NSR Query Results


Output year order : Descending
Format : Normal

NSR database version of April 11, 2024.

Search: Author = L.Satpathy

Found 54 matches.

Back to query form



2010DA03      Phys.Rev. C 81, 014311 (2010)

L.S.Danu, D.C.Biswas, A.Saxena, A.Shrivastava, A.Chatterjee, B.K.Nayak, R.G.Thomas, R.K.Choudhury, R.Palit, I.Mazumdar, P.Datta, S.Chattopadhyay, S.Pal, S.Bhattacharya, S.Muralithar, K.S.Golda, R.K.Bhowmik, J.J.Das, R.P.Singh, N.Madhavan, J.Gerl, S.K.Patra, L.Satpathy

Fine structure dips in the fission fragment mass distribution for the 238U(18O, f) reaction

NUCLEAR REACTIONS 238U(18O, F)Sr/Zr/Mo/Ru/Pd/Cd/Sn/Te/Xe/Ba/Ce/Nd/Sm, E=100 MeV; measured Eγ, Iγ, γγ-coin, fission fragment mass distribution and yields of Sr (A=90-96), Zr (A=96-102), Mo (A=98-108), Ru (A=104-112), Pd (A=108-116), Cd (A=114-122), Sn (A=116-128), Te (A=124-134), Xe (A=130-138), Ba (A=136-144), Ce (A=142-148), Nd (A=146-152) and Sm (A=150-158) using INGA array. Discussed effect of nuclear structure in the dynamical evolution of fissioning nucleus. 128Te; measured Eγ and γγ-coin.

doi: 10.1103/PhysRevC.81.014311
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 datasetD6108.


2010PA16      J.Phys.(London) G37, 085103 (2010)

S.K.Patra, R.K.Choudhury, L.Satpathy

Anatomy of neck configuration in fission decay

NUCLEAR STRUCTURE 232,240,250,256Th, 236,250,256,260U; calculated binding energies, quadrupole deformation parameter, rms radii; deduced fission neck properties for highly deformed configurations. RMF theory.

doi: 10.1088/0954-3899/37/8/085103
Citations: PlumX Metrics


2008SA23      Pramana 70, 847 (2008)

B.Sahu, L.Satpathy

Resonance states in 16O+16O, 12C+16O, α+16O and α+12C with modified Morse potentials

doi: 10.1007/s12043-008-0094-0
Citations: PlumX Metrics


2005SA51      J.Phys.(London) G31, 1233 (2005)

L.Satpathy

Resonance states in the 12C + 12C modified Morse potential

NUCLEAR REACTIONS 12C(12C, X), E(cm) ≈ 2-12 MeV; calculated molecular resonance energies. Modified Morse potential.

doi: 10.1088/0954-3899/31/11/009
Citations: PlumX Metrics


2004SA21      J.Phys.(London) G30, 771 (2004)

L.Satpathy, S.K.Patra

Shell overcomes repulsive nuclear force instability

NUCLEAR STRUCTURE Z=50-90; analyzed two-neutron separation energies, shell correction energies; deduced possible new islands of stability. 156Ba, 158Ce, 160Nd, 162Sm, 224W, 228Pt, 232Pb, 236Rn, 252Ra, 254Th, 256U, 258Pu; calculated single-particle level energies, binding energies, deformation. Relativistic mean field theory.

doi: 10.1088/0954-3899/30/6/007
Citations: PlumX Metrics


2003SA49      Nucl.Phys. A722, 24c (2003)

L.Satpathy, S.K.Patra

New magic numbers and new islands of stability in drip-line regions in mass model

NUCLEAR STRUCTURE Z=50-90; calculated two-neutron separation energies; deduced shell closure features. 156Ba, 158Ce, 160Nd, 162Sm; calculated single-particle level energies. Relativistic mean field approach.

doi: 10.1016/S0375-9474(03)01330-7
Citations: PlumX Metrics


1999BE70      Pramana 53, 563 (1999)

B.R.Behera, S.Roy, P.Basu, M.K.Sharan, S.Jena, M.Satpathy, S.K.Datta, L.Satpathy, M.L.Chatterjee

Fission Fragment Angular Distributions in 16O + 181Ta

NUCLEAR REACTIONS 181Ta(16O, F), E=92, 98, 108 MeV; measured fission σ, fragments energies, angular distributions. Comparison with statistical model predictions.

doi: 10.1007/s12043-999-0032-9
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 datasetO1055.


1999NA42      At.Data Nucl.Data Tables 73, 213 (1999)

R.C.Nayak, L.Satpathy

Mass Predictions in the Infinite Nuclear Matter Model

NUCLEAR STRUCTURE Z=4-120; A=8-270; calculated mass excesses, binding energies. Infinite nuclear matter model.

ATOMIC MASSES Z=4-120; A=8-270; calculated mass excesses, binding energies. Infinite nuclear matter model.

doi: 10.1006/adnd.1999.0819
Citations: PlumX Metrics


1999SA42      Phys.Rep. 319, 85 (1999)

L.Satpathy, V.S.Uma Maheswari, R.C.Nayak

Finite Nuclei to Nuclear Matter: A leptodermous approach

NUCLEAR STRUCTURE A=40-200; analyzed masses; deduced nuclear matter density, binding energy per nucleon, incompressibility. Infinite nuclear matter model, comparison with liquid drop approach.

doi: 10.1016/S0370-1573(99)00011-3
Citations: PlumX Metrics


1998DA01      Phys.Rev. C57, R35 (1998)

C.B.Das, L.Satpathy

Caloric Curve in Au + Au Collisions

NUCLEAR REACTIONS 197Au(197Au, X), E=35-130 MeV/nucleon; calculated temperature vs excitation energy; deduced nuclear interfragment interaction role. Dynamic statistical multifragmentation model.

doi: 10.1103/PhysRevC.57.R35
Citations: PlumX Metrics


1998SA29      J.Phys.(London) G24, 1527 (1998)

L.Satpathy, R.C.Nayak

Study of Nuclei in the Drip-Line Regions

NUCLEAR STRUCTURE Z=7-94; analyzed two-neutron separation energies, deduced shell quenching, new stability regions.

doi: 10.1088/0954-3899/24/8/029
Citations: PlumX Metrics


1997DA13      Phys.Rev. C56, 1444 (1997)

C.B.Das, A.Das, M.Satpathy, L.Satpathy

Entrance Channel Dependence of Fragmentation Dynamics in Heavy-Ion Collisions

NUCLEAR REACTIONS 40Ca, 197Au(40Ar, X), E=42, 92, 137 MeV/nucleon; 197Au(197Au, X), E=100, 400 MeV/nucleon; analyzed fragment mass distribution, multiplicity vs impact parameter; deduced spectator contribution. Dynamic statistical multifragmentation.

doi: 10.1103/PhysRevC.56.1444
Citations: PlumX Metrics


1996DA08      Phys.Rev. C53, 1833 (1996)

C.B.Das, A.Das, L.Satpathy, M.Satpathy

Statistical Simultaneous Multifragmentation Model for Heavy Ion Collisions with Entrance Channel Characteristics

NUCLEAR REACTIONS 45Sc(40Ar, X), E=35-115 MeV/nucleon; analyzed fragment charge, mass distribution, other features. Statistical simultaneous multi-fragmentation model.

doi: 10.1103/PhysRevC.53.1833
Citations: PlumX Metrics


1995NA12      Phys.Rev. C52, 711 (1995)

R.Nayak, V.S.Uma Maheswari, L.Satpathy

Saturation Properties and Incompressibility of Nuclear Matter: A consistent determination from nuclear masses

doi: 10.1103/PhysRevC.52.711
Citations: PlumX Metrics


1995UM01      Phys.Rev. C52, 1431 (1995)

V.S.Uma Maheswari, V.S.Ramamurthy, L.Satpathy

Nuclear Incompressibility: An analytical study on the leptodermous expansion

doi: 10.1103/PhysRevC.52.1431
Citations: PlumX Metrics


1994DA01      J.Phys.(London) G20, 189 (1994)

A.Das, M.Satpathy, L.Satpathy

The Effects of the Interfragment Nuclear Interaction on the Kinetic Energy Spectra in the Multifragmentation Process

NUCLEAR REACTIONS Xe, Kr(p, X), E not given; calculated isotopic fragment yields, X=C, O, Ne, 14C, 19O vs mass, kinetic energy; deduced interfragment interaction role. Statistical fragmentation model.

doi: 10.1088/0954-3899/20/1/018
Citations: PlumX Metrics


1994SA07      J.Phys.(London) G20, L37 (1994)

L.Satpathy, P.Sarangi

The Mechanism of Nuclear Molecular Resonances and the α-Particle Chain Configuration in 24Mg

NUCLEAR REACTIONS 12C(12C, 12C'), E(cm)=12-44 MeV; calculated partial σ(E) for L=14. 24Mg deduced molecular resonance evidence, J, π. Dynamical potential model.

doi: 10.1088/0954-3899/20/2/003
Citations: PlumX Metrics


1994UM02      Phys.Rev. C49, 2854 (1994)

V.S.Uma Maheswari, V.S.Ramamurthy, L.Satpathy

Reply to ' Comment on ' Influence of Bulk Properties on the Surface Structure of Finite Nuclei ' '

doi: 10.1103/PhysRevC.49.2854
Citations: PlumX Metrics


1993DA02      J.Phys.(London) G19, 319 (1993)

A.Das, M.Mishra, M.Satpathy, L.Satpathy

Effects of Interfragment Nuclear Interaction and Statistical Approach to Multifragmentation Phenomena

NUCLEAR REACTIONS Ag, Cu, Ta, 197Au, Xe, Kr(p, X), E not given; calculated fragment yield vs mass; deduced interfragment nuclear interaction role. Multi-fragmentation, statiscal approach.

doi: 10.1088/0954-3899/19/2/014
Citations: PlumX Metrics


1992SA21      J.Phys.(London) G18, 1793 (1992)

L.Satpathy, P.K.Sahu, P.Sarangi

Quasi-Molecular States in the 12C + 16O and 16O + 16O Systems

NUCLEAR REACTIONS 16O, 12C(16O, 16O), E not given; analyzed resonances data. Diatomic-like molecular picture, Morse-type bonding potential.

doi: 10.1088/0954-3899/18/11/012
Citations: PlumX Metrics


1992SA26      Pramana 39, 279 (1992)

P.Sarangi, L.Satpathy

Nuclear Molecular Resonances in α + 12C and α + 16O System

NUCLEAR REACTIONS 16O, 12C(α, α), E(cm) ≈ 4-18 MeV; analyzed resonance data. Morse-type bonding potential, diatomic molecule picture.

doi: 10.1007/BF02847254
Citations: PlumX Metrics


1990SA07      J.Phys.(London) G16, 469 (1990)

L.Satpathy, P.Sarangi

Resonances of the Bonding Potential of 12C + 12C System

NUCLEAR REACTIONS 12C(12C, 12C), E not given; calculated quasimolecular state excitation, phase shifts, σ vs E. Bonding potential from di-nuclear picture.

doi: 10.1088/0954-3899/16/3/017
Citations: PlumX Metrics


1990SA11      Phys.Lett. 237B, 181 (1990)

L.Satpathy, M.Mishra, A.Das, M.Satpathy

Fragment Interactions in Nuclear Multifragmentation Phenomena

NUCLEAR REACTIONS Kr, Cu, Xe(p, X), E=high; calculated fragment mass yields.

doi: 10.1016/0370-2693(90)91425-B
Citations: PlumX Metrics


1990SA48      Pramana 34, 111 (1990)

P.Sarangi, S.Ali, L.Satpathy

Bonding Potential between Two 12C Nuclei

NUCLEAR REACTIONS 12C(12C, 12C), E not given; calculated bonding potential parameters. Ali-Bodmer α-α potential.

doi: 10.1007/BF02847195
Citations: PlumX Metrics


1989BH06      Pramana 32, L841 (1989)

J.K.Bhattacharjee, L.Satpathy, Y.R.Waghmare

A Possible Mechanism of Cold Fusion

NUCLEAR REACTIONS 2H(d, n), E=low; analyzed cold fusion; deduced possible mechanism.

doi: 10.1007/BF02846004
Citations: PlumX Metrics


1988MI28      J.Phys.(London) G14, 1115 (1988)

M.Mishra, M.Satpathy, L.Satpathy

Is Multifragmentation a Signature of Liquid-Gas Phase Transitions ( Question )

NUCLEAR REACTIONS Xe, Kr(p, X), E=80-350 GeV; analyzed data. Statistical model.

doi: 10.1088/0305-4616/14/8/014
Citations: PlumX Metrics


1988SA23      At.Data Nucl.Data Tables 39, 241 (1988)

L.Satpathy, R.C.Nayak

Masses of Atomic Nuclei in the Infinite Nuclear Matter Model

NUCLEAR STRUCTURE A=18-267; calculated mass excesses. Infinite nuclear matter model.

ATOMIC MASSES A=18-267; calculated mass excesses. Infinite nuclear matter model.

doi: 10.1016/0092-640X(88)90025-3
Citations: PlumX Metrics


1987GU03      Z.Phys. A326, 221 (1987)

S.K.Gupta, L.Satpathy

A New Macroscopic-Microscopic Description of the Double-Humped Fission Barriers

NUCLEAR STRUCTURE 228Ra, 228Ac, 228Th, 229Pa, 234U, 238Np, 239Pu, 241Am, 243Cm, 248Bk, 250Cf, 254Es, 255Fm, 256Md, 257No, 259Lr, 261Rf; calculated binding energies; Z=90-98; calculated doubled-humped fission barriers, shell energies. New mass relation.


1987SA19      J.Phys.(London) G13, 761 (1987)

L.Satpathy

Infinite Nuclear Matter Based Model for Masses of Atomic Nuclei

NUCLEAR STRUCTURE 30Mg, 42S, 42,43,44Cl, 34,43,46Ar, 49K, 43,44V, 44,45Cr, 46,47,48Mn, 49,50Fe, 51,52Co, 64,76Ga, 64,81Ge, 97Sr, 84,100Zr, 100Ag, 121Cd, 122Cs, 154Nd, 140,154,155,156Pm, 157,158Sm, 156Ho, 156,157,158,160Er, 159,156,158,160,157Tm, 160,161,157,162,163,164,159Yb, 157,158,161,162,163,164,160Lu, 158,159,161,163,164Hf, 162,163,164Ta, 213Pb, 215Bi, 208,229Ra, 211,215Ac, 215,216,219,220Th, 215,216,217,218,219,220,221,222,223Pa, 227U, 251Bk; calculated binding energies. 22Ne, 22Mg, 32P, 32Cl, 41Ca, 41Sc, 47V, 47,50Cr, 50,53Fe, 53,55Co, 55,58Ni, 58Zn; calculated binding energy differences. Infinite nuclear matter model.

doi: 10.1088/0305-4616/13/6/009
Citations: PlumX Metrics


1986SA03      J.Phys.(London) G12, 201 (1986)

L.Satpathy, P.Sarangi, A.Faessler

Bonding Potential and the Mechanism of Quasi-Molecular States

NUCLEAR REACTIONS 12C(12C, 12C), E not given; calculated bonding potential; deduced quasimolecular resonances, Γγ, B(E2), quadrupole moments.

doi: 10.1088/0305-4616/12/3/008
Citations: PlumX Metrics


1983SA22      Phys.Rev.Lett. 51, 1243 (1983)

L.Satpathy, R.Nayak

Generalized Hugenholtz - Van Hove Theorem and a New Mass Relation for Finite Nuclei

NUCLEAR STRUCTURE 22,29Mg, 24,31Al, 64Co, 84Se, 104Mo, 143Cs, 165Gd, 181Yb, 197Re, 204Pt, 221Po, 236Ac, 143Xe, 161Nd, 180Dy, 201Lu, 223Au, 238At, 258U, 28,30P, 34Cl, 42Sc, 46V, 50Mn, 38,39Ca, 42Ti; calculated binding energies; deduced deviation from experiment. Generalized Hugenholtz-Van Hove theorem, new mass relation, comparison with other mass formulae predictions.

doi: 10.1103/PhysRevLett.51.1243
Citations: PlumX Metrics


1982GR04      Phys.Lett. 110B, 31 (1982)

D.H.E.Gross, L.Satpathy

Capture Cross Section in the Surface Friction Model

NUCLEAR REACTIONS 208Pb(26Mg, X), (27Al, X), E(cm) ≈ 100-250 MeV; 208Pb(48Ca, X), (50Ti, X), (52Cr, X), (58Fe, X), E(cm) ≈ 200-350 MeV; calculated σ(capture) vs E. Surface friction model.

doi: 10.1016/0370-2693(82)90945-5
Citations: PlumX Metrics


1981GR03      Z.Phys. A299, 63 (1981)

D.H.E.Gross, R.C.Nayak, L.Satpathy

A Classical Description of Deep Inelastic Collisions with Surface Friction and Deformation

NUCLEAR REACTIONS 232Th(40Ar, X), E=379 MeV; 209Bi(136Xe, X), E=1130 MeV; calculated distance of closest approach, deflection function vs L, nuclear potential vs deformation, final energy vs θ. Friction model, deep inelastic, fusion reactions.

doi: 10.1007/BF01415743
Citations: PlumX Metrics


1981SA10      Phys.Rev. C23, 1777 (1981)

R.Sahu, M.Satpathy, L.Satpathy

Microscopic Triaxial Description of 187Ir, 187Os, and 189Ir

NUCLEAR STRUCTURE 187,189Ir, 187Os; calculated levels, μ, quadrupole moment. Microscopic triaxial description, pairing + quadrupole-quadrupole interaction, Hartree-BCS model.

doi: 10.1103/PhysRevC.23.1777
Citations: PlumX Metrics


1979SA03      Phys.Rev. C19, 263 (1979)

L.Satpathy, A.Ansari, M.Satpathy

Anomaly of High Spin States

NUCLEAR STRUCTURE 158Er, 166Yb; calculated projected energies, square of angular momentum strength; deduced mechanism of backbending. Hartree-BCS formalism.

doi: 10.1103/PhysRevC.19.263
Citations: PlumX Metrics


1979SA07      Phys.Rev. C19, 511 (1979); Erratum Phys.Rev. C19, 2424 (1979)

R.Sahu, M.Satpathy, A.Ansari, L.Satpathy

Triaxial Description of 188Os and 188Pt

NUCLEAR STRUCTURE 188Os, 188Pt; calculated levels, B(E2), electromagnetic moments of ground, γ band. Hartree-BCS theory with pairing Q.Q interaction.

doi: 10.1103/PhysRevC.19.511
Citations: PlumX Metrics


1978NA07      Nucl.Phys. A304, 64 (1978)

R.Nayak, L.Satpathy

Study of Exotic Nuclei with the Skyrme Interaction

NUCLEAR STRUCTURE 4,8,10He, 12,14,20,22C, 16,22,24,28O, 28,30,34,42,46,48Si; calculated binding energies, single-particle energies.

doi: 10.1016/0375-9474(78)90096-9
Citations: PlumX Metrics


1978SA32      Pramana 10, 589 (1978)

M.Satpathy, R.Sahu, A.Ansari, L.Satpathy

An Angular Momentum Expansion of Energy and Structure of High Spin States

NUCLEAR STRUCTURE 132Ce, 156,158Dy, 158,160,162Er, 166Yb; calculated energies of high spin states. Microscopic approach, angular momentum expansion of energy.

doi: 10.1007/BF02879546
Citations: PlumX Metrics


1977NA22      Phys.Lett. 71B, 257 (1977)

S.C.K.Nair, A.Ansari, L.Satpathy

Neutron-Proton Interaction and Nuclear Deformations

NUCLEAR STRUCTURE 20Ne, 24Mg; calculated intrinsic quadrupole moment Q0. Hartree-Fock-Bogoliubov. 154Sm, 160Gd, 162Dy, 168Er; calculated β. Baranger-Kumar.

doi: 10.1016/0370-2693(77)90208-8
Citations: PlumX Metrics


1976SA21      Phys.Rev. C14, 1995 (1976)

L.Satpathy, K.W.Schmid, S.Krewald, A.Faessler

Intrashell Quartet States

NUCLEAR STRUCTURE 20,22Ne, 24Mg; calculated intrashell quartet states. Angular momentum projection formalism.

doi: 10.1103/PhysRevC.14.1995
Citations: PlumX Metrics


1976SH07      Phys.Lett. 61B, 122 (1976)

S.K.Sharma, L.Satpathy, S.B.Khadkikar, S.C.K.Nair

On the Validity of the Cranked Hartree-Fock Approximation

NUCLEAR STRUCTURE 20Ne, 52Fe; calculated dependence of moment of inertia on angular momenta.

doi: 10.1016/0370-2693(76)90604-3
Citations: PlumX Metrics


1975PA20      Phys.Rev. C12, 2038 (1975)

R.Patnaik, R.Patra, L.Satpathy

Simple Relations for the Excitation Energies E2 and the Transition Probabilities B(E2) of Neighboring Doubly Even Nuclides

NUCLEAR STRUCTURE 68,78Ge, 72Se, 106,108,110,112Ru, 112,114Pd, 118Te, 124Xe, 144,146Ce, 152Nd, 146,156Sm, 162Gd, 172Er, 182,184,194Os; calculated B(E2).

doi: 10.1103/PhysRevC.12.2038
Citations: PlumX Metrics


1974SC10      Z.Phys. 267, 337 (1974)

K.W.Schmid, L.Satpathy, A.Faessler

Study of Doubly Even s d-Shell Nuclei in the Multi-Configuration-Hartree-Fock Model. I. The Intrinsic Structure

NUCLEAR STRUCTURE 20,22Ne, 24,26Mg, 28,30Si, 32S, 36Ar; calculated wavefunctions.

doi: 10.1007/BF01669964
Citations: PlumX Metrics


1974SC11      Z.Phys. 267, 345 (1974)

K.W.Schmid, L.Satpathy, A.Faessler

Study of Doubly Even s d-Shell Nuclei in the Multi-Configuration-Hartree-Fock Model. II. The Influence of Correlations on the Ground State Rotational Spectra

NUCLEAR STRUCTURE 20,22Ne, 24,26Mg, 28,30Si, 32S, 36Ar; calculated levels, quadrupole moment, B(E2).

doi: 10.1007/BF01669965
Citations: PlumX Metrics


1974SC34      Z.Phys. 271, 149 (1974)

K.W.Schmid, S.Krewald, A.Faessler, L.Satpathy

The Angular Momentum Dependence of Correlations in the Ground State Rotational Spectra of 20Ne and 22Ne

NUCLEAR STRUCTURE 20,22Ne; calculated levels, quadrupole moment.

doi: 10.1007/BF01676385
Citations: PlumX Metrics


1972SA04      Nucl.Phys. A179, 177 (1972)

L.Satpathy, K.Goeke, A.Faessler

Higher Isospin States in s-d Shell Nuclei in Self-Consistent Models

NUCLEAR STRUCTURE 20,22,24Ne, 20,22,24O, 24,26,28,30,32Mg, 26Ne, 28Ne, 28,30,32Si, 32,34,36S, 36Ar; calculated levels, quadrupole moment, binding energy, analog states, pairing energy. Hartree-Fock, Hartree-Fock-Bogoliubov theory.

doi: 10.1016/0375-9474(72)90114-5
Citations: PlumX Metrics


1972SA07      Phys.Rev.Lett. 28, 832 (1972)

L.Satpathy, K.W.Schmid, A.Faessler

Intrashell Quartet Excitations in sd-Shell Nuclei

NUCLEAR STRUCTURE 12C, 16O, 20Ne, 24Mg, 28Si, 32S, 36Ar, 40Ca; calculated intrashell quartet states. Phenomenological quartet shell model.

doi: 10.1103/PhysRevLett.28.832
Citations: PlumX Metrics


1971FA08      Phys.Lett. 35B, 193 (1971)

A.Faessler, K.Goeke, L.Satpathy

Nature of the Lowest T = 2 States in 20Ne and 24Mg

NUCLEAR STRUCTURE 20Ne, 24Mg; calculated T=2 levels. Projected Hartree-Fock-Bogoliubov model.

doi: 10.1016/0370-2693(71)90171-7
Citations: PlumX Metrics


1971FR15      Phys.Lett. 36B, 189 (1971)

H.Friedrich, L.Satpathy, A.Weiguny

Why Is There No Rotational Band Based on the 7.65 MeV 0+ State in 12C (Question)

NUCLEAR STRUCTURE 12C; investigated intrinsic structure of second 0+ state. α-cluster model.

doi: 10.1016/0370-2693(71)90064-5
Citations: PlumX Metrics


1971SA02      Phys.Lett. 34B, 377 (1971)

M.Satpathy, L.Satpathy

Shape-Fluctuation Model of Ground-State Bands in Even-Even Nuclei

NUCLEAR STRUCTURE 120,122Xe, 126Ba, 128Ce, 152,154Sm, 158Er, 166Yb, 188Os, 194Pt, 232Th, 244Cm; calculated ground-state rotational bands. Shape-fluctuation models.

doi: 10.1016/0370-2693(71)90629-0
Citations: PlumX Metrics


1969SA19      Phys.Rev. 183, 887 (1969)

L.Satpathy, D.Goss, M.K.Banerjee

Hartree-Fock-Bogoliubov Calculations in the 2s, 1d Shell

NUCLEAR STRUCTURE 20,22,24Ne, 24,26,28Mg, 28,30,32Si, 32,34,36S, 36,38Ar; calculated levels, quadrupole moment, moments of inertia.

doi: 10.1103/PhysRev.183.887
Citations: PlumX Metrics


1968SA03      Nucl.Phys. A110, 400 (1968)

L.Satpathy, S.C.Gujrathi

Studies of Odd-Mass Co Isotopes in the Unified Model

doi: 10.1016/0375-9474(68)90549-6
Citations: PlumX Metrics


1968SA04      Phys.Letters 26B, 716 (1968)

L.Satpathy, S.C.K.Nair

Deformed Configuration Mixing Model for Some s-d Shell Nuclei

doi: 10.1016/0370-2693(68)90400-0
Citations: PlumX Metrics


1968SA10      Phys.Rev. 174, 1324 (1968)

L.Satpathy

Projected Tamm-Dancoff Spectra of Ne20 and Mg24

doi: 10.1103/PhysRev.174.1324
Citations: PlumX Metrics


Back to query form