NSR Query Results


Output year order : Descending
Format : Normal

NSR database version of May 10, 2024.

Search: Author = R.C.Nayak

Found 21 matches.

Back to query form



2015NA08      Int.J.Mod.Phys. E24, 1550011 (2015)

R.C.Nayak, S.Pattnaik

B(E2) ↑ (0+1 → 2+1)

NUCLEAR STRUCTURE Z=10-92; analyzed available data; deduced B(E2) values using differential equation model.

doi: 10.1142/S0218301315500111
Citations: PlumX Metrics


2015NA22      Int.J.Mod.Phys. E24, 1550091 (2015)

R.C.Nayak, S.Pattnaik

Identification of highly deformed even-even nuclei in the neutron- and proton-rich regions of the nuclear chart from the B(E2) ↑ and E2 predictions in the generalized differential equation model

NUCLEAR STRUCTURE 30,32Ne, 34Mg, 60Ti, 42,62,64Cr, 50,68Fe, 52,72Ni, 70,72,96Kr, 74,76Sr, 78,80,106,108Zr, 82,84,110,112Mo, 140Te, 144Xe, 148Ba, 122Ce, 128,156Nd, 130,132,158,160Sm, 138,162,164,166Gd; calculated B(E2) values, deformation parameters. Comparison with available data.

doi: 10.1142/S0218301315500913
Citations: PlumX Metrics


2014NA38      Phys.Rev. C 90, 057301 (2014)

R.C.Nayak, S.Pattnaik

Generalization of the differential equation model for both B(E2)↑ and the excitation energy E(g.s.→ 2+1) of even-even nuclei, and its application to the study of the B(E2) problem in 46Ar

NUCLEAR STRUCTURE Z=4-96, N=10-150; analyzed B(E2) values and energies of the first 2+ states in even-even nuclei; proposed differential equation model relating the two quantities. Application to the B(E2) problem for first 2+ state in 46Ar.

doi: 10.1103/PhysRevC.90.057301
Citations: PlumX Metrics


2014PA20      Int.J.Mod.Phys. E23, 1450022 (2014)

S.Pattnaik, R.C.Nayak

A differential equation for the transition probability B(E2)↑ and the resulting recursion relations connecting even-even nuclei

NUCLEAR STRUCTURE Z=2-100; analyzed available B(E2) data. Infinite Nuclear Matter (INM) model.

doi: 10.1142/S0218301314500220
Citations: PlumX Metrics


2011NA33      Int.J.Mod.Phys. E20, 2203 (2011)

R.C.Nayak, S.Pattnaik

Generalized Hugenholtz-Van Hove theorem for multi-component Fermi systems with multi-body forces

doi: 10.1142/S0218301311020253
Citations: PlumX Metrics


2001NA36      Phys.Rev. C64, 057303 (2001)

R.C.Nayak, V.K.B.Kota

SU(4) Symmetry and Wigner Energy in the Infinite Nuclear Matter Mass Model

NUCLEAR STRUCTURE A=56-100; calculated binding energy differences, Wigner energy parameter, role of SU(4) symmetry. Infinite nuclear matter model.

doi: 10.1103/PhysRevC.64.057303
Citations: PlumX Metrics


2000PE08      Nucl.Phys. A668, 163 (2000)

J.M.Pearson, R.C.Nayak

Nuclear-Matter Symmetry Coefficient and Nuclear Masses

NUCLEAR STRUCTURE 60Ca, 101As, 136Ru, 153Sn, 184Ce, 202Dy, 218Ta, 266Pb, 274Th, 300Cf; calculated masses, neutron separation energies, Qβ; deduced constraint on nuclear matter symmetry coefficient. Extended Thomas-Fermi plus Strutinsky integral, several force parameterizations compared.

ATOMIC MASSES 60Ca, 101As, 136Ru, 153Sn, 184Ce, 202Dy, 218Ta, 266Pb, 274Th, 300Cf; calculated masses, neutron separation energies, Qβ; deduced constraint on nuclear matter symmetry coefficient. Extended Thomas-Fermi plus Strutinsky integral, several force parameterizations compared.

doi: 10.1016/S0375-9474(99)00431-5
Citations: PlumX Metrics


1999NA40      Phys.Rev. C60, 064305 (1999); Comment Phys.Rev. C74, 069801 (2006)

R.C.Nayak

Disappearance of Nuclear Magicity Towards Drip Lines

NUCLEAR STRUCTURE A=20-250; calculated residual energy, two-neutron separation energies; deduced loss of magicity near drip lines. Infinite nuclear matter model, comparisons with data.

doi: 10.1103/PhysRevC.60.064305
Citations: PlumX Metrics


1999NA42      At.Data Nucl.Data Tables 73, 213 (1999)

R.C.Nayak, L.Satpathy

Mass Predictions in the Infinite Nuclear Matter Model

NUCLEAR STRUCTURE Z=4-120; A=8-270; calculated mass excesses, binding energies. Infinite nuclear matter model.

ATOMIC MASSES Z=4-120; A=8-270; calculated mass excesses, binding energies. Infinite nuclear matter model.

doi: 10.1006/adnd.1999.0819
Citations: PlumX Metrics


1999SA42      Phys.Rep. 319, 85 (1999)

L.Satpathy, V.S.Uma Maheswari, R.C.Nayak

Finite Nuclei to Nuclear Matter: A leptodermous approach

NUCLEAR STRUCTURE A=40-200; analyzed masses; deduced nuclear matter density, binding energy per nucleon, incompressibility. Infinite nuclear matter model, comparison with liquid drop approach.

doi: 10.1016/S0370-1573(99)00011-3
Citations: PlumX Metrics


1998NA21      Phys.Rev. C58, 878 (1998)

R.C.Nayak, J.M.Pearson

Spin-Orbit Field and Extrapolated Properties of Exotic Nuclei

NUCLEAR STRUCTURE 132Sn, 208,266Pb; calculated single-particle levels. 60Ca, 118Kr, 136Ru, 154Sn, 184Ce, 202Dy, 228W, 266Pb, 274Th, 300Cf; calculated masses, beta-decay energy, neutron separation energy. Several force parameter sets compared.

doi: 10.1103/PhysRevC.58.878
Citations: PlumX Metrics


1998SA29      J.Phys.(London) G24, 1527 (1998)

L.Satpathy, R.C.Nayak

Study of Nuclei in the Drip-Line Regions

NUCLEAR STRUCTURE Z=7-94; analyzed two-neutron separation energies, deduced shell quenching, new stability regions.

doi: 10.1088/0954-3899/24/8/029
Citations: PlumX Metrics


1997ON02      Phys.Rev. C55, 3166 (1997)

M.Onsi, R.C.Nayak, J.M.Pearson, H.Freyer, W.Stocker

Skyrme Representation of a Relativistic Spin-Orbit Field

doi: 10.1103/PhysRevC.55.3166
Citations: PlumX Metrics


1996PE22      Phys.Lett. 387B, 455 (1996)

J.M.Pearson, R.C.Nayak, S.Goriely

Nuclear Mass Formula with Bogolyubov-Enchanced Shell-Quenching: Application to r-process

NUCLEAR STRUCTURE Z=55-80; calculated magic neutron gaps. N=55-90; calculated two-neutron separation energies. A=80-200; calculated abundances, masses from different models; deduced r-process implications. Mass formula with Bogolyubov-enhanced self-quenching.

doi: 10.1016/0370-2693(96)01071-4
Citations: PlumX Metrics


1995NA17      Phys.Rev. C52, 2254 (1995)

R.C.Nayak, J.M.Pearson

Even-Odd Staggering of Pairing-Force Strength

NUCLEAR STRUCTURE Z=30-100; N=30-144; analyzed mass data; deduced fourth-order even-odd mass difference rms errors. A=80-235; analyzed Q(β) data; deduced rms errors. High speed Hartree-Fock approximation, Skyrme force.

doi: 10.1103/PhysRevC.52.2254
Citations: PlumX Metrics


1991PE03      Nucl.Phys. A528, 1 (1991)

J.M.Pearson, Y.Aboussir, A.K.Dutta, R.C.Nayak, M.Farine, F.Tondeur

Thomas-Fermi Approach to Nuclear Mass Formula (III). Force Fitting and Construction of Mass Table

NUCLEAR STRUCTURE A=100-260; calculated energies, equilibrium deformation parameters. 186Os, 210Po, 240Pu, 250Cm, 262U; calculated fission barriers. Thomas-Fermi approach to mass formula.

doi: 10.1016/0375-9474(91)90418-6
Citations: PlumX Metrics


1990NA21      Nucl.Phys. A516, 62 (1990)

R.C.Nayak, J.M.Pearson, M.Farine, P.Gleissl, M.Brack

Leptodermous Expansion of Finite-Nucleus Incompressibility

NUCLEAR STRUCTURE A ≤ 250; 16O, 40,48Ca, 56Ni, 90Zr, 112,132Sn, 140Ce, 208Pb; calculated compressibility vs mass. Leptodermous expansion.

doi: 10.1016/0375-9474(90)90049-R
Citations: PlumX Metrics


1988SA23      At.Data Nucl.Data Tables 39, 241 (1988)

L.Satpathy, R.C.Nayak

Masses of Atomic Nuclei in the Infinite Nuclear Matter Model

NUCLEAR STRUCTURE A=18-267; calculated mass excesses. Infinite nuclear matter model.

ATOMIC MASSES A=18-267; calculated mass excesses. Infinite nuclear matter model.

doi: 10.1016/0092-640X(88)90025-3
Citations: PlumX Metrics


1984NA27      Pramana 23, 767 (1984)

R.C.Nayak

Light Ion Fusion in Deformation Model

NUCLEAR REACTIONS 116Sn, 62Ni(35Cl, X), 24Mg(24Mg, X), 58Ni(62Ni, X), 27Al(12C, X), 24Mg(32S, X), E(cm) ≈ 10-250 MeV; calculated fusion σ(E). Dynamical deformation model.

doi: 10.1007/BF02894769
Citations: PlumX Metrics


1982NA03      Phys.Rev. C25, 1034 (1982)

R.C.Nayak

Skyrme Interaction and Spectra of Light Nuclei

NUCLEAR STRUCTURE 16,18O, 18F, 40,42Ca, 42Sc; calculated levels. Hartree-Fock model, modified Skyrme interaction.

doi: 10.1103/PhysRevC.25.1034
Citations: PlumX Metrics


1981GR03      Z.Phys. A299, 63 (1981)

D.H.E.Gross, R.C.Nayak, L.Satpathy

A Classical Description of Deep Inelastic Collisions with Surface Friction and Deformation

NUCLEAR REACTIONS 232Th(40Ar, X), E=379 MeV; 209Bi(136Xe, X), E=1130 MeV; calculated distance of closest approach, deflection function vs L, nuclear potential vs deformation, final energy vs θ. Friction model, deep inelastic, fusion reactions.

doi: 10.1007/BF01415743
Citations: PlumX Metrics


Back to query form