NSR Query Results
Output year order : Descending NSR database version of May 24, 2024. Search: Author = R.N.Panda Found 21 matches. 2023DA08 Phys.Atomic Nuclei 86, 70 (2023) Study on Halo Nuclei ^{11}Be, ^{19}C, ^{23}O and ^{17}F Using Glauber Model and RMF Densities NUCLEAR STRUCTURE ^{11}Be, ^{19}C, ^{23}O, ^{17}F; calculated the ground-state properties like binding energies, root-mean-square (rms) charge radii, quadrupole deformation parameters and neutron-skin thickness using relativistic mean field (RMF) formalism with NL3* parameter set. Comparison with available data.
doi: 10.1134/S1063778823020059
2023DA12 Nucl.Phys. A1037, 122703 (2023) M.Das, J.T.Majekodunmi, N.Biswal, R.N.Panda, M.Bhuyan Correlation between the nuclear structure and reaction dynamics of Ar-isotopes as projectile using the relativistic mean-field approach NUCLEAR STRUCTURE ^{30,32,34,36,38,40,42,44,46,48,50,52,54,56,58,60}Ar; analyzed available data; deduced nuclear properties, σ using the relativistic mean-field with the NL3* parameter set, several bulk properties such as binding energies, charge radii, quadrupole deformation parameter, two neutron separation energy, and differential two neutron separation energy with the shell closure parameter are probed for the mentioned isotopic chain.
doi: 10.1016/j.nuclphysa.2023.122703
2023PA24 Nucl.Phys. A1038, 122722 (2023) J.A.Pattnaik, R.N.Panda, M.Bhuyan, S.K.Patra Surface and decay properties of newly synthesized ^{207, 208}Th isotopes for various α-decay chains RADIOACTIVITY ^{207}Th, ^{203}Ra, ^{199}Rn, ^{195}Po, ^{208}Th, ^{204}Ra, ^{200}Rn, ^{196}Po(α); analyzed available data; deduced the ground, first excited, and second excited states binding energies using the effective field theory motivated relativistic mean-field based IOPB-I force parameter.
doi: 10.1016/j.nuclphysa.2023.122722
2023PA27 Pramana 97, 136 (2023) J.A.Pattnaik, K.C.Naik, R.N.Panda, M.Bhuyan, S.K.Patra Structure and reaction studies of Z-120 isotopes using non-relativistic and relativistic mean-field formalisms NUCLEAR STRUCTURE Z=120; calculated neutron, proton and total density distributions, nuclear charge radius and neutron skin thickness, neutron separation energy and pairing gap, symmetry energy and its coefficients within the effective field theory motivated relativistic mean-field (E-RMF) and the non-relativistic Skyrme–Hartree–Fock (SHF) approaches.
doi: 10.1007/s12043-023-02619-9
2022DA04 Nucl.Phys. A1019, 122380 (2022) M.Das, N.Biswal, R.N.Panda, M.Bhuyan Structural evolution and shape transition in even-even Hf-isotopes within the relativistic mean-field approach NUCLEAR STRUCTURE ^{170,172,174,176,178,180,182,184,186,188,190,192,194,196,198,200,202,204,206,208,210,212,214,216,218,220}Hf; calculated the ground state binding energy, root-mean-square charge radius and quadrupole deformation parameters using the Relativistic Hartree-Bogoliubov approach with density-dependent DD-ME2 and the relativistic mean-field formalism with the popular NL3 and NL3* parameter sets.
doi: 10.1016/j.nuclphysa.2021.122380
2022PA06 Can.J.Phys. 100, 102 (2022) J.A.Pattnaik, R.N.Panda, M.Bhuyan, S.K.Patra Surface properties for Ne, Na, Mg, Al, and Si isotopes in the coherent density fluctuation model using the relativistic mean-field densities NUCLEAR STRUCTURE ^{29}F, ^{28}Ne, ^{29,30}Na, ^{31,35,36}Mg; analyzed available data; calculated surface properties, such as symmetry energy, neutron pressure, and symmetry energy curvature coefficients using the coherent density fluctuation model (CDFM).
doi: 10.1139/cjp-2021-0231
2022PA28 Chin.Phys.C 46, 094103 (2022) J.A.Pattnaik, R.N.Panda, M.Bhuyan, S.K.Patra Constraining the relativistic mean-field models from PREX-2 data: effective forces revisited NUCLEAR STRUCTURE ^{16}O, ^{40,48}Ca, ^{90}Zr, ^{116,132}Sn, ^{208}Pb, ^{304}120; analyzed available PREX-2 data; deduced binding energies, neutron distribution radii using the relativistic mean-field (RMF) model with G3 and IOPB-I force parameters.
doi: 10.1088/1674-1137/ac6f4e
2021BI05 Can.J.Phys. 99, 312 (2021) S.K.Biswal, S.K.Singh, M.Bhuyan, R.N.Panda, S.K.Patra A bridge between finite and infinite nuclear matter NUCLEAR STRUCTURE ^{40}P, ^{40}S, ^{40}Ca, ^{112,116,120,124}Sn, ^{208}Pb; calculated binding energies from nuclear matter equation of state (EOS). Comparison with available data.
doi: 10.1139/cjp-2020-0104
2021PA21 Can.J.Phys. 99, 412 (2021) M.Panigrahi, R.N.Panda, M.Bhuyan, S.K.Patra Exploring the α-decay chain of ^{302}122 within relativistic mean-field formalism NUCLEAR STRUCTURE ^{272,274,276,278,280,282,284,286,288,290,292,294,296,298,300,302,304,306,308,310,312,314,316,318,320,322,324,326,328,330,332}122; calculated binding energy, radii, deformation parameter, two-neutron separation energy using the axially deformed relativistic mean-field formalism with NL3* force parameter.
doi: 10.1139/cjp-2020-0296
2021PA47 Phys.Scr. 96, 12539 (2021) J.A.Pattnaik, M.Bhuyan, R.N.Panda, S.K.Patra Isotopic shift in magic nuclei within relativistic mean-field formalism NUCLEAR STRUCTURE ^{38,40,42,44,46,48,50,52,54,56}Ca, ^{100,102,104,106,108,110,112,114,116,118,120,122,124,126,128,130,132,134,136,138}Sn, ^{182,184,186,188,190,192,194,196,198,200,202,204,206,208,210,212,214}Pb; analyzed available data. Z=120; calculated ground-state properties such as binding energy, root-mean-square radius, pairing energy, nucleons density distribution, symmetry energy, and single-particle energies employing the relativistic mean-field approximation.
doi: 10.1088/1402-4896/ac3a4d
2019QU03 Nucl.Phys. A987, 222 (2019) A.Quddus, K.C.Naik, R.N.Panda, S.K.Patra Temperature dependent study of neutron-rich thermally fissile ^{244-262}Th and ^{246-264}U nuclei within E-TRMF model NUCLEAR STRUCTURE ^{227,228,229,230,231,232,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262}Th, ^{246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264}U; calculated gs binding energy, mass excess, charge radius, neutron skin thickness using NL3, FSLGarnet and IOPB-I force parameters, excitation energy E^{*} vs nuclear temperature, nuclear shell correction, 2n separation energy vs temperature, entropy (squared) vs excitation E^{*}, neutron energy spectrum of selected levels, quadrupole and hexadecapole deformations and rms neutron and rms proton radii, level density parameter vs temperature, asymmetry energy coefficient vs temperature and vs mass number.
doi: 10.1016/j.nuclphysa.2019.04.010
2019SA24 Chin.Phys.C 43, 044102 (2019) Proton emission from the drip-line nuclei I-Bi using the WKB approximation with relativistic mean-field densities RADIOACTIVITY ^{109}I, ^{112,113}Cs, ^{117}La, ^{131}Eu, ^{140}Ho, ^{144,145,146,147}Tm, ^{150,151}Lu, ^{155,156,157}Ta, ^{160,161}Re, ^{164,165,166,167}Ir, ^{170,171}Au, ^{176,177}Tl, ^{185}Bi(p); calculated binding energy per nucleon, turning points and the potential barrier height, T_{1/2}. Comparison with experimental data.
doi: 10.1088/1674-1137/43/4/044102
2018NA19 Braz.J.Phys. 48, 342 (2018) K.C.Naik, R.N.Panda, A.Quddus, S.K.Patra Astrophysical S-factor of some (p, γ) Reactions
doi: 10.1007/s13538-018-0569-5
2018PA09 Int.J.Mod.Phys. E27, 1850012 (2018) M.Panigrahi, R.N.Panda, B.Kumar, S.K.Patra Decay properties and reaction dynamics of zirconium isotopes in the relativistic mean-field model
doi: 10.1142/S021830131850012X
2018PA44 Phys.Atomic Nuclei 81, 417 (2018) R.N.Panda, M.Panigrahi, M.K.Sharma, S.K.Patra Evidence of a Proton Halo in ^{23}Al: A Mean Field Analysis NUCLEAR REACTIONS ^{12}C(^{22}Al, x), (^{23}Al, x), (^{24}Al, x), (^{25}Al, x), (^{26}Al, x), (^{27}Al, x), (^{28}Al, x), (^{29}Al, x), (^{30}Al, x), (^{31}Al, x), (^{32}Al, x), (^{33}Al, x), (^{34}Al, x), (^{35}Al, x), (^{36}Al, x), (^{37}Al, x), (^{38}Al, x), (^{39}Al, x), (^{40}Al, x), (^{41}Al, x), (^{42}Al, x), (^{43}Al, x), (^{44}Al, x), E not given; calculated binding energy, mass excess, deformation β_{2}, charge radius r_{ch} using Relativistic Mean Field (RMF) theory, Glauber technique and NL3 parameter set for both spherical and deformed nuclei, spherical neutron ρ_{n} and proton ρ_{p} radial density distributions, 1p, 2p and 1n separation energies for deformed different Al isotopes; compared with published data and published FRDM calculations. (^{23}Al, x), (^{24}Al, x), (^{25}Al, x), (^{26}Al, x), (^{27}Al, x), (^{28}Al, x), E nt given; calculated Coulomb-modified reaction cross section σ_{R} for spherical and for deformed case, depletion factor; compared with data. (^{23}Al, x), E=30, 74 MeV/nucleon; calculated σ_{R} vs difussenes parameter, longitudinal momentum distribution of ^{22}Mg; compared with data; deduced possible ^{23}Al proton halo using enhanced s_{R}, high radius, narrow longitudinal momentum distribution and small proton separation energy.
doi: 10.1134/s1063778818040154
2016SH05 Phys.Rev. C 93, 014322 (2016) M.K.Sharma, R.N.Panda, M.K.Sharma, S.K.Patra Search for halo structure in ^{37}Mg using the Glauber model and microscopic relativistic mean-field densities NUCLEAR STRUCTURE ^{24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40}Mg; calculated binding energies, charge radii, density profiles as function of radial distance. ^{35,36,37,38,39,40}Mg; comparison of RMF densities with spherical equivalent densities. Relativistic mean field formalism (RMF) formalism. Comparison with experimental data. NUCLEAR REACTIONS ^{12}C(^{24}Mg, X), (^{25}Mg, X), (^{26}Mg, X), (^{27}Mg, X), (^{28}Mg, X), (^{29}Mg, X), (^{30}Mg, X), (^{31}Mg, X), (^{32}Mg, X), (^{33}Mg, X), (^{34}Mg, X), (^{35}Mg, X), (^{36}Mg, X), (^{37}Mg, X), (^{38}Mg, X), (^{39}Mg, X), (^{40}Mg, X), E=240 MeV/nucleon; calculated reaction σ, σ(θ) for ^{34,35,36,37,38}Mg projectiles. ^{12}C(^{37}Mg, X), E=30-1000 MeV/nucleon; calculated rms radius and reaction cross section as a function of diffuseness parameter, one neutron removal cross sections including total, elastic and inelastic parts. ^{12}C(^{37}Mg, ^{36}Mg), E=240 MeV/nucleon; calculated longitudinal momentum distribution. Glauber model in conjunction with densities from relativistic mean field formalism. Comparison with experimental data.
doi: 10.1103/PhysRevC.93.014322
2015SH21 Chin.Phys.C 39, 064102 (2015) M.K.Sharma, R.N.Panda, M.K.Sharma, S.K.Patra Nuclear structure study of some bubble nuclei in the light mass region using mean field formalism NUCLEAR STRUCTURE ^{9,10,11,12}Be, ^{12,13,14,15}B, ^{12,13,14,15,16,17,18,19,20}C, ^{20,21,22,23}N, ^{20,21,22,23,24}O, ^{23,24,25,26,27}F, ^{28,29,30,31,32}Ne, ^{32,33,34,35}Mg, ^{32,33,34,35}Si, ^{34,35,36,37}S, ^{34,36,38,40,42,44,46,48}Ar; calculated binding energy, charge radius. RMF(NL3) and HF(SEI-I) formalisms.
doi: 10.1088/1674-1137/39/6/064102
2012PA47 Iader.Fiz.Enerh. 13, 228 (2012); Nuc.phys.atom.energ. 13, 228 (2012) R.N.Panda, M.Bhuyan, S.K.Patra Multifragmentation Fission in Neutron-rich Uranium and Thorium Nuclei NUCLEAR STRUCTURE ^{242,244,246,248,250,252,254,256,258,260,262}Th, ^{244,246,248,250,252,254,256,258,260,262,264}U; calculated binding energies, deformation parameters, matter radius. Relativistic mean field theory calculations. Comparison to experimental data. NUCLEAR REACTIONS ^{242,244,246,248,250,252,254,256,258,260,262}Th, ^{244,246,248,250,252,254,256,258,260,262,264}U(^{6}Li, X), (^{11}Li, X), (^{16}O, X), (^{24}O, X), E<1 GeV; calculated σ. Relativistic mean field theory calculations.
doi: 10.15407/jnpae
2010BH09 Phys.Rev. C 82, 064602 (2010) M.Bhuyan, R.N.Panda, T.R.Routray, S.K.Patra Application of relativistic mean field and effective field theory densities to scattering observables for Ca isotopes NUCLEAR REACTIONS ^{40,42,44,48}Ca(polarized p, p), E=300, 800, 1000 MeV; calculated proton and neutron density distributions, σ(θ), analyzing powers, spin observable Q value as function of scattering angle using relativistic mean field (RMF) theory with NL3 and G2 parameter sets. Comparison with experimental data.
doi: 10.1103/PhysRevC.82.064602
2009PA15 Phys.Rev. C 79, 044303 (2009) S.K.Patra, F.H.Bhat, R.N.Panda, P.Arumugam, R.K.Gupta Isomeric state in ^{53}Co: A mean field analysis NUCLEAR STRUCTURE ^{53}Co, ^{53}Fe; calculated potential energy as a function of quadrupole deformation, ground and isomeric state binding energies, charge radii, deformation parameters, single-particle energy levels, occupation probabilities of proton and neutron orbits. Relativistic and non-relativistic mean field formalism, Skyrme Hartree-Fock method calculations. Comparison with experimental data.
doi: 10.1103/PhysRevC.79.044303
2009PA46 Phys.Rev. C 80, 064602 (2009) S.K.Patra, R.N.Panda, P.Arumugam, R.K.Gupta Nuclear reaction cross sections of exotic nuclei in the Glauber model for relativistic mean field densities NUCLEAR REACTIONS ^{12}C(^{6}Li, X), (^{7}Li, X), (^{8}Li, X), (^{9}Li, X), (^{11}Li, X), E=790 MeV/nucleon; ^{12}C(^{20}Mg, X), (^{20}Na, X), (^{20}Ne, X), (^{20}F, X), (^{20}O, X), (^{20}N, X), E=30-2200 MeV/nucleon; ^{208}Pb(α, X), (^{6}He, X), (^{8}He, X), (^{6}Li, X), (^{7}Li, X), (^{8}Li, X), (^{9}Li, X), (^{11}Li, X), (^{10}B, X), E=30-1000 MeV/nucleon; ^{235}U(α, X), (^{6}He, X), (^{8}He, X), (^{6}Li, X), (^{7}Li, X), (^{8}Li, X), (^{9}Li, X), (^{11}Li, X), (^{20}C, X), E=30-1000 MeV/nucleon; ^{230}Th(α, X), (^{6}Li, X), (^{7}Li, X), (^{8}Li, X), (^{9}Li, X), (^{11}Li, X), E=30-1000 MeV/nucleon; ^{218,228,248,260}Pb, ^{250,260,270}U(^{6}Li, X), E=30-1000 MeV/nucleon; ^{218,228,248,260}Pb, ^{250,260,270}U(^{11}Li, X), 30-1000 MeV/nucleon; ^{218,228,248}Pb(^{10}B, X), E=30-1000 MeV/nucleon; ^{240,250,270}Th(α, X), E=30-1000 MeV/nucleon; ^{250,260,270}U(^{8}He, X), E=30-1000 MeV/nucleon; ^{250,260,270}U(^{20}C, X), E=30-1000 MeV/nucleon; ^{208,210,260}Pb(^{6}Li, ^{6}Li), E=30-1000 MeV/nucleon; ^{260}Pb, ^{292,320}122(^{11}Li, X), E=30-1000 MeV/nucleon; ^{260}Pb, ^{292,320}122(^{11}Li, ^{11}Li), E=30-1000 MeV/nucleon; ^{208}Pb, ^{235,238,250}U(^{12}C, ^{12}C), E=30-1000 MeV/nucleon; ^{235,238,250}U(^{20}C, ^{20}C), E=30-1000 MeV/nucleon; calculated σ and σ(θ) using the relativistic mean field (RMF(NL3) and E-RMF(G2)) formalisms and the Glauber model. Comparison with experimental data. NUCLEAR STRUCTURE ^{4,5,6,7,8}He, ^{6,7,8,9,10,11}Li, ^{10,15,17,20}B, ^{12,14,16,18,20}C, ^{208,210,218,228,238,248,258,260}Pb, ^{230,240,250,260,270}Th, ^{235,238,250,260,270,280}U, ^{292,320}122; calculated binding energies, rms radii and ground-state densities for lighter projectiles and heavier target nuclei using relativistic mean field (RMF(NL3) and E-RMF(G2)) formalisms. Comparison with experimental data.
doi: 10.1103/PhysRevC.80.064602
Back to query form |