A new paradigm for estimating the cluster formation energy

RADIOACTIVITY 208Pb(14C), (20O), (22Ne), (24Ne), (26Ne), (28Mg), (30Mg), (34Si), 210Pb(55Ti), 206Hg(61Cr), (65Fe), 205Hg(64Fe), (68Ni), 204Hg(48Ca), 206Hg(72Ni), 208Pb(74Ni), (76Zn); analyzed available data; deduced new formula the nonlinear least-square fitting parameters, T1/2. Comparison with available data.

doi: 10.1209/0295-5075/ace475
Citations: PlumX Metrics

2023PA24      Nucl.Phys. A1038, 122722 (2023)

J.A.Pattnaik, R.N.Panda, M.Bhuyan, S.K.Patra

Surface and decay properties of newly synthesized 207, 208Th isotopes for various α-decay chains

RADIOACTIVITY 207Th, 203Ra, 199Rn, 195Po, 208Th, 204Ra, 200Rn, 196Po(α); analyzed available data; deduced the ground, first excited, and second excited states binding energies using the effective field theory motivated relativistic mean-field based IOPB-I force parameter.

doi: 10.1016/j.nuclphysa.2023.122722
Citations: PlumX Metrics

2023PA27      Pramana 97, 136 (2023)

J.A.Pattnaik, K.C.Naik, R.N.Panda, M.Bhuyan, S.K.Patra

Structure and reaction studies of Z-120 isotopes using non-relativistic and relativistic mean-field formalisms

NUCLEAR STRUCTURE Z=120; calculated neutron, proton and total density distributions, nuclear charge radius and neutron skin thickness, neutron separation energy and pairing gap, symmetry energy and its coefficients within the effective field theory motivated relativistic mean-field (E-RMF) and the non-relativistic Skyrme–Hartree–Fock (SHF) approaches.

doi: 10.1007/s12043-023-02619-9
Citations: PlumX Metrics

2022BH05      Phys.Rev. C 106, 044602 (2022)

M.Bhuyan, S.Rana, N.Jain, R.Kumar, S.K.Patra, B.V.Carlson

Medium-dependent relativistic NN potential: Application to fusion dynamics

NUCLEAR REACTIONS 40Ca(16O, X), E(cm)=20-40 MeV;58Ni(40Ca, X), E(cm)=65-100 MeV;90Zr(40Ca, X), E(cm)=65-120 MeV;144Sm(16O, X), E(cm)=55-80 MeV;208Pb(16O, X), E(cm)=70-90 MeV;208Pb(48Ca, X), E(cm)=170-220 MeV; calculated positions and heights of the fusion barriers, fusion σ(E). Calculations using R3Y NN potential described in terms of density-dependent nucleonmeson couplings within the framework of the relativistic-Hartree-Bogoliubov (RHB) approach. Comparison to the available experimental data and calculations using different forms of the NN potential (R3Y, DDR3Y, M3Y, and DDM3Y).

doi: 10.1103/PhysRevC.106.044602
Citations: PlumX Metrics

2022DA04      Nucl.Phys. A1019, 122380 (2022)

M.Das, N.Biswal, R.N.Panda, M.Bhuyan

Structural evolution and shape transition in even-even Hf-isotopes within the relativistic mean-field approach

NUCLEAR STRUCTURE 170,172,174,176,178,180,182,184,186,188,190,192,194,196,198,200,202,204,206,208,210,212,214,216,218,220Hf; calculated the ground state binding energy, root-mean-square charge radius and quadrupole deformation parameters using the Relativistic Hartree-Bogoliubov approach with density-dependent DD-ME2 and the relativistic mean-field formalism with the popular NL3 and NL3* parameter sets.

doi: 10.1016/j.nuclphysa.2021.122380
Citations: PlumX Metrics

2022JA04      Nucl.Phys. A1019, 122379 (2022)

N.Jain, R.Kumar, M.Bhuyan

Exploring the ground state bulk and decay properties of the nuclei in superheavy island

RADIOACTIVITY 260,262,264,266,268,270No, 262,264,266,268,270,272Rf, 268,270,272,274,276Sg, 272,274,276,278,280Hs, 276,278,280,282,284Ds, 280,282,284,286,288Cn, 284,286,288,290,292Fl, 288,290,292,294,296Lv, 292,294,296,298,300Og(α); calculated T1/2.

doi: 10.1016/j.nuclphysa.2021.122379
Citations: PlumX Metrics

2022KU11      Phys.Rev. C 105, 044606 (2022)

R.Kumar, S.Rana, M.Bhuyan, P.Mohr

Fusion cross section of α-induced reactions for heavy target nuclei

NUCLEAR REACTIONS 208Pb, 209Bi, 235,238U(α, X), E=15-30 MeV; calculated fusion σ(E), fusion barrier, astrophysical S-factor. Nonrelativistic Skryme-Hartree-Fock (SHF) and the relativistic mean-field (RMF) formalisms for the NL3* parameter set along with density-dependent M3Y and relativistic R3Y effective potentials. Comparison to available experimental data.

NUCLEAR STRUCTURE 208Pb, 209Bi, 235,238U; calculated radial distributions of total density. Skyrme-Hartree-Fock (SHF) and relativistic mean-field (RMF) formalisms.

doi: 10.1103/PhysRevC.105.044606
Citations: PlumX Metrics

2022MA21      Phys.Rev. C 105, 044617 (2022)

J.T.Majekodunmi, M.Bhuyan, D.Jain, K.Anwar, N.Abdullah, R.Kumar

Cluster decay half-lives of 112-122Ba isotopes from the ground state and intrinsic excited state using the relativistic mean-field formalism within the preformed-cluster-decay model

RADIOACTIVITY 112Ba(9C), (12C), (14N), (17Ne), (36Ar); 114Ba(9C), (12C), (18Ne), (35Cl); 116Ba (12C), (13O), (12N), (35Cl); 118Ba(12C), (42Ca); 120Ba(12C), (43Ca); 122Ba(12C), (43Ca); calculated Q-values, penetrability parameters, cluster preformation probability, T1/2, neck-length parameters. The preformed-cluster-decay model used with the microscopic relativistic mean-field formalism (RMF) employing R3Y and M3Y potentials. Comparison with available experimental data.

doi: 10.1103/PhysRevC.105.044617
Citations: PlumX Metrics

2022PA04      Phys.Rev. C 105, 014318 (2022)

J.A.Pattnaik, J.T.Majekodunmi, A.Kumar, M.Bhuyan, S.K.Patra

Appearance of a peak in the symmetry energy at N=126 for the Pb isotopic chain within the relativistic energy density functional approach

NUCLEAR STRUCTURE 180,190,208,236,266Pb; calculated relativistic mean field densities and weight functions using the NL3 and G3 parameter sets. 180,182,184,186,188,190,192,194,196,198,200,202,204,206,208,210,212,214,216,218,220,222,224,226,228,230,232,234,236,238,240,242,244,246,248,250,252,254,256,258,260,262,264,266Pb; calculated nuclear symmetry energies using the relativistic energy density and Bruckner energy density functionals, with G3 and NL3 parameter sets, surface and volume symmetry using Danielewicz's liquid drop prescription with G3 and NL3 parameter sets. Coherent density fluctuation model parametrization procedure based on newly derived relativistic energy density functional by 2021Ku07: Phys. Rev. C 103, 024305 from the effective field theory.

doi: 10.1103/PhysRevC.105.014318
Citations: PlumX Metrics

2022PA06      Can.J.Phys. 100, 102 (2022)

J.A.Pattnaik, R.N.Panda, M.Bhuyan, S.K.Patra

Surface properties for Ne, Na, Mg, Al, and Si isotopes in the coherent density fluctuation model using the relativistic mean-field densities

NUCLEAR STRUCTURE 29F, 28Ne, 29,30Na, 31,35,36Mg; analyzed available data; calculated surface properties, such as symmetry energy, neutron pressure, and symmetry energy curvature coefficients using the coherent density fluctuation model (CDFM).

doi: 10.1139/cjp-2021-0231
Citations: PlumX Metrics

2022PA28      Chin.Phys.C 46, 094103 (2022)

J.A.Pattnaik, R.N.Panda, M.Bhuyan, S.K.Patra

Constraining the relativistic mean-field models from PREX-2 data: effective forces revisited

NUCLEAR STRUCTURE 16O, 40,48Ca, 90Zr, 116,132Sn, 208Pb, 304120; analyzed available PREX-2 data; deduced binding energies, neutron distribution radii using the relativistic mean-field (RMF) model with G3 and IOPB-I force parameters.

doi: 10.1088/1674-1137/ac6f4e
Citations: PlumX Metrics

2022RA10      Phys.Rev. C 105, 054613 (2022)

S.Rana, M.Bhuyan, R.Kumar

Systematic study of fusion barrier characteristics within the relativistic mean-field formalism

NUCLEAR STRUCTURE 31Al, 48Ca, 154Sm, 252Cf; calculated total density distribution. Relativistic mean-field calculations.

NUCLEAR REACTIONS 197Au(31Al, X), E=100-10 MeV; 181Ta(39K, X), E=140-180 MeV; 181Ta(46K, X), E=140-170 MeV; 238U(64Ni, X), E=250-305 MeV; 238U(48Ca, X), E=180-245 MeV; 154Sm(48Ca, X), E=135-195 MeV; 248Cm(48Ca, X), E=190-210 MeV; 248Cm(26Mg, X), E=110-150 MeV; 257Fm(40Ca, X), E=200-230 MeV; 248Cf(46Ti, X), E=220-250 MeV; 249Cf(46Ti, X), E=210-240 MeV; 254Fm(48Ca, X), E=190-230 MeV; 242Cm(50Cr, X), E=230-260 MeV; 249Cf(50Ti, X), E=210-240 MeV; 252Cf(50Ti, X), E=205-240 MeV; 248Cm(54Cr, X), E=220-260 MeV; 244Pu(58Fe, X), E=230-270 MeV; 235U(64Ni, X), E=250-280 MeV; 236U(66Ni, X), E=250-280 MeV; 254Cf(50Ti, X), E=210-250 MeV;250Cm(54Cr, X), E=235-260 MeV; 244Pu(60Fe, X), E=240-270 MeV; 232Th(72Zn, X), E=260-300 MeV; 228Ra(76Ge, X), E=270-310 MeV; calculated σ(E), total interaction potential, barrier height, barrier position. Relativistic mean-field (RMF) formalism with M3Y, relativistic R3Y and density-dependent R3Y (DDR3Y) nucleon-nucleon potentials. Comparison to available experimental data.

doi: 10.1103/PhysRevC.105.054613
Citations: PlumX Metrics

2022RA32      Eur.Phys.J. A 58, 241 (2022)

S.Rana, R.Kumar, S.K.Patra, M.Bhuyan

Fusion dynamics of astrophysical reactions using different transmission coefficients

NUCLEAR REACTIONS 12C, 16O(12C, X), 16O(16O, X), E(cm)<12 MeV; calculated fusion σ within l-summed Wong model using the Hill-Wheeler, Ahmed and Kemble transmission coefficients. Comparison with experimental data.

doi: 10.1140/epja/s10050-022-00893-6
Citations: PlumX Metrics

2022YA23      Chin.Phys.C 46, 084101 (2022)

P.K.Yadav, R.Kumar, M.Bhuyan

Isospin dependent properties of the isotopic chains of Scandium and Titanium nuclei within the relativistic mean-field formalism

NUCLEAR STRUCTURE 33,35,37,39,41,43,45,47,49,51,53,55,57,59,61,63,65,67,69,71,73,75Sc, 34,36,38,40,42,44,46,48,50,52,54,56,58,60,62,64,66,68,70,72,74,76Ti; calculated binding energies, charge radii, quadrupole deformation, pairing energies using the relativistic mean-field (RMF) formalism with non-linear NL3 and relativistic-Hartree-Bogoliubov theory with density-dependent DD-ME2 interaction parameters. Comparison with available data.

doi: 10.1088/1674-1137/ac67cf
Citations: PlumX Metrics

2021BH10      J.Phys.(London) G48, 075105 (2021)

M.Bhuyan, B.Maheshwari, H.A.Kassim, N.Yusof, S.K.Patra, B.V.Carlson, P.D.Stevenson

The kinks in charge radii across N = 82 and 126 revisited

NUCLEAR STRUCTURE 126,128,130,132,134,136,138Sn, 202,204,206,208,210,212,214Pb; analyzed available data; deduced isotopic shift over the isotopic chains, energy levels, J, π, yrast states within the relativistic mean-field (RMF) and relativistic-Hartree-Bogoliubov (RHB) approach.

doi: 10.1088/1361-6471/abf7d7
Citations: PlumX Metrics

2021BH11      J.Phys.(London) G48, 088001 (2021)

M.Bhuyan, R.Kumar, S.K.Patra

Comment on 'Detail study of application of the relativistic mean-field effective NN forces for heavy-ion fusion within a dynamical model'

doi: 10.1088/1361-6471/ac0582
Citations: PlumX Metrics

2021BI05      Can.J.Phys. 99, 312 (2021)

S.K.Biswal, S.K.Singh, M.Bhuyan, R.N.Panda, S.K.Patra

A bridge between finite and infinite nuclear matter

NUCLEAR STRUCTURE 40P, 40S, 40Ca, 112,116,120,124Sn, 208Pb; calculated binding energies from nuclear matter equation of state (EOS). Comparison with available data.

doi: 10.1139/cjp-2020-0104
Citations: PlumX Metrics

2021KU07      Phys.Rev. C 103, 024305 (2021)

A.Kumar, H.C.Das, M.Kaur, M.Bhuyan, S.K.Patra

Application of the coherent density fluctuation model to study the nuclear matter properties of finite nuclei within the relativistic mean-field formalism

NUCLEAR STRUCTURE 16O, 40,48Ca, 56Ni, 90Zr, 116Sn, 208Pb; proton and neutron surface diffusion parameters, nuclear incompressibilities, symmetric energies, neutron pressure, slope and curvature parameters, density distributions of 16O and 208Pb. Coherent density fluctuation model (CDFM) for nuclear matter (NM) properties of finite nuclei within the effective relativistic mean-field (E-RMF) formalism with NL3 and G3 parameter sets. Comparison with calculations using Bruckner energy density functional within CDFM, and discussed resolution of Coster-Band problem.

doi: 10.1103/PhysRevC.103.024305
Citations: PlumX Metrics

2021KU25      Nucl.Phys. A1015, 122315 (2021)

A.Kumar, H.C.Das, M.Bhuyan, S.K.Patra

Thermal impacts on the properties of nuclear matter and young neutron star

doi: 10.1016/j.nuclphysa.2021.122315
Citations: PlumX Metrics

2021PA21      Can.J.Phys. 99, 412 (2021)

M.Panigrahi, R.N.Panda, M.Bhuyan, S.K.Patra

Exploring the α-decay chain of 302122 within relativistic mean-field formalism

NUCLEAR STRUCTURE 272,274,276,278,280,282,284,286,288,290,292,294,296,298,300,302,304,306,308,310,312,314,316,318,320,322,324,326,328,330,332122; calculated binding energy, radii, deformation parameter, two-neutron separation energy using the axially deformed relativistic mean-field formalism with NL3* force parameter.

doi: 10.1139/cjp-2020-0296
Citations: PlumX Metrics

2021PA47      Phys.Scr. 96, 12539 (2021)

J.A.Pattnaik, M.Bhuyan, R.N.Panda, S.K.Patra

Isotopic shift in magic nuclei within relativistic mean-field formalism

NUCLEAR STRUCTURE 38,40,42,44,46,48,50,52,54,56Ca, 100,102,104,106,108,110,112,114,116,118,120,122,124,126,128,130,132,134,136,138Sn, 182,184,186,188,190,192,194,196,198,200,202,204,206,208,210,212,214Pb; analyzed available data. Z=120; calculated ground-state properties such as binding energy, root-mean-square radius, pairing energy, nucleons density distribution, symmetry energy, and single-particle energies employing the relativistic mean-field approximation.

doi: 10.1088/1402-4896/ac3a4d
Citations: PlumX Metrics

2021RA18      Phys.Rev. C 104, 024619 (2021)

S.Rana, R.Kumar, M.Bhuyan

Fusion cross section of the superheavy Z=120 nuclei within the relativistic mean-field formalism

NUCLEAR STRUCTURE 40,48Ca, 46,50Ti, 50,54Cr, 58,60Fe, 64,66Ni, 72Zn, 76Ge; 236,238U, 236,238U, 242,248,250Cm, 244Pu, 248,249,252,254Cf, 254,257Fm, 232Th, 228Ra; calculated proton, neutron, and total radial density distributions, surface diffusion parameters, ground-state quadrupole deformation β2 parameters for lighter projectiles and heavier targets in production of Z=120 nuclei using relativistic mean-field (RMF) formalism with the NL3* parameter set. Comparison with available experimental data.

NUCLEAR REACTIONS 257Fm(40Ca, X), 254Fm(48Ca, X), 248Cf(46Ti, X), 249Cf(46Ti, X), 249Cf(50Ti, X), 252Cf(50Ti, X), 242Cm(50Cr, X), 248Cm(54Cr, X), 244Pu(58Fe, X), 238U(64Ni, X), 235U(64Ni, X), 236U(66Ni, X), 254Cf(50Ti, X), 250Cm(54Cr, X), 244Pu(60Fe, X), 232Th(72Zn, X), 228Ra(76Ge, X)292120/294120/295120/297120/299120/302120/304120, E(cm)=200-330 MeV; calculated capture and fusion σ(E), barrier distributions for target-projectile combinations forming Z=120 superheavy nuclei. 248Cf(48Ti, X), 249Cf(46Ti, X), 249,252Cf(50Ti, X), 250Cm(54Cr, X); predicted as the most suitable target-projectile combinations for synthesis of Z=120 isotopes. Microscopic nucleon-nucleon calculations using R3Y interaction.

doi: 10.1103/PhysRevC.104.024619
Citations: PlumX Metrics

2020BH02      Phys.Rev. C 101, 044603 (2020); Errata Phys.Rev. C 104, 059901 (2021)

M.Bhuyan, R.Kumar, S.Rana, D.Jain, S.K.Patra, B.V.Carlson

Effect of density and nucleon-nucleon potential on the fusion cross section within the relativistic mean field formalism

NUCLEAR STRUCTURE 26Mg, 31Al, 39,46K, 48Ca, 64Ni, 154Sm, 181Ta, 197Au, 238U, 248Cm; calculated total radial density distributions, neutron and proton equivalent diffusiveness parameters using relativistic mean field formalism with NL3* interaction. Comparison with experimental data.

NUCLEAR REACTIONS 154Sm, 238U, 248Cm(48Ca, X), E(cm)=135-234 MeV; 238U(64Ni, X), E(cm)=245-305 MeV; 248Cm(26Mg, X), E(cm)=105-150 MeV; 181Ta(46K, X), (39K, X), E(cm)=140-176 MeV; 197Au(31Al, X), E(cm)=105-160 MeV; calculated σ(E), barrier heights, fusion barrier distributions. Comparison with experimental fusion cross section data. Relativistic mean field formalism using the double-folding procedure, and R3Y and M3Y interactions. Discussion of the role of nucleon-nucleon potential and nucleon densities in fusion cross sections.

doi: 10.1103/PhysRevC.101.044603
Citations: PlumX Metrics

2020BI13      Nucl.Phys. A1004, 122042 (2020)

S.K.Biswal, M.K.Abu El Sheikh, N.Biswal, N.Yusof, H.A.Kassim, S.K.Patra, M.Bhuyan

Nuclear matter properties of finite nuclei using relativistic mean field formalism

NUCLEAR STRUCTURE N=20, 40, 82, 126; analyzed available data; calculated variation of the symmetry energy with density in the symmetric nuclear matter, symmetry energy for N = 20, 40, 82, 126, and 172 (predicted) isotonic chains as a function of neutron skin-thickness as calculated using the RMF model.

doi: 10.1016/j.nuclphysa.2020.122042
Citations: PlumX Metrics

2020CH04      Nucl.Phys. A994, 121657 (2020)

M.V.Chushnyakova, M.Bhuyan, I.I.Gontchar, N.A.Khmyrova

Above-barrier heavy-ion fusion cross-sections using the relativistic mean-field approach: Case of spherical colliding nuclei

doi: 10.1016/j.nuclphysa.2019.121657
Citations: PlumX Metrics

2020KA28      Nucl.Phys. A1000, 121871 (2020)

M.Kaur, A.Quddus, A.Kumar, M.Bhuyan, S.K.Patra

Effect of temperature on the volume and surface contributions in the symmetry energy of rare earth nuclei

doi: 10.1016/j.nuclphysa.2020.121871
Citations: PlumX Metrics

2020KA50      J.Phys.(London) G47, 105102 (2020)

M.Kaur, A.Quddus, A.Kumar, M.Bhuyan, S.K.Patra

On the symmetry energy and deformed magic number at N = 100 in rare earth nuclei

NUCLEAR STRUCTURE 160Nd, 162Sm, 164Gd, 166Dy; calculated ground state neutron single particle spectra, variation of nuclear symmetry energy within the coherent density fluctuation model with relativistic mean densities with NL3 and IOPB-I parameter sets.

doi: 10.1088/1361-6471/ab92e4
Citations: PlumX Metrics

2020LO04      Eur.Phys.J. A 56, 32 (2020)

O.Lourenco, M.Dutra, C.H.Lenzi, S.K.Biswal, M.Bhuyan, D.P.Menezes

Consistent Skyrme parametrizations constrained by GW170817

doi: 10.1140/epja/s10050-020-00040-z
Citations: PlumX Metrics

2020QU04      J.Phys.(London) G47, 045105 (2020)

A.Quddus, M.Bhuyan, S.K.Patra

Effective surface properties of light, heavy, and superheavy nuclei

NUCLEAR STRUCTURE 16,28O, 40,48Ca, 68Ni, 90Zr, 100,132Sn, 208Pb; calculated binding energy per particle, charge radius. Comparison with available data.

doi: 10.1088/1361-6471/ab4f3e
Citations: PlumX Metrics

2019BH08      Phys.Rev. C 100, 054312 (2019)

M.Bhuyan, B.V.Carlson, S.K.Patra, RajK.Gupta

Neck configuration of Cm and Cf nuclei in the fission state within the relativistic mean field formalism

NUCLEAR STRUCTURE 242,244,246,248Cm, 248,250,252,254Cf; calculated potential energy surfaces, binding energies, rms charge radii, quadrupole deformation parameters β2, first and second barrier heights, static fission paths as a function of quadrupole deformation, total matter density distribution of the fission states, neutron and proton densities in the neck region, fission neck length parameters using relativistic mean field formalism with NL3 parameter set. Comparison with FRDM calculations and available experimental values; investigated the mechanism of fission decay and the shape of the fissioning nucleus by following the static fission path to the configuration before the breakup.

doi: 10.1103/PhysRevC.100.054312
Citations: PlumX Metrics

2019NA11      Nucl.Phys. A987, 295 (2019)

T.Naz, M.Bhuyan, S.Ahmad, S.K.Patra, H.Abusara

Correlation among the nuclear structure and effective symmetry energy of finite nuclei

NUCLEAR STRUCTURE Th, U; calculated even-mass isotopes Potential Energy Surfaces (PES), gs binding energy, mass excess, symmetry energy, deformation using Relativistic Mean-Field (RMF) theory, axially and axially deformed Relativistic Hartree Bogoliubov approaches with non-linear (NL3*) force, Density-Dependent Meson Exchange (DD-ME) and Point Coupling (DD-PC). Compared with other published calculations.

doi: 10.1016/j.nuclphysa.2019.04.011
Citations: PlumX Metrics

2019QU02      Phys.Rev. C 99, 044314 (2019)

A.Quddus, M.Bhuyan, S.Ahmad, B.V.Carlson, S.K.Patra

Temperature-dependent symmetry energy of neutron-rich thermally fissile nuclei

NUCLEAR STRUCTURE 234,236,250U, 240Pu; calculated nuclear densities, effective symmetry energy coefficients and curvatures, binding energies, charge radius, and β deformation parameter at finite temperature, neutron pressure and symmetry energy coefficients as function of neutron skin thickness using temperature-dependent relativistic mean field model (TRMF) with FSUGarnet, IOPB-I, and NL3 parameters. Comparison with available experimental data.

doi: 10.1103/PhysRevC.99.044314
Citations: PlumX Metrics

2018BH01      Phys.Rev. C 97, 024322 (2018)

M.Bhuyan, B.V.Carlson, S.K.Patra, S.-G.Zhou

Surface properties of neutron-rich exotic nuclei within relativistic mean field formalisms

NUCLEAR STRUCTURE 70,72,74,76,78,80,82,84,86Fe, 72,74,76,78,80,82,84,86,88Ni, 74,76,78,80,82,84,86,88,90Zn, 76,78,80,82,84,86,88,90,92Ge, 78,80,82,84,86,88,90,92,94Se, 80,82,84,86,88,90,92,94,96Kr; calculated binding energies, charge radii, and quadrupole deformation parameter β2 for ground states, S(2n), total density distribution, symmetry energy and neutron pressure as function of neutron skin thickness. Calculations based on axially deformed self-consistent relativistic mean field for the nonlinear NL3* and density-dependent DD-ME1 interactions. Comparison with available experimental data.

doi: 10.1103/PhysRevC.97.024322
Citations: PlumX Metrics

2018BH02      Phys.Atomic Nuclei 81, 15 (2018)


Probable Decay Modes at Limits of Nuclear Stability of the Superheavy Nuclei

NUCLEAR STRUCTURE Z=118, 120; calculated binding energy, mass excess, quadrupole deformation, mass and charge radius, relative neutron-proton asymmetry using axially deformed relativistic mean field; deduced possibility of decay modes.

doi: 10.1134/S1063778818010064
Citations: PlumX Metrics

2018BH10      Phys.Rev. C 98, 054610 (2018)

M.Bhuyan, R.Kumar

Fusion cross section for Ni-based reactions within the relativistic mean-field formalism

NUCLEAR REACTIONS 58Ni(58Ni, X), E(cm)=93-109 MeV; 124Sn(58Ni, X), E(cm)=145-200 MeV; 132Sn(58Ni, X), E(cm)=150-200 MeV; 64Ni(64Ni, X), E(cm)=85-110 MeV; 124Sn(64Ni, X), E(cm)=144-200 MeV; 132Sn(64Ni, X), E(cm)=145-200 MeV; calculated fusion-evaporation σ(E), and barrier distributions as a function of incident energy. 58,64Ni, 124,132Sn; calculated proton, neutron and total density distributions. Axially deformed self-consistent relativistic mean field (RMF) calculations with nonlinear NL3* and TM1 force parameters to investigate fusion study via the Wong formula. Comparison with experimental data.

doi: 10.1103/PhysRevC.98.054610
Citations: PlumX Metrics

2015BH01      J.Phys.(London) G42, 15105 (2015)

M.Bhuyan, S.K.Patra, R.K.Gupta

The evaporation residue in the fission state of barium nuclei within relativistic mean-field theory

NUCLEAR STRUCTURE 112,114,116,118,120,122,124,126,128,130,132,134Ba; the binding energy, deformation parameter, charge radius and the nucleonic density distributions. An axially deformed relativistic mean field formalism with NL3 parameter set.

doi: 10.1088/0954-3899/42/1/015105
Citations: PlumX Metrics

2015BH08      Int.J.Mod.Phys. E24, 1550028 (2015)

M.Bhuyan, S.Mahapatro, S.K.Singh, S.K.Patra

The structural and decay properties of Francium isotopes

RADIOACTIVITY 182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240Fr(α); calculated Q-values, T1/2, binding energies, rms charge radii, quadrupole deformation. Relativistic Mean Field (RMF) theory, Finite Range Droplet Model (FRDM), comparison with experimental data.

doi: 10.1142/S0218301315500287
Citations: PlumX Metrics

2015BH13      Phys.Rev. C 92, 034323 (2015)


Structural evolution in transitional nuclei of mass 82 ≤ A ≤ 132

NUCLEAR STRUCTURE 82,84,86,88,90,92,94,96,98,100,110,112,114,116,118,120,122,124,126Zr, 86,88,90,92,94,96,98,100,110,112,114,116,118,120,122,124,126,128,130Ru, 84,86,88,90,92,94,96,98,100,110,112,114,116,118,120,122,124,126,128Mo, 88,90,92,94,96,98,100,110,112,114,116,118,120,122,124,126,128,130,132Pd; calculated center-of-mass energies and potential energy surfaces of Zr isotopes, binding energies, root-mean-square charge radii, quadrupole deformation parameter β2 for the ground states and selected first few intrinsic excited states. Relativistic mean-field formalism with NL3 and NL3* forces. Comparison with experimental data.

doi: 10.1103/PhysRevC.92.034323
Citations: PlumX Metrics

2014BI06      Int.J.Mod.Phys. E23, 1450017 (2014)

S.K.Biswal, M.Bhuyan, S.K.Singh, S.K.Patra

Search of double shell closure in the superheavy nuclei using a simple effective interaction

NUCLEAR STRUCTURE 258Md, 258,261Rf, 259,260Db, 260,261Sg, 264,265Hs, 269Ds, 285,286,287,288,289Fl, 208Pb, 298Fl, 304120, 310126; calculated binding energies, ground state densities, two-neutron separation energies, pairing gap, single particle energy levels. Simple effective interaction, comparison with available data.

doi: 10.1142/S0218301314500177
Citations: PlumX Metrics

2014SA19      Phys.Rev. C 89, 034614 (2014)

B.B.Sahu, S.K.Singh, M.Bhuyan, S.K.Biswal, S.K.Patra

Importance of nonlinearity in the NN potential

NUCLEAR STRUCTURE 20Ne, 38Ar, 66Zn, 90Zr, 105Sb, 112Cs, 114Cd, 144Sm, 147Tm, 198Hg, 238U; calculated ground state binding energies, charge radii, and quadrupole deformation parameter using SH, L1 and NL3 interactions, and compared with experimental data. 16O, 208Pb, 270Ds; calculated binding energy from different fields of RMF Hamiltonian density with NL3 force, and compared with experimental data.

RADIOACTIVITY 105Sb, 109I, 112,113Cs, 117La, 131Eu, 140,141Ho, 145,146,147Tm(p); calculated half-lives of proton emitters. Relativistic mean field theory (RMFT) with nonlinear self-coupling of the scalar meson field using NR3Y+EX, M3Y+EX and LR3Y+EX nucleon-nucleon interactions. Comparison with experimental data.

doi: 10.1103/PhysRevC.89.034614
Citations: PlumX Metrics

2014SI10      Phys.Rev. C 89, 044001 (2014)

S.K.Singh, S.K.Biswal, M.Bhuyan, S.K.Patra

Effects of δ mesons in relativistic mean field theory

doi: 10.1103/PhysRevC.89.044001
Citations: PlumX Metrics

2013BH09      Int.J.Mod.Phys. E22, 1350068 (2013)


The oxygen core inside the magnesium isotopes

NUCLEAR STRUCTURE 20,22,24,26,28,30,32,34Mg; calculated binding energies, quadrupole deformation parameters, charge radii. BCS pairing approach.

doi: 10.1142/S0218301313500687
Citations: PlumX Metrics

2012AH03      Int.J.Mod.Phys. E21, 1250092 (2012)

S.Ahmad, M.Bhuyan, S.K.Patra

Properties of Z = 120 nuclei and the α-decay chains of the 292-304120 isotopes using relativistic and nonrelativistic formalisms

NUCLEAR STRUCTURE 280,282,284,286,288,290,292,294,296,298,300,302,304,306,308,310,312,314,316,318,320,322,324120, 288Og, 284Lv, 280Fl, 276Cn, 272Ds, 268Hs, 264Sg, 260Rf, 256No, 300Og, 296Lv, 292Fl, 288Cn, 284Ds, 280Hs, 276Ds; calculated binding energies, quadrupole deformation parameters, two-neutron separation and pairing energies. Nonrelativistic Skyrme-Hartree-Fock and the axially deformed relativistic mean field formalisms, comparison with available data.

doi: 10.1142/S0218301312500929
Citations: PlumX Metrics

2012PA47      Iader.Fiz.Enerh. 13, 228 (2012); Nuc.phys.atom.energ. 13, 228 (2012)

R.N.Panda, M.Bhuyan, S.K.Patra

Multifragmentation Fission in Neutron-rich Uranium and Thorium Nuclei

NUCLEAR STRUCTURE 242,244,246,248,250,252,254,256,258,260,262Th, 244,246,248,250,252,254,256,258,260,262,264U; calculated binding energies, deformation parameters, matter radius. Relativistic mean field theory calculations. Comparison to experimental data.

NUCLEAR REACTIONS 242,244,246,248,250,252,254,256,258,260,262Th, 244,246,248,250,252,254,256,258,260,262,264U(6Li, X), (11Li, X), (16O, X), (24O, X), E<1 GeV; calculated σ. Relativistic mean field theory calculations.

doi: 10.15407/jnpae
Citations: PlumX Metrics

2012SI01      J.Phys.(London) G39, 025101 (2012)

B.B.Singh, M.Bhuyan, S.K.Patra, R.K.Gupta

Optical potential obtained from relativistic-mean-field theory-based microscopic nucleon-nucleon interaction: applied to cluster radioactive decays

RADIOACTIVITY 222Ra(14C), 230U(22Ne), 231Pa(23F), 232U(24Ne), 236Pu(28Mg), 238Pu(30Mg); calculated WKB penetration probabilities for the M3Y+EX interaction optical model potentials. Comparison with the M3Y+EX NN-interaction potential.

doi: 10.1088/0954-3899/39/2/025101
Citations: PlumX Metrics

2011BH04      Int.J.Mod.Phys. E20, 1227 (2011)

M.Bhuyan, S.K.Patra, P.Arumugam, R.K.Gupta

Nuclear sub-structure in 112-122Ba nuclei within relativistic mean field theory

NUCLEAR STRUCTURE 112,114,116,118,120,122Ba; calculated binding energies, rms radii, deformation parameters, clustering structures. Relativistic mean field theory.

doi: 10.1142/S021830131101837X
Citations: PlumX Metrics

2011BH05      Phys.Rev. C 84, 014317 (2011)

M.Bhuyan, S.K.Patra, R.K.Gupta

Relativistic mean-field study of the properties of Z = 117 nuclei and the decay chains of the 293, 294117 isotopes

NUCLEAR STRUCTURE 286,288,290,292,294,296,298,300,302,304,306,308,310Ts; calculated binding energies, S(2n), pairing energy, β2 parameter, charge and matter rms radii. Axially deformed relativistic mean-field (RMF) model with NL3 interaction. Comparison with FRDM predictions.

RADIOACTIVITY 293,294Ts, 289,290Mc, 285,286Nh, 282Rg, 278Mt, 274Bh(α); calculated half-life, Qα. Axially deformed relativistic mean-field (RMF) model. Comparison with FRDM predictions.

doi: 10.1103/PhysRevC.84.014317
Citations: PlumX Metrics

2011SA50      Int.J.Mod.Phys. E20, 2217 (2011)

B.K.Sahu, M.Bhuyan, S.Mahapatro, S.K.Patra

The α-decay chains of the 287, 288115 isotopes using relativistic mean field theory

RADIOACTIVITY 287Mc, 283Nh, 279Rg, 275Mt, 271Bh, 288Mc, 284Nh, 280Rg, 276Mt, 272Bh(α); calculated Q-value, T1/2, rms radii, binding energies, two-neutron separation energy, quadrupole deformation parameter. RMF approach.

doi: 10.1142/S0218301311020277
Citations: PlumX Metrics

2010BH09      Phys.Rev. C 82, 064602 (2010)

M.Bhuyan, R.N.Panda, T.R.Routray, S.K.Patra

Application of relativistic mean field and effective field theory densities to scattering observables for Ca isotopes

NUCLEAR REACTIONS 40,42,44,48Ca(polarized p, p), E=300, 800, 1000 MeV; calculated proton and neutron density distributions, σ(θ), analyzing powers, spin observable Q value as function of scattering angle using relativistic mean field (RMF) theory with NL3 and G2 parameter sets. Comparison with experimental data.

doi: 10.1103/PhysRevC.82.064602
Citations: PlumX Metrics

2009PA36      Phys.Rev. C 80, 034312 (2009)

S.K.Patra, M.Bhuyan, M.S.Mehta, R.K.Gupta

Superdeformed and hyperdeformed states in Z=122 isotopes

NUCLEAR STRUCTURE 282,284,286,288,290,292,294,296,298,300,302,304,306,308,310,312,314,316,318,320122; calculated rms radii, quadrupole deformation parameter, binding energy, two neutron separation energies, and superdeformed and hyperdeformed states using axially deformed relativistic mean-field (RMF) and nonrelativistic Skyrme Hartree-Fock (SHF) calculations.

RADIOACTIVITY 232U, 236Pu, 240Cm, 244Cf, 248Fm, 252No, 256Rf, 260Sg, 264Hs, 268Ds, 272Cn, 276Fl, 280Lv, 284Og, 288120, 292122(α); calculated half-lives, binding energies and Q(α). Comparison with experimental data.

doi: 10.1103/PhysRevC.80.034312
Citations: PlumX Metrics

Back to query form