NSR Query Results

Output year order : Descending
Format : Normal

NSR database version of May 24, 2024.

Search: Author = R.N.Panda

Found 21 matches.

Back to query form

2023DA08      Phys.Atomic Nuclei 86, 70 (2023)

M.Das, R.N.Panda

Study on Halo Nuclei 11Be, 19C, 23O and 17F Using Glauber Model and RMF Densities

NUCLEAR STRUCTURE 11Be, 19C, 23O, 17F; calculated the ground-state properties like binding energies, root-mean-square (rms) charge radii, quadrupole deformation parameters and neutron-skin thickness using relativistic mean field (RMF) formalism with NL3* parameter set. Comparison with available data.

doi: 10.1134/S1063778823020059
Citations: PlumX Metrics

2023DA12      Nucl.Phys. A1037, 122703 (2023)

M.Das, J.T.Majekodunmi, N.Biswal, R.N.Panda, M.Bhuyan

Correlation between the nuclear structure and reaction dynamics of Ar-isotopes as projectile using the relativistic mean-field approach

NUCLEAR STRUCTURE 30,32,34,36,38,40,42,44,46,48,50,52,54,56,58,60Ar; analyzed available data; deduced nuclear properties, σ using the relativistic mean-field with the NL3* parameter set, several bulk properties such as binding energies, charge radii, quadrupole deformation parameter, two neutron separation energy, and differential two neutron separation energy with the shell closure parameter are probed for the mentioned isotopic chain.

doi: 10.1016/j.nuclphysa.2023.122703
Citations: PlumX Metrics

2023PA24      Nucl.Phys. A1038, 122722 (2023)

J.A.Pattnaik, R.N.Panda, M.Bhuyan, S.K.Patra

Surface and decay properties of newly synthesized 207, 208Th isotopes for various α-decay chains

RADIOACTIVITY 207Th, 203Ra, 199Rn, 195Po, 208Th, 204Ra, 200Rn, 196Po(α); analyzed available data; deduced the ground, first excited, and second excited states binding energies using the effective field theory motivated relativistic mean-field based IOPB-I force parameter.

doi: 10.1016/j.nuclphysa.2023.122722
Citations: PlumX Metrics

2023PA27      Pramana 97, 136 (2023)

J.A.Pattnaik, K.C.Naik, R.N.Panda, M.Bhuyan, S.K.Patra

Structure and reaction studies of Z-120 isotopes using non-relativistic and relativistic mean-field formalisms

NUCLEAR STRUCTURE Z=120; calculated neutron, proton and total density distributions, nuclear charge radius and neutron skin thickness, neutron separation energy and pairing gap, symmetry energy and its coefficients within the effective field theory motivated relativistic mean-field (E-RMF) and the non-relativistic Skyrme–Hartree–Fock (SHF) approaches.

doi: 10.1007/s12043-023-02619-9
Citations: PlumX Metrics

2022DA04      Nucl.Phys. A1019, 122380 (2022)

M.Das, N.Biswal, R.N.Panda, M.Bhuyan

Structural evolution and shape transition in even-even Hf-isotopes within the relativistic mean-field approach

NUCLEAR STRUCTURE 170,172,174,176,178,180,182,184,186,188,190,192,194,196,198,200,202,204,206,208,210,212,214,216,218,220Hf; calculated the ground state binding energy, root-mean-square charge radius and quadrupole deformation parameters using the Relativistic Hartree-Bogoliubov approach with density-dependent DD-ME2 and the relativistic mean-field formalism with the popular NL3 and NL3* parameter sets.

doi: 10.1016/j.nuclphysa.2021.122380
Citations: PlumX Metrics

2022PA06      Can.J.Phys. 100, 102 (2022)

J.A.Pattnaik, R.N.Panda, M.Bhuyan, S.K.Patra

Surface properties for Ne, Na, Mg, Al, and Si isotopes in the coherent density fluctuation model using the relativistic mean-field densities

NUCLEAR STRUCTURE 29F, 28Ne, 29,30Na, 31,35,36Mg; analyzed available data; calculated surface properties, such as symmetry energy, neutron pressure, and symmetry energy curvature coefficients using the coherent density fluctuation model (CDFM).

doi: 10.1139/cjp-2021-0231
Citations: PlumX Metrics

2022PA28      Chin.Phys.C 46, 094103 (2022)

J.A.Pattnaik, R.N.Panda, M.Bhuyan, S.K.Patra

Constraining the relativistic mean-field models from PREX-2 data: effective forces revisited

NUCLEAR STRUCTURE 16O, 40,48Ca, 90Zr, 116,132Sn, 208Pb, 304120; analyzed available PREX-2 data; deduced binding energies, neutron distribution radii using the relativistic mean-field (RMF) model with G3 and IOPB-I force parameters.

doi: 10.1088/1674-1137/ac6f4e
Citations: PlumX Metrics

2021BI05      Can.J.Phys. 99, 312 (2021)

S.K.Biswal, S.K.Singh, M.Bhuyan, R.N.Panda, S.K.Patra

A bridge between finite and infinite nuclear matter

NUCLEAR STRUCTURE 40P, 40S, 40Ca, 112,116,120,124Sn, 208Pb; calculated binding energies from nuclear matter equation of state (EOS). Comparison with available data.

doi: 10.1139/cjp-2020-0104
Citations: PlumX Metrics

2021PA21      Can.J.Phys. 99, 412 (2021)

M.Panigrahi, R.N.Panda, M.Bhuyan, S.K.Patra

Exploring the α-decay chain of 302122 within relativistic mean-field formalism

NUCLEAR STRUCTURE 272,274,276,278,280,282,284,286,288,290,292,294,296,298,300,302,304,306,308,310,312,314,316,318,320,322,324,326,328,330,332122; calculated binding energy, radii, deformation parameter, two-neutron separation energy using the axially deformed relativistic mean-field formalism with NL3* force parameter.

doi: 10.1139/cjp-2020-0296
Citations: PlumX Metrics

2021PA47      Phys.Scr. 96, 12539 (2021)

J.A.Pattnaik, M.Bhuyan, R.N.Panda, S.K.Patra

Isotopic shift in magic nuclei within relativistic mean-field formalism

NUCLEAR STRUCTURE 38,40,42,44,46,48,50,52,54,56Ca, 100,102,104,106,108,110,112,114,116,118,120,122,124,126,128,130,132,134,136,138Sn, 182,184,186,188,190,192,194,196,198,200,202,204,206,208,210,212,214Pb; analyzed available data. Z=120; calculated ground-state properties such as binding energy, root-mean-square radius, pairing energy, nucleons density distribution, symmetry energy, and single-particle energies employing the relativistic mean-field approximation.

doi: 10.1088/1402-4896/ac3a4d
Citations: PlumX Metrics

2019QU03      Nucl.Phys. A987, 222 (2019)

A.Quddus, K.C.Naik, R.N.Panda, S.K.Patra

Temperature dependent study of neutron-rich thermally fissile 244-262Th and 246-264U nuclei within E-TRMF model

NUCLEAR STRUCTURE 227,228,229,230,231,232,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262Th, 246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264U; calculated gs binding energy, mass excess, charge radius, neutron skin thickness using NL3, FSLGarnet and IOPB-I force parameters, excitation energy E* vs nuclear temperature, nuclear shell correction, 2n separation energy vs temperature, entropy (squared) vs excitation E*, neutron energy spectrum of selected levels, quadrupole and hexadecapole deformations and rms neutron and rms proton radii, level density parameter vs temperature, asymmetry energy coefficient vs temperature and vs mass number.

doi: 10.1016/j.nuclphysa.2019.04.010
Citations: PlumX Metrics

2019SA24      Chin.Phys.C 43, 044102 (2019)

T.Sahoo, R.N.Panda, S.K.Patra

Proton emission from the drip-line nuclei I-Bi using the WKB approximation with relativistic mean-field densities

RADIOACTIVITY 109I, 112,113Cs, 117La, 131Eu, 140Ho, 144,145,146,147Tm, 150,151Lu, 155,156,157Ta, 160,161Re, 164,165,166,167Ir, 170,171Au, 176,177Tl, 185Bi(p); calculated binding energy per nucleon, turning points and the potential barrier height, T1/2. Comparison with experimental data.

doi: 10.1088/1674-1137/43/4/044102
Citations: PlumX Metrics

2018NA19      Braz.J.Phys. 48, 342 (2018)

K.C.Naik, R.N.Panda, A.Quddus, S.K.Patra

Astrophysical S-factor of some (p, γ) Reactions

doi: 10.1007/s13538-018-0569-5
Citations: PlumX Metrics

2018PA09      Int.J.Mod.Phys. E27, 1850012 (2018)

M.Panigrahi, R.N.Panda, B.Kumar, S.K.Patra

Decay properties and reaction dynamics of zirconium isotopes in the relativistic mean-field model

doi: 10.1142/S021830131850012X
Citations: PlumX Metrics

2018PA44      Phys.Atomic Nuclei 81, 417 (2018)

R.N.Panda, M.Panigrahi, M.K.Sharma, S.K.Patra

Evidence of a Proton Halo in 23Al: A Mean Field Analysis

NUCLEAR REACTIONS 12C(22Al, x), (23Al, x), (24Al, x), (25Al, x), (26Al, x), (27Al, x), (28Al, x), (29Al, x), (30Al, x), (31Al, x), (32Al, x), (33Al, x), (34Al, x), (35Al, x), (36Al, x), (37Al, x), (38Al, x), (39Al, x), (40Al, x), (41Al, x), (42Al, x), (43Al, x), (44Al, x), E not given; calculated binding energy, mass excess, deformation β2, charge radius rch using Relativistic Mean Field (RMF) theory, Glauber technique and NL3 parameter set for both spherical and deformed nuclei, spherical neutron ρn and proton ρp radial density distributions, 1p, 2p and 1n separation energies for deformed different Al isotopes; compared with published data and published FRDM calculations. (23Al, x), (24Al, x), (25Al, x), (26Al, x), (27Al, x), (28Al, x), E nt given; calculated Coulomb-modified reaction cross section σR for spherical and for deformed case, depletion factor; compared with data. (23Al, x), E=30, 74 MeV/nucleon; calculated σR vs difussenes parameter, longitudinal momentum distribution of 22Mg; compared with data; deduced possible 23Al proton halo using enhanced sR, high radius, narrow longitudinal momentum distribution and small proton separation energy.

doi: 10.1134/s1063778818040154
Citations: PlumX Metrics

2016SH05      Phys.Rev. C 93, 014322 (2016)

M.K.Sharma, R.N.Panda, M.K.Sharma, S.K.Patra

Search for halo structure in 37Mg using the Glauber model and microscopic relativistic mean-field densities

NUCLEAR STRUCTURE 24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40Mg; calculated binding energies, charge radii, density profiles as function of radial distance. 35,36,37,38,39,40Mg; comparison of RMF densities with spherical equivalent densities. Relativistic mean field formalism (RMF) formalism. Comparison with experimental data.

NUCLEAR REACTIONS 12C(24Mg, X), (25Mg, X), (26Mg, X), (27Mg, X), (28Mg, X), (29Mg, X), (30Mg, X), (31Mg, X), (32Mg, X), (33Mg, X), (34Mg, X), (35Mg, X), (36Mg, X), (37Mg, X), (38Mg, X), (39Mg, X), (40Mg, X), E=240 MeV/nucleon; calculated reaction σ, σ(θ) for 34,35,36,37,38Mg projectiles. 12C(37Mg, X), E=30-1000 MeV/nucleon; calculated rms radius and reaction cross section as a function of diffuseness parameter, one neutron removal cross sections including total, elastic and inelastic parts. 12C(37Mg, 36Mg), E=240 MeV/nucleon; calculated longitudinal momentum distribution. Glauber model in conjunction with densities from relativistic mean field formalism. Comparison with experimental data.

doi: 10.1103/PhysRevC.93.014322
Citations: PlumX Metrics

2015SH21      Chin.Phys.C 39, 064102 (2015)

M.K.Sharma, R.N.Panda, M.K.Sharma, S.K.Patra

Nuclear structure study of some bubble nuclei in the light mass region using mean field formalism

NUCLEAR STRUCTURE 9,10,11,12Be, 12,13,14,15B, 12,13,14,15,16,17,18,19,20C, 20,21,22,23N, 20,21,22,23,24O, 23,24,25,26,27F, 28,29,30,31,32Ne, 32,33,34,35Mg, 32,33,34,35Si, 34,35,36,37S, 34,36,38,40,42,44,46,48Ar; calculated binding energy, charge radius. RMF(NL3) and HF(SEI-I) formalisms.

doi: 10.1088/1674-1137/39/6/064102
Citations: PlumX Metrics

2012PA47      Iader.Fiz.Enerh. 13, 228 (2012); Nuc.phys.atom.energ. 13, 228 (2012)

R.N.Panda, M.Bhuyan, S.K.Patra

Multifragmentation Fission in Neutron-rich Uranium and Thorium Nuclei

NUCLEAR STRUCTURE 242,244,246,248,250,252,254,256,258,260,262Th, 244,246,248,250,252,254,256,258,260,262,264U; calculated binding energies, deformation parameters, matter radius. Relativistic mean field theory calculations. Comparison to experimental data.

NUCLEAR REACTIONS 242,244,246,248,250,252,254,256,258,260,262Th, 244,246,248,250,252,254,256,258,260,262,264U(6Li, X), (11Li, X), (16O, X), (24O, X), E<1 GeV; calculated σ. Relativistic mean field theory calculations.

doi: 10.15407/jnpae
Citations: PlumX Metrics

2010BH09      Phys.Rev. C 82, 064602 (2010)

M.Bhuyan, R.N.Panda, T.R.Routray, S.K.Patra

Application of relativistic mean field and effective field theory densities to scattering observables for Ca isotopes

NUCLEAR REACTIONS 40,42,44,48Ca(polarized p, p), E=300, 800, 1000 MeV; calculated proton and neutron density distributions, σ(θ), analyzing powers, spin observable Q value as function of scattering angle using relativistic mean field (RMF) theory with NL3 and G2 parameter sets. Comparison with experimental data.

doi: 10.1103/PhysRevC.82.064602
Citations: PlumX Metrics

2009PA15      Phys.Rev. C 79, 044303 (2009)

S.K.Patra, F.H.Bhat, R.N.Panda, P.Arumugam, R.K.Gupta

Isomeric state in 53Co: A mean field analysis

NUCLEAR STRUCTURE 53Co, 53Fe; calculated potential energy as a function of quadrupole deformation, ground and isomeric state binding energies, charge radii, deformation parameters, single-particle energy levels, occupation probabilities of proton and neutron orbits. Relativistic and non-relativistic mean field formalism, Skyrme Hartree-Fock method calculations. Comparison with experimental data.

doi: 10.1103/PhysRevC.79.044303
Citations: PlumX Metrics

2009PA46      Phys.Rev. C 80, 064602 (2009)

S.K.Patra, R.N.Panda, P.Arumugam, R.K.Gupta

Nuclear reaction cross sections of exotic nuclei in the Glauber model for relativistic mean field densities

NUCLEAR REACTIONS 12C(6Li, X), (7Li, X), (8Li, X), (9Li, X), (11Li, X), E=790 MeV/nucleon; 12C(20Mg, X), (20Na, X), (20Ne, X), (20F, X), (20O, X), (20N, X), E=30-2200 MeV/nucleon; 208Pb(α, X), (6He, X), (8He, X), (6Li, X), (7Li, X), (8Li, X), (9Li, X), (11Li, X), (10B, X), E=30-1000 MeV/nucleon; 235U(α, X), (6He, X), (8He, X), (6Li, X), (7Li, X), (8Li, X), (9Li, X), (11Li, X), (20C, X), E=30-1000 MeV/nucleon; 230Th(α, X), (6Li, X), (7Li, X), (8Li, X), (9Li, X), (11Li, X), E=30-1000 MeV/nucleon; 218,228,248,260Pb, 250,260,270U(6Li, X), E=30-1000 MeV/nucleon; 218,228,248,260Pb, 250,260,270U(11Li, X), 30-1000 MeV/nucleon; 218,228,248Pb(10B, X), E=30-1000 MeV/nucleon; 240,250,270Th(α, X), E=30-1000 MeV/nucleon; 250,260,270U(8He, X), E=30-1000 MeV/nucleon; 250,260,270U(20C, X), E=30-1000 MeV/nucleon; 208,210,260Pb(6Li, 6Li), E=30-1000 MeV/nucleon; 260Pb, 292,320122(11Li, X), E=30-1000 MeV/nucleon; 260Pb, 292,320122(11Li, 11Li), E=30-1000 MeV/nucleon; 208Pb, 235,238,250U(12C, 12C), E=30-1000 MeV/nucleon; 235,238,250U(20C, 20C), E=30-1000 MeV/nucleon; calculated σ and σ(θ) using the relativistic mean field (RMF(NL3) and E-RMF(G2)) formalisms and the Glauber model. Comparison with experimental data.

NUCLEAR STRUCTURE 4,5,6,7,8He, 6,7,8,9,10,11Li, 10,15,17,20B, 12,14,16,18,20C, 208,210,218,228,238,248,258,260Pb, 230,240,250,260,270Th, 235,238,250,260,270,280U, 292,320122; calculated binding energies, rms radii and ground-state densities for lighter projectiles and heavier target nuclei using relativistic mean field (RMF(NL3) and E-RMF(G2)) formalisms. Comparison with experimental data.

doi: 10.1103/PhysRevC.80.064602
Citations: PlumX Metrics

Back to query form