ADOPTED LEVELS, GAMMAS for 44Ca

Authors: Jun Chen and Balraj Singh |  Citation: Nucl. Data Sheets 190, 1 (2023) |  Cutoff date: 20-Jun-2023 

 Full ENSDF file | Adopted Levels (PDF version) 


Q(β-)=-3652.7 keV 18S(n)= 11131.18 keV 23S(p)= 12182.3 keV 5Q(α)= -8853.7 keV 3
Reference: 2021WA16

References:
  A  44K β- decay (22.13 M)  B  44Sc ε decay (4.0420 H)
  C  44Sc ε decay (58.61 H)  D  27Al(19F,2pγ)
  E  30Si(16O,2pγ)  F  30Si(18O,2P2NG)
  G  36S(14C,α2nγ)  H  40Ar(6Li,d)
  I  41K(α,pγ),(α,p)  J  42Ca(t,p)
  K  42Ca(α,2He)  L  42Ca(48Ti,46Ti)
  M  43Ca(n,γ) E=THERMAL  N  43Ca(n,γ),(n,n):Resonances
  O  43Ca(d,p)  P  44Ca(γ,γ’),(pol γ,γ’)
  Q  44Ca(E,E’)  R  44Ca(π++’),(π--’)
  S  44Ca(n,n’γ)  T  44Ca(p,p’),(pol p,p’)
  U  44Ca(p,p’γ)  V  44Ca(d,d’)
  W  44Ca(3He,3He’),(pol 3He,3He’)  X  44Ca(α,α’)
  Y  44Ca(6Li,6Li’)  Z  44Ca(7Li,7Li)
  a  44Ca(9Be,9Be’)  b  44Ca(16O,16O’)
  c  44Ca(18O,18O’)  d  45Sc(μ-,nγ)
  e  45Sc(d,3He),(pol d,3He)  f  45Sc(t,α)
  g  46Ti(14C,16O)  h  48Ti(d,6Li)
  i  Coulomb Excitation 

General Comments:

44Ca identification: 1923As04, 1925As02, 1935As01, 1938Ni04 using mass-spectrographic technique.

Other measurements and reactions:

Mesic atoms (pionic x rays): 1970Ku03, 1970Ma26, 1979Ba07, 1980Po01, 1983Ku10

Mesic atoms (muonic x rays): 1966Co02, 1981Wo02

Mesic atoms (kaonic x rays): 1971Ku08

Isotope shifts: 2015Go24, 1976Ne08, 1978Br31, 1978Wo03, 1980Be13, 1982An15, 1982Ay02, 1983Lo13, 1984Pa12, 1986We08, 1991As06, 1992Ma20, 1998No10

26Mg(18O,X) E=130 MeV: 1995Co22

40Ar(α,n): 1938Fu01: resonances.

26Mg(18O,xn): 1995Co22.

40Ar(α,γ): 1976Fo04,1974Fo04.

42Ca(48Ti,46Ti): 1986Br06,1988Br02; measured σ(E,θ).

1977Mu02,1993Mo10,1966Go38,1964Go13: 43Ca(n,γ),(n,X) resonance. ≈50 43Ca+n resonances between 11133 and 11172 keV

45Sc(γ,p): 1995Is07,1993Is07,1982Ry01,1977Oi01,1975We11

48Ti(p,pα): 1981Ca02,1984Ca09.

42Ca(48Ti,46Ti) E=385 MeV: 1986Br06

45Sc(p,2p): 1967Ru03 (E=156 MeV); 1969Ja12 (E=385 MeV)

Theoretical structure calculations:

2023Ha06: calculated levels, Jπ using shell model with OXBASH code

2022Wa13: calculated levels, Jπ of the low-lying spectra in Bayesian neural network (BNN) approach.

2021Fu11: calculated energy levels, Jπ, S(2n) using realistic shell model

2019Wa31, 2015Wa37: calculated binding energy, S(2n), levels, Jπ, yrast states, spectroscopic factors using shell model with Cd-Bonn and Kuo-Brown (KB) interactions.

2017Va30: calculated levels, Jπ using IBM, p-IBM and shell-model with KB3G interaction

2016Im01: calculated low-lying levels, Jπ using g.s. multiplets with seniority 2, 3 and 4 for pairing of nucleons in 1f7/2 shell

2014Ho12: calculated ground-state energy in pf and pfg9/2 shells, levels, Jπ, B(E2), B(M1) using Chiral two- and three-nucleon interactions, and many-body perturbation theory (MBPT).

2012Ca13: calculated levels, Jπ, orbital occupations, quadrupole moments, B(E2), magnetic moment using shell model with realistic interactions

2012Ca27: calculated levels, Jπ, B(E2), B(E3), two-quasi particle components for the first 2+ and 3- states using QRPA with iterative non-Hermitian Arnoldi diagonalization procedures.

2012Ut01: calculated energy levels, Jπ, spectroscopic factors using large-scale shell-Model.

2010Le16: calculated levels, Jπ, B(E2), wave function overlaps using shell Model with GXPF1A interaction.

1981Co09: calculated levels, Jπ, spectroscopic factors using shell model with modified Kuo-Brown interaction.

1974Sk03: calculated levels, Jπ, B(E2), spectroscopic factors, γ-branching ratios using an extended model for the mixing between 4p spherical and 6p-2h deformed configurations.

1973Ba23: calculated binding energy, levels, Jπ, spectroscopic factors using shell model with a pairing-plus-surface-tensor interaction.

1973Mc10: calculated levels, Jπ, spectroscopic factors, B(E2), B(M1) using shell model.

1972Fu02: calculated levels, Jπ, B(E2), spectroscopic factors using shell model with Hamada-Johnston, and Tabakin interactions.

1970Fe06: calculated levels, Jπ, binding energy, spectroscopic factors using shell model with effective interactions.

Theoretical calculations: about 343 primary references for structure calculations from 1970 to 2023, and six references for double-β decay can be retrieved from the NSR database at www.nndc.bnl.gov/nsr/

Q-value: S(2n)=19064.07 29, S(2p)=21624 6 (2021Wa16)










E(level)
(keV)
XREFJπ(level) T1/2(level)E(γ)
(keV)
I(γ)M(γ)Final Levels
      0.0ABCDEFGHIJK M OPQRSTUVWXYZabcdefghi 0+ STABLE      
   1157.0208 30 ABCDEFGHIJ  M OPQRSTUVWXY abcdefghi 2+ 2.94 ps 12    1157.004 3 
   100
E2
      0.0
0+
   1570?                      W             2+        
   1883.516 13 A      HIJ  M OPQR TUVWX   b  efgh  0+ 13.9 ps 42     726.490 16 
  1883.47S
   100
 
E2
E0
   1157.0208
      0.0
2+
0+
   2030?          K                         2+        
   2283.119 10 A CDEFGHIJ  M O QR TUV X   b defghi 4+ 1.9 ps 7    1126.078 10 
   100
E2
   1157.0208
2+
   2656.509 11 AB   F HIJ  M OPQR TUV X   b defghi 2+ 30 fs 3    1499.449 15 
  2656.44 3 
   100.0 17 
    12.39 33 
M1+E2
E2
   1157.0208
      0.0
2+
0+
   3044.292 33 A    FGHIJ  M O    TU  X   b   fgh  4+ 4.6 ps +13-10     761.12 4 
  1887.34 20 
   100 5 
    92.5 30 
M1+E2
E2
   2283.119
   1157.0208
4+
2+
   3285.004 22   CDEFG IJK M      T             h  6+ 13.3 ps 12    1001.869 20 
   100
E2
   2283.119
4+
   3301.36 4 AB      IJ  M OP   TU            h  2+ 35 fs 18    2144.27 8 
  3301.33 6 
   100 6 
    44 7 
[M1,E2]
E2
   1157.0208
      0.0
2+
0+
   3307.872 10 AB   F   J  M OPQR TUV X   b   fgh  3- 0.15 ps 6     263.53 6 
   651.353 16 
  1024.738 17 
  2150.805 17 
  3307.7 5 
     0.49 13 
    13.2 8 
    29.4 5 
   100.0 21 
     0.077 26 
[E1]
[E1]
[E1]
[E1]
(E3)
   3044.292
   2656.509
   2283.119
   1157.0208
      0.0
4+
2+
4+
2+
0+
   3357.29 11 A       IJ  M O    TU  X      ef    (2+,3,4+) < 28 fs   1074.13 15 
  2200.1 3 
   100 60 
    13 13 


   2283.119
   1157.0208
4+
2+
   3581.3 10 A      H J    O    TU            h  0+     2426.2 29 
   100
(E2)
   1157.0208
2+
   3661.527 10 A        J    OP   TU  X       f    1-      353.67 25 
  1005.0 9 
  1777.973 20 
  2504.39 6 
  3661.363 11 
     0.29 19 
     0.48
    34.8 8 
    10.7 9 
   100.0 19 
[E2]
[E1]
(E1)
[E1]
(E1)
   3307.872
   2656.509
   1883.516
   1157.0208
      0.0
3-
2+
0+
2+
0+
   3676.092 14 A        J  M O    TU          f    (2+)      368.208 23 
   374.82 11 
  1017.5 13 
  2518.991 18 
  3676.7 6 
    23.2 4 
     2.0 5 
     8.7 4 
   100.0 18 
     0.15 7 





   3307.872
   3301.36
   2656.509
   1157.0208
      0.0
3-
2+
2+
2+
0+
E(level)
(keV)
XREFJπ(level) T1/2(level)E(γ)
(keV)
I(γ)M(γ)Final Levels
   3691.7 4                P                    1 46 fs +30-13    3691.5 4 
   100

      0.0
0+
   3711.96 9 A    F      M O    T           f    4- < 0.42 ns    404.26 13 
  1428.67 25 
   100 8 
    44 4 
(M1)
[E1]
   3307.872
   2283.119
3-
4+
   3776.27 11 A           M O    TU         ef    2- < 0.69 ns   1119.7 4 
  2619.16 12 
     7.9 38 
   100 4 
[E1]
(E1+M2)
   2656.509
   1157.0208
2+
2+
   3880 10               O                            
   3913.80 8      FG     M   Q  T   X   b   f h  5- > 2 ps    202.1 2 
   628.71 11 
   869.47 15 
     4.8
    92.7 32 
   100 5 
[M1,E2]
(E1+M2)
(E1)
   3711.96
   3285.004
   3044.292
4-
6+
4+
   3922.71 10      F      M      T           f h  5- < 0.56 ns    637.68 12 
   878.25 20 
  1640.7 5 
   100
    91
   <46
[E1]
[E1]
[E1]
   3285.004
   3044.292
   2283.119
6+
4+
4+
   3934 10 ?              O                     (2+,3+,4+,5+)        
   4011.4 4             M O    T           f         299.5 4 
   100

   3711.96
4-
   4092.04 13      F      M O        X       f    (6+)      806.95 15 
  1809.0 4 
   100 11 
    53 7 
(E2)
(E2)
   3285.004
   2283.119
6+
4+
   4093.7 4 A             O        X       f    (2+,3,4+)     1810.4 7 
  2937.8 10 
   100 67 
    67 25 


   2283.119
   1157.0208
4+
2+
   4170 5                    T   X         h  (2+)        
   4196.10 22             M OP   TU               2+ 50 fs +13-8    3038.7 4 
  4196.1 3 
    30 7 
   100 4 
[M1,E2]
(E2)
   1157.0208
      0.0
2+
0+
   4260.27 35 A                                   (2+,3)     1976.9 7 
  3103.2 4 
    82 64 
   100 36 


   2283.119
   1157.0208
4+
2+
   4315.22 14 A                              f    (1,2,3)     1658.69 18 
  3158.07 20 
   100 24 
    70 11 


   2656.509
   1157.0208
2+
2+
   4358.440 30 A        J  M   Q  T   X       f    3-      646.5 3 
   682.34 3 
   696.9?
  1050.60 10 
  1701.9 3 
  3201.26 12 
    12 4 
    11 6 
    ≤0.8
    79 12 
    14 6 
   100 8 






   3711.96
   3676.092
   3661.527
   3307.872
   2656.509
   1157.0208
4-
(2+)
1-
3-
2+
2+
E(level)
(keV)
XREFJπ(level) T1/2(level)E(γ)
(keV)
I(γ)M(γ)Final Levels
   4399.2 5 A        J  M O QR T   X   b   f h  3-     3242.0 6 
   100

   1157.0208
2+
   4409.176 14 A        J      QR T       b   f h  (1)-      733.0 4 
   747.63 3 
  1101.3 5 
  1107.98 10 
  1752.629 10 
  3252.07 13 
  4408.91 19 
     4.0 17 
    51.4 29 
     0.29 29 
    16.4 12 
   100.0 14 
     3.9 6 
     1.31 22 







   3676.092
   3661.527
   3307.872
   3301.36
   2656.509
   1157.0208
      0.0
(2+)
1-
3-
2+
2+
2+
0+
   4436.7 5 A                                   (1,2+)     3279.0 7 
  4437.0 7 
   100 67 
    40 27 


   1157.0208
      0.0
2+
0+
   4479.9 5          J  M O    T   X      ef    2+     3322.8 6 
   100

   1157.0208
2+
   4552.644 23 A        J         T             h  (3)-      876.53 3 
   891.10 12 
  1195.4
  1244.75 5 
  1896.0 9 
  2268.5 10 
  3395.51 4 
   100 2 
     5.4 20 
     2.7 24 
    48.0 17 
     6.4 47 
     1.7 14 
    96.3 27 







   3676.092
   3661.527
   3357.29
   3307.872
   2656.509
   2283.119
   1157.0208
(2+)
1-
(2+,3,4+)
3-
2+
4+
2+
   4561.8 6 ?A                                       3404.6 6 ?
   100

   1157.0208
2+
   4564.87 14      F   JK M O Q  T   X       f h  (5-)      651.07 12 
  2281.7 5 
  4565.1 8 ?
  <420
   100
    98



   3913.80
   2283.119
      0.0
5-
4+
0+
   4572.6 5 A        J    O                f h  (1,2,3)     1916.0 8 
  3415.5 7 
   100 52 
    44 18 


   2656.509
   1157.0208
2+
2+
   4584.08 18             M O    T   X            (2+,3,4+) < 3.5 ns   1276.0 8 
  1539.40 25 
  2300.6 5 
  3427.5 4 
     9.2
    39
    40
   100




   3307.872
   3044.292
   2283.119
   1157.0208
3-
4+
4+
2+
   4616 10               O                            
   4649.46 10                P               f    1 7.4 fs +16-11    4649.2 1 
   100

      0.0
0+
E(level)
(keV)
XREFJπ(level) T1/2(level)E(γ)
(keV)
I(γ)M(γ)Final Levels
   4650.3 4 A        J  M O    T   X   b   f    2+     1992.8 7 
  4650.1 9 
   100 67 
    12 7 


   2656.509
      0.0
2+
0+
   4690.0 5             M O                     (1-,2,3,4+)     3532.9 6 
   100

   1157.0208
2+
   4803.6 4             M      T                (1-,2,3,4+)     3647.2 6 
   100

   1157.0208
2+
   4824.4 6 A             O                     (1,2,3)     2167.8 6 
   100

   2656.509
2+
   4848.39 20                P                    1 17 fs +5-3    4848.1 2 
   100

      0.0
0+
   4866.09 8 A              P                    1 4.3 fs +14-9    1285.0 10 ?
  2982.44 15 
  3708.90 13 ?
  4865.81 15 
   ≤10.7
    79 11 
   ≤29
   100 4 




   3581.3
   1883.516
   1157.0208
      0.0
0+
0+
2+
0+
   4884.02 8 A        J         T                (1,2,3)     1222.50 8 
  1575.9 3 
  3726.6 4 
   100 10 
    36 11 
     6.0 12 



   3661.527
   3307.872
   1157.0208
1-
3-
2+
   4892.6 8 ?A                                       4892.3 8 ?
   100

      0.0
0+
   4904.58 35 A        J  M   Q  T   X   b   f    3-     2248.2 5 
  3747.2 6 
    63
   100


   2656.509
   1157.0208
2+
2+
   4914 10          J    O                     2+,3+,4+,5+        
   4930.74 16      F                              (6-)     1016.9 2 
  1218.8 3 
   100 7 
    48 7 
D

   3913.80
   3711.96
5-
4-
   4992 10          J    O                f    2+,3+,4+,5+        
   5005.69 22          J  M O    T   X   b        4+     1092.2 7 
  1648.1 5 
  2722.4 3 
  3848.9 7 
     6.7
    69
   100
    12.2




   3913.80
   3357.29
   2283.119
   1157.0208
5-
(2+,3,4+)
4+
2+
   5025.73 21 A        J       R             f    3-     1363.7 8 
  3868.56 22 
  5025.4 8 
    18 18 
   100 27 
     2.7 18 



   3661.527
   1157.0208
      0.0
1-
2+
0+
   5087.62 8     EFG                             8+ 0.53 ps 14    1802.59 8 
   100
E2
   3285.004
6+
   5096.87 34             M      T          ef    3-,4-     1183.1 4 
   100

   3913.80
5-
   5130.22 21 A           M O    T           f    (2,3)+     1773.3 5 
  2846.9 3 
  3973.1 4 
    34
   100
    83



   3357.29
   2283.119
   1157.0208
(2+,3,4+)
4+
2+
E(level)
(keV)
XREFJπ(level) T1/2(level)E(γ)
(keV)
I(γ)M(γ)Final Levels
   5161.8 5 A             OP                    1 2.6 fs 3    4005
  5161.33 63 
     1.8 18 
   100 6 


   1157.0208
      0.0
2+
0+
   5201.13 30 A        J                          (1,2,3)-     1525.0?
  1893.2 4 
  4044?
 
   100 47 
    ≤2.6



   3676.092
   3307.872
   1157.0208
(2+)
3-
2+
   5210.0 5           K    P   T                1+ 2.0 fs +4-3    1909
  2553
  3326
  4053
  5210
    33 15 
     4 4 
    80 2 
    65 2 
   100 1 
[M1,E2]
[M1,E2]
M1
M1+E2
M1
   3301.36
   2656.509
   1883.516
   1157.0208
      0.0
2+
2+
0+
2+
0+
   5222 5          JK        T   X       f    (3-)        
   5230.33 20          JK M O    T           f    2+,3+,4+,5+ < 4.2 ns   1872.7 3 
  2186.2 10 
  2947.4 3 
   <74
     6.9
   100



   3357.29
   3044.292
   2283.119
(2+,3,4+)
4+
4+
   5245.19 12      F                              7-     1331.3 2 
  1960.2 2 
   100 5 
    97 7 
(E2)
(E1)
   3913.80
   3285.004
5-
6+
   5289.25 32             M O    T                    3006.0 4 
   100

   2283.119
4+
   5300.5 4             M O    T           f        1588.7 4 
   100

   3711.96
4-
   5325.0 6 A        J                          (1,2,3)     4167.8 6 
   100 50 

   1157.0208
2+
   5342.2 5          J  M O        X       f    (2)+     4185.6 8 
   100

   1157.0208
2+
   5367.5 7 A        J                          (1,2,3)     2711
  4210.1 10 
     1.0E2 10 
    30 27 


   2656.509
   1157.0208
2+
2+
   5375.0 5          J  M O                     (2,3,4)+     4217.9 8 
   100

   1157.0208
2+
   5406 5               O        X      ef    3-,4-        
   5458.9 4             M O                     (2,3,4)+     3176.2 7 
  4301.7 7 
   100
    50


   2283.119
   1157.0208
4+
2+
   5512.3 10 A                      X       f        4355?
   100

   1157.0208
2+
   5548.68 22             M O                     (2,3,4)+     1872.7 3 
  2891.2 6 ?
  3265.4 7 
  4391.5 7 
  <540
    63
   100
    72




   3676.092
   2656.509
   2283.119
   1157.0208
(2+)
2+
4+
2+
E(level)
(keV)
XREFJπ(level) T1/2(level)E(γ)
(keV)
I(γ)M(γ)Final Levels
   5561.0 5 A                              f    3-     1884.5 10 
  4403.6 6 
  5561.3 10 ?
   100 75 
    15 10 
    13 10 



   3676.092
   1157.0208
      0.0
(2+)
2+
0+
   5611.56 28                P                    1 1.4 fs +7-4    4454.1 8 
  5611.2 3 
   100 21 
    47 21 


   1157.0208
      0.0
2+
0+
   5646.79 14      F                              8(+)      559.2 2 
  1554.7 3 
  2361.6 4 
   100 11 
    70 7 
    75 7 
(M1)
(E2)
(E2)
   5087.62
   4092.04
   3285.004
8+
(6+)
6+
   5656 5          J    O        X       f    (1 TO 6)-        
   5733.30 22          J  M O        X       f    (4,5)+ < 3.5 ns   1640.7 5 
  2376.1 5 
  2688.7 5 
  3450.3 4 
   <42
    16.7
    21.3
   100




   4092.04
   3357.29
   3044.292
   2283.119
(6+)
(2+,3,4+)
4+
4+
   5775.76 22             M O                     (2,3,4)+     2099.3 5 
  2474.9 6 ?
  2730.7 6 
  3120.5 15 ?
  3492.9 4 
  4618.0 8 
    49
    24.8
    33
    12.8
   100
    37






   3676.092
   3301.36
   3044.292
   2656.509
   2283.119
   1157.0208
(2+)
2+
4+
2+
4+
2+
   5800.61 20                P               f    1 11 fs +5-3    5800.2 2 
   100

      0.0
0+
   5806.31 10                P               f    1- 2.3 fs 3    5805.9 1 
   100
E1
      0.0
0+
   5832 10               O        X                   
   5864 20        H JK                         0+        
   5866.82 30             M O                     (4+,5+)     1773.3 5 
  2509.2 6 
  3583.4 6 
   100
    23.1
   100



   4093.7
   3357.29
   2283.119
(2+,3,4+)
(2+,3,4+)
4+
   5875.82 20                P       X       f    1- 4.2 fs +8-5    5875.4 2 
   100
E1
      0.0
0+
   5911.13 20                P       X            1 1.9 fs +6-4    5910.7 2 
   100

      0.0
0+
   5971.30 14      F                              8(-)      726.1 2 
   883.7 2 
  1040.5 3 
   100 6 
    71 6 
    42.9 29 
(M1)

Q
   5245.19
   5087.62
   4930.74
7-
8+
(6-)
E(level)
(keV)
XREFJπ(level) T1/2(level)E(γ)
(keV)
I(γ)M(γ)Final Levels
   5975 10               O        X                   
   6014 20          J             X                   
   6040.0 5             M O                     2+,3+,4+,5+     2682.8 6 
   100

   3357.29
(2+,3,4+)
   6082.9 4                P                    1+ 2.1 fs +4-3    4199.5 5 
  4925.3 8 
  6080.1 14 
    62 12 
    41 7 
   100 7 
M1
[M1,E2]
M1
   1883.516
   1157.0208
      0.0
0+
2+
0+
   6136.59 26                P              e     1- 1.27 fs +20-15    4978.5 5 
  6136.4 3 
    46 7 
   100 5 
[E1]
E1
   1157.0208
      0.0
2+
0+
   6146.14 31             M O                     (4,5)+     2053.9 5 
  2223.3 20 
  3861.7 7 
    86
 
   100



   4092.04
   3922.71
   2283.119
(6+)
5-
4+
   6211.4 5           K M                           2297.5 6 
   100

   3913.80
5-
   6245.48 30           K    P                    1 9 fs +3-2    6245.0 3 
   100

      0.0
0+
   6422.12 10          J     P                    1- 0.21 fs 2    4539.9 7 
  5263.8 7 
  6421.6 1 
     5.2 7 
     5.5 7 
   100 1 
E1
E1
E1
   1883.516
   1157.0208
      0.0
0+
2+
0+
   6446.5 7                P                    1+ 5.9 fs +16-11    5288.0 17 
  6446.3 8 
    50 14 
   100 10 
[M1,E2]
M1
   1157.0208
      0.0
2+
0+
   6507.1 5                P                    1 3.3 fs +9-6    6506.6 5 
   100

      0.0
0+
   6578 20          J                                 
   6657.65 17      F                              9(-)     1412.4 3 
  1570.0 2 
    59 4 
   100 6 
(E2)
(E1)
   5245.19
   5087.62
7-
8+
   6672.92 31             M                           2088.2 5 
  2896.7 6 ?
  3628.9 7 
   100
    18.4
    34.5



   4584.08
   3776.27
   3044.292
(2+,3,4+)
2-
4+
   6675.44 20                P                    1 4.5 fs +9-6    6674.9 2 
   100

      0.0
0+
   6744 20          J                                 
   6778 20          J                                 
   6913 20          J                                 
   6960.7 6                P                    1 5.6 fs +13-9    6960.1 6 
   100

      0.0
0+
E(level)
(keV)
XREFJπ(level) T1/2(level)E(γ)
(keV)
I(γ)M(γ)Final Levels
   6972.14 19          J     P                    1 0.47 fs +14-9    5815.0 5 
  6971.5 2 
   100 15 
    52 15 


   1157.0208
      0.0
2+
0+
   6996 20          J                                 
   7065.9 9                P                    1 2.7 fs +6-4    7065.3 9 
   100

      0.0
0+
   7092.76 15      F                              (9-)      435.1 3 
  1121.5 4 
  1445.9 3 
  2005.1 2 
    39
    78
   100 11 
    67 6 


D
(E1)
   6657.65
   5971.30
   5646.79
   5087.62
9(-)
8(-)
8(+)
8+
   7226.04 30                P                    1 2.8 fs +6-4    7225.4 3 
   100

      0.0
0+
   7275.2 9                P                    1 1.9 fs +4-3    7274.5 9 
   100

      0.0
0+
   7403.0 8                P                    1 3.7 fs +9-6    7402.3 8 
   100

      0.0
0+
   7470.92 20      F                              (10+)     1824.1 2 
  2383.2 3 
   100 8 
    55 6 
Q
Q
   5646.79
   5087.62
8(+)
8+
   7556.58 22      F                              (9)     2468.9 3 
   100
(D)
   5087.62
8+
   7572.0 5                P                    1(+) 2.6 fs +8-5    7571.3 5 
   100
(M1)
      0.0
0+
   7578.90 30                P                    1- 0.51 fs +7-6    7578.2 3 
   100
E1
      0.0
0+
   7662.1 6                P                    1- 4.7 fs +21-11    7661.4 6 
   100
E1
      0.0
0+
   7783.3 10                P                    1- 4.2 fs +19-11    7782.6 10 
   100
E1
      0.0
0+
   7808.9 16                P                    1- 8 fs +4-2    7808.2 16 
   100
E1
      0.0
0+
   7828.9 12                P                    1 6 fs +3-2    7828.1 12 
   100

      0.0
0+
   7834.8 8                P                    1- 3.0 fs +9-6    7834.0 8 
   100
E1
      0.0
0+
   7844 20          J                                 
   7879.97 19      F                              (10-)      323.4 2 
   787.2 2 
  1908.6 3 
    33.3
   100 8 
    74 8 
D
(M1)
Q
   7556.58
   7092.76
   5971.30
(9)
(9-)
8(-)
   7953.1 5                P                    1 1.7 fs +7-4    5293.8 14 
  7952.6 5 
   100
   100


   2656.509
      0.0
2+
0+
   8050          K                                
   8070.2 7                P                    1 2.2 fs +5-3    8069.4 7 
   100

      0.0
0+
   8086.0 7                P                    1 2.1 fs +5-3    8085.2 7 
   100

      0.0
0+
E(level)
(keV)
XREFJπ(level) T1/2(level)E(γ)
(keV)
I(γ)M(γ)Final Levels
   8286.28 26      F                              (11-)     1628.6 2 
   100.0 63 
(E2)
   6657.65
9(-)
   8290          K                                
   8321.5 16                P                    1 9.5 fs +7-3    8320.7 16 
   100

      0.0
0+
   8395.3 4                P                    1 1.6 fs +5-3    8394.4 4 
   100

      0.0
0+
   8405.4 17                P                    1 0.42 fs +7-5    8404.5 17 
   100

      0.0
0+
   8556.7 8                P                    1- 2.4 fs +16-7    8555.8 8 
   100
E1
      0.0
0+
   8615.2 12                P                    1- 2.3 fs +10-5    8614.3 12 
   100
E1
      0.0
0+
   8801.9 29                P                    1- 11 fs +13-4    8800.9 29 
   100
E1
      0.0
0+
   8828.0 11                P                    1- 0.8 fs +3-2    6944.6 18 
  8826.6 14 
   100 14 
    89 23 
E1
E1
   1883.516
      0.0
0+
0+
   8851.5 7                P                    1- 0.70 fs +17-12    7692.9 18 
  8850.7 7 
    19 8 
   100 6 
E1
E1
   1157.0208
      0.0
2+
0+
   8860          K                                
   8908.8 7                P                    1- 0.33 fs +7-5    8907.8 7 
   100
E1
      0.0
0+
   9024.1 20                P                    1-     9023.1 20 
   100
E1
      0.0
0+
   9148.4 24                P                    1-     9147.4 24 
   100
E1
      0.0
0+
   9273.6 8                P                    1- 1.1 fs +3-2    9272.5 8 
   100
E1
      0.0
0+
   9317.2 10                P                    1-     9316.1 10 
   100
E1
      0.0
0+
   9460          K                                
   9664.9 7                P                    1-     8508.5 33 
  9663.7 7 
    17 8 
   100 6 

E1
   1157.0208
      0.0
2+
0+
   9750          K                                
   9788.6 6      F                                  2317.6 6 
   100

   7470.92
(10+)
   9814.1 11                P                    1-     9812.9 11 
   100
E1
      0.0
0+
   9859.5 4      F                              (12-)     1979.5 3 
   100
(E2)
   7879.97
(10-)
   9898.2 10                P                    1-     9897.0 10 
   100
E1
      0.0
0+
  10567.8 5      F                              (13-)     2281.5 4 
   100
Q
   8286.28
(11-)
  11131.60 12 S            M                       3-,4-     4457.9 7 
  4919.9 7 
  4984.4 5 
  5091.6 8 
  5264.4 5 
  5355.7 5 
  5397.8 5 
  5582.4 5 
  5673.0 7 
  5756.3 7 
  5789.5 7 
  5831.4 7 
  5841.9 5 
  5900.9 5 
  6001.3 6 
  6034.4 6 
  6125.3 6 
  6226.7 8 
  6328.3 6 
  6441.1 8 
  6480.2 6 
  6546.6 6 
  6566.4 6 
  6651.3 8 
  6731.9 10 
  6772.3 6 
  6935.2 6 
  7119.7 10 
  7208.1 6 
  7354.2 8 
  7418.8 6 
  7454.4 10 
  7773.4 6 
  7822.3 10 
  7829.3 8 
  8086.4 7 
  8474.3 10 
  8848.0 7 
  9974.3 8 
    27.3
    12.9
    16.1
     5.7
    17.1
    41
    54
    14.2
     7.2
    12.2
     5
    14.4
    16.8
   100
    49
    16.9
    53
    12.1
     8.5
     5.6
    33
    33.9
     8
     6
     2.01
    10.8
    12.6
     1.15
    22.2
     7
    10.6
     1.15
    44
     2.44
     8.6
     9.6
     1
     5.3
     1.58







































   6672.92
   6211.4
   6146.14
   6040.0
   5866.82
   5775.76
   5733.30
   5548.68
   5458.9
   5375.0
   5342.2
   5300.5
   5289.25
   5230.33
   5130.22
   5096.87
   5005.69
   4904.58
   4803.6
   4690.0
   4650.3
   4584.08
   4564.87
   4479.9
   4399.2
   4358.440
   4196.10
   4011.4
   3922.71
   3776.27
   3711.96
   3676.092
   3357.29
   3307.872
   3301.36
   3044.292
   2656.509
   2283.119
   1157.0208


(4,5)+
2+,3+,4+,5+
(4+,5+)
(2,3,4)+
(4,5)+
(2,3,4)+
(2,3,4)+
(2,3,4)+
(2)+


2+,3+,4+,5+
(2,3)+
3-,4-
4+
3-
(1-,2,3,4+)
(1-,2,3,4+)
2+
(2+,3,4+)
(5-)
2+
3-
3-
2+

5-
2-
4-
(2+)
(2+,3,4+)
3-
2+
4+
2+
4+
2+
E(level)
(keV)
XREFJπ(level) T1/2(level)E(γ)
(keV)
I(γ)M(γ)Final Levels
  11132.73 30              N                      4- 1.13 eV      
  11134.44 23              N                      +        
  11134.52 23              N                      (4)- 0.67 eV      
  11135.49 23              N                      4- 0.522 eV 7       
  11135.72 23              N                      +        
  11136.33 23              N                      3- 1.23 eV 10       
  11136.35 23              N                      4-        
  11138.07 23              N                      3- 0.69 eV 7       
  11139.93 23              N                      4- 0.68 eV 7       
  11141.00 23              N                      +        
  11141.22 23              N                      +        
  11141.52 23              N                      (4)- 0.76 eV 10       
  11143.08 23              N                             
  11143.31 23              N                             
  11143.77 23              N                      +        
  11144.39 23              N                             
  11144.9 5              N                      4- 1.0 eV 1       
  11145.29 23              N                      (3)- 0.8 eV 9       
  11145.65 23              N                      +        
  11146.04 23              N                      +        
  11146.19 23              N                      +        
  11147.53 23              N                      3-,4-        
  11149.99 24              N                      4- 0.66 eV 7       
  11150.62 23              N                      +        
  11151.10 23              N                      (3)- 0.80 eV 12       
  11152.19 23              N                      (3)- 0.79 eV 10       
  11152.71 23              N                      (3) 0.5 eV      
  11153.68 23              N                      (4)- 0.57 eV 9       
  11154.10 23              N                      +        
  11154.90 23              N                      (2)+ 0.92 eV 12       
E(level)
(keV)
XREFJπ(level) T1/2(level)E(γ)
(keV)
I(γ)M(γ)Final Levels
  11155.07 23              N                      (3)- 0.81 eV 12       
  11155.29 23              N                      +        
  11155.41 23              N                      (2)+ 0.74 eV 11       
  11157.59 23              N                             
  11157.71 23              N                      (4)- 0.60 eV 8       
  11157.99 23              N                      3-,4-        
  11158.69 23              N                      +        
  11158.84 23              N                      +        
  11160.27 23              N                      (4)- 0.66 eV 8       
  11160.40 23              N                      (4)- 0.75 eV 10       
  11161.47 23              N                      +        
  11161.65 23              N                      (4)- 0.66 eV 7       
  11161.86 23              N                      +        
  11162.06 23              N                      (4)- 0.75 eV 9       
  11162.89 23              N                             
  11164.00 23              N                             
  11165.39 23              N                             
  11165.91 23              N                             
  11166.61 23              N                             
  11166.74 23              N                             
  11167.34 23              N                             
  11167.58 23              N                      (4)- 1.4 eV 2       
  11170.05 23              N                             
  11850 10                 Q                          
  12188.1 10      F                                  2399.5 7 
   100

   9788.6

     16.5E3 15                        X            4.9 MeV +21-24       
     17.13E3 11                        X            9.40 MeV 14       
     19.5E3 4                        X            5.8 MeV +9-7       
     34.9E3 15                        X            16.3 MeV 23       

E(level): From a least-squares fit to γ-ray energies for levels populated in γ-ray studies, and from different reactions as noted for others, unless otherwise noted.

Jπ(level): When assigning Jπ to a level based on γ transitions from this level to a level of known Jπ, evaluators use the following rules: if Eγ<4 MeV, transitions are only considered to be E1, M1 or E2; if Eγ>4 MeV, M2 and E3 are considered to be possible.

T1/2(level): From DSAM in (α,pγ), unless otherwise stated. Values quoted in nanoseconds are from γγ(t) in (n,γ)

Back to top

Band Transitions:

E(level)
(keV)
Jπ(level) T1/2(level)E(γ)I(γ)M(γ)Final Levels
Band 1 - Yrast g.s. band
      0.0 0+ STABLE      
   1157.0208 30  2+ 2.94 ps 12    1157.004 3 
   100
E2
      0.0
0+
   2283.119 10  4+ 1.9 ps 7       
   3285.004 22  6+ 13.3 ps 12    1001.869 20 
   100
E2
   2283.119
4+
   5087.62 8  8+ 0.53 ps 14       
E(level)
(keV)
Jπ(level) T1/2(level)E(γ)I(γ)M(γ)Final Levels
Band 2 - Band based on 4-, α=0
   3711.96 9  4- < 0.42 ns      
   4930.74 16  (6-)     1016.9 2 
  1218.8 3 
   100 7 
    48 7 
D

   3913.80
   3711.96
5-
4-
   5971.30 14  8(-)        
   7879.97 19  (10-)      323.4 2 
   787.2 2 
  1908.6 3 
    33.3
   100 8 
    74 8 
D
(M1)
Q
   7556.58
   7092.76
   5971.30
(9)
(9-)
8(-)
   9859.5 4  (12-)        
E(level)
(keV)
Jπ(level) T1/2(level)E(γ)I(γ)M(γ)Final Levels
Band 3 - Band based on 5-, α=1
   3913.80 8  5- > 2 ps      
   5245.19 12  7-     1331.3 2 
  1960.2 2 
   100 5 
    97 7 
(E2)
(E1)
   3913.80
   3285.004
5-
6+
   6657.65 17  9(-)        
   8286.28 26  (11-)     1628.6 2 
   100.0 63 
(E2)
   6657.65
9(-)
  10567.8 5  (13-)        

Back to top

Additional Gamma Data:















E(level)
(keV)
Jπ(level)T1/2(level)E(γ)
(keV)
MultipolarityMixing
Ratio
Conversion
Coefficient
Additional Data
   1157.0208 2+ 2.94 ps 12    1157.004 3 E2 B(E2)(W.u.)=10.06 +42-40
   1883.516 0+ 13.9 ps 42     726.490 16 E2 B(E2)(W.u.)=22 +9-5
   2283.119 4+ 1.9 ps 7    1126.078 10 E2 B(E2)(W.u.)=18 +10-5
   2656.509 2+ 30 fs 3    1499.449 15 M1+E2-0.123 17B(E2)(W.u.)=3.6 +12-9, B(M1)(W.u.)=0.191 +22-17
2+ 30 fs 3    2656.44 3 E2 B(E2)(W.u.)=1.70 +20-16
   3044.292 4+ 4.6 ps +13-10     761.12 4 M1+E2-0.18 8B(E2)(W.u.)=0.9 +10-6, B(M1)(W.u.)=0.0055 +15-13
4+ 4.6 ps +13-10    1887.34 20 E2 B(E2)(W.u.)=0.27 +7-6
   3285.004 6+ 13.3 ps 12    1001.869 20 E2 B(E2)(W.u.)=4.57 +46-37
   3301.36 2+ 35 fs 18    3301.33 6 E2 B(E2)(W.u.)=1.4 +12-5
   3307.872 3- 0.15 ps 6     263.53 6 [E1] 1.13×10-3B(E1)(W.u.)=0.00068 +49-25, α=1.13E-3 2
3- 0.15 ps 6     651.353 16 [E1] B(E1)(W.u.)=0.0012 +8-4
3- 0.15 ps 6    1024.738 17 [E1] B(E1)(W.u.)=0.00069 +44-20
3- 0.15 ps 6    2150.805 17 [E1] B(E1)(W.u.)=0.00025 +16-7
3- 0.15 ps 6    3307.7 5 (E3) B(E3)(W.u.)=9 +7-4
   3661.527 1-      353.67 25 [E2] 2.18×10-3α=2.18×10-3 3
1-     3661.363 11 (E1) 1.55×10-3α=1.55×10-3 2
   3711.96 4- < 0.42 ns    404.26 13 (M1) B(M1)(W.u.)>5.2×10-4
4- < 0.42 ns   1428.67 25 [E1] B(E1)(W.u.)>1.2E-7
   3776.27 2- < 0.69 ns   1119.7 4 [E1] B(E1)(W.u.)>2.1E-8
2- < 0.69 ns   2619.16 12 (E1+M2)-0.62 +7-8B(E1)(W.u.)>2.6E-8, B(M2)(W.u.)>0.0061
   3913.80 5- > 2 ps    202.1 2 [M1,E2] 0.010α=0.010 8
5- > 2 ps    628.71 11 (E1+M2)-0.30 14B(E1)(W.u.)<5.3E-4
5- > 2 ps    869.47 15 (E1) B(E1)(W.u.)<2.2E-4
   3922.71 5- < 0.56 ns    637.68 12 [E1] B(E1)(W.u.)>1.5E-6
5- < 0.56 ns    878.25 20 [E1] B(E1)(W.u.)>4.8E-7
E(level)
(keV)
Jπ(level)T1/2(level)E(γ)
(keV)
MultipolarityMixing
Ratio
Conversion
Coefficient
Additional Data
   4196.10 2+ 50 fs +13-8    4196.1 3 (E2) B(E2)(W.u.)=0.73 15
   5087.62 8+ 0.53 ps 14    1802.59 8 E2 B(E2)(W.u.)=6.1 +22-13
   5210.0 1+ 2.0 fs +4-3    3326M1 B(M1)(W.u.)=0.085 +16-15
1+ 2.0 fs +4-3    4053M1+E2+0.27 81.07×10-3B(E2)(W.u.)=0.44 +27-23, B(M1)(W.u.)=0.036 7, α=1.07E-3 2
1+ 2.0 fs +4-3    5210M1 1.41×10-3B(M1)(W.u.)=0.028 5, α=1.41×10-3 2
   5806.31 1- 2.3 fs 3    5805.9 1 E1 B(E1)(W.u.)=1.2E-3 2
   5875.82 1- 4.2 fs +8-5    5875.4 2 E1 B(E1)(W.u.)=6.4E-4 10
   6082.9 1+ 2.1 fs +4-3    4199.5 5 M1 B(M1)(W.u.)=0.043 10
1+ 2.1 fs +4-3    6080.1 14 M1 B(M1)(W.u.)=0.023 4
   6136.59 1- 1.27 fs +20-15    4978.5 5 [E1] B(E1)(W.u.)=0.00109 19
1- 1.27 fs +20-15    6136.4 3 E1 B(E1)(W.u.)=0.00127 18
   6422.12 1- 0.21 fs 2    4539.9 7 E1 B(E1)(W.u.)=0.0013 2
1- 0.21 fs 2    5263.8 7 E1 B(E1)(W.u.)=8.8E-4 14
1- 0.21 fs 2    6421.6 1 E1 B(E1)(W.u.)=0.0088 +9-8
   6446.5 1+ 5.9 fs +16-11    6446.3 8 M1 B(M1)(W.u.)=0.0093 +24-22
   7572.0 1(+) 2.6 fs +8-5    7571.3 5 (M1) B(M1)(W.u.)=0.020 5
   7578.90 1- 0.51 fs +7-6    7578.2 3 E1 B(E1)(W.u.)=0.0025 3
   7662.1 1- 4.7 fs +21-11    7661.4 6 E1 B(E1)(W.u.)=2.6E-4 8
   7783.3 1- 4.2 fs +19-11    7782.6 10 E1 B(E1)(W.u.)=2.7E-4 +10-8
   7808.9 1- 8 fs +4-2    7808.2 16 E1 B(E1)(W.u.)=1.4E-4 5
   7834.8 1- 3.0 fs +9-6    7834.0 8 E1 B(E1)(W.u.)=3.8E-4 +10-9
   8556.7 1- 2.4 fs +16-7    8555.8 8 E1 B(E1)(W.u.)=3.6E-4 +15-13
   8615.2 1- 2.3 fs +10-5    8614.3 12 E1 B(E1)(W.u.)=3.7E-4 11
   8801.9 1- 11 fs +13-4    8800.9 29 E1 B(E1)(W.u.)=7.2E-5 +4-3
   8828.0 1- 0.8 fs +3-2    6944.6 18 E1 B(E1)(W.u.)=0.0011 +4-3
1- 0.8 fs +3-2    8826.6 14 E1 B(E1)(W.u.)=4.7E-4 +17-15
E(level)
(keV)
Jπ(level)T1/2(level)E(γ)
(keV)
MultipolarityMixing
Ratio
Conversion
Coefficient
Additional Data
   8851.5 1- 0.70 fs +17-12    7692.9 18 E1 B(E1)(W.u.)=2.7E-4 11
1- 0.70 fs +17-12    8850.7 7 E1 B(E1)(W.u.)=9.4E-4 +21-19
   8908.8 1- 0.33 fs +7-5    8907.8 7 E1 B(E1)(W.u.)=0.0023 4
   9273.6 1- 1.1 fs +3-2    9272.5 8 E1 B(E1)(W.u.)=6.2E-4 14

Back to top

Additional Level Data and Comments:

E(level)Jπ(level)T1/2(level)Comments
      0.00+ STABLE δ<r2>(40Ca-44Ca)=0.288 fm2 2(stat)6(syst) (2016Ga34), 0.2904 fm2 10 (1998No10).
E(level): δ<r2>(40Ca-44Ca)=0.288 fm2 2(stat)6(syst) (2016Ga34), 0.2904 fm2 10 (1998No10). Yrast g.s. band.
   1157.02082+ 2.94 ps 12  μ=+0.34 6 (2003Sc21,2020StZV), Q=-0.14 7 (1973To07,2021StZZ), B(E2)=0.0475 20
Adopted (1977En02) spectroscopic factors S: 0.41 11 (L=3) and 0.08 2 (L=1) (neutron stripping); 0.18 3 (L=3) (proton pickup).
E(level): Adopted (1977En02) spectroscopic factors S: 0.41 11 (L=3) and 0.08 2 (L=1) (neutron stripping); 0.18 3 (L=3) (proton pickup). Yrast g.s. band.
   1883.5160+ 13.9 ps 42  Adopted (1977En02) spectroscopic factors S: 0.39 10 (L=3) (neutron stripping); 0.12 3 (L=3) (proton pickup).
E(level): Adopted (1977En02) spectroscopic factors S: 0.39 10 (L=3) (neutron stripping); 0.12 3 (L=3) (proton pickup).
   2283.1194+ 1.9 ps 7  Adopted (1977En02) spectroscopic factors S: 0.14 4 (L=3) and 0.01 1 (L=1) (neutron stripping); 0.09 3 (L=3) (proton pickup).
E(level): Adopted (1977En02) spectroscopic factors S: 0.14 4 (L=3) and 0.01 1 (L=1) (neutron stripping); 0.09 3 (L=3) (proton pickup). Yrast g.s. band.
   2656.5092+ 30 fs 3  B(E2)=0.0079 7 (1989It02)
Adopted (1977En02) spectroscopic factors S: 0.51 13 (L=3) and <0.02 (L=1) (neutron stripping); 0.19 3 (L=3) (proton pickup).
E(level): Adopted (1977En02) spectroscopic factors S: 0.51 13 (L=3) and <0.02 (L=1) (neutron stripping); 0.19 3 (L=3) (proton pickup).
   3044.2924+ 4.6 ps +13-10  Adopted (1977En02) spectroscopic factors S: 0.91 23 (L=3) (neutron stripping); <0.04 (L=3) (proton pickup).
E(level): Adopted (1977En02) spectroscopic factors S: 0.91 23 (L=3) (neutron stripping); <0.04 (L=3) (proton pickup).
   3285.0046+ 13.3 ps 12  XREF: K(3290).
E(level): Yrast g.s. band.
   3357.29(2+,3,4+) < 28 fs XREF: e(3370).
   3581.30+   XREF: J(3592).
   3661.5271-   Jπ(level): From ΔJ=1 excitation and γ(linear polarization) in (γ,γ’) and (polarized γ,γ’).
   3691.71 46 fs +30-13  Jπ(level): From ΔJ=1 excitation and γ(linear polarization) in (γ,γ’) and (polarized γ,γ’).
T1/2(level): Deduced by the evaluators from Γγ in (γ,γ’). Actual T1/2 could be smaller for levels from which only the g.s. transitions are reported, with the possibility that competing transitions to the low-lying 2+ and 0+ excited states in 44Ca might have missed observation, making Γγ underestimated, thus T1/2 overestimated.
   3711.964- < 0.42 ns XREF: O(3729).
E(level): Band based on 4-, α=0.
   3776.272- < 0.69 ns XREF: O(3792)f(3770?).
   3913.805- > 2 ps E(level): Band based on 5-, α=1.
   3922.715- < 0.56 ns XREF: F(?).
   4011.4   XREF: O(4026)f(4022).
   4170(2+)   XREF: X(4169?)h(4170).
   4196.102+ 50 fs +13-8  XREF: O(4207).
   4315.22(1,2,3)   XREF: f(4310?).
   4399.23-   XREF: O(4410).
   4479.92+   XREF: O(4491?).
   4561.8   XREF: α(?).
   4564.87(5-)   XREF: F(?)K(4550).
   4584.08(2+,3,4+) < 3.5 ns XREF: O(4598).
   4649.461 7.4 fs +16-11  Jπ(level): From ΔJ=1 excitation and γ(linear polarization) in (γ,γ’) and (polarized γ,γ’).
T1/2(level): Deduced by the evaluators from Γγ in (γ,γ’). Actual T1/2 could be smaller for levels from which only the g.s. transitions are reported, with the possibility that competing transitions to the low-lying 2+ and 0+ excited states in 44Ca might have missed observation, making Γγ underestimated, thus T1/2 overestimated.
E(level)Jπ(level)T1/2(level)Comments
   4650.32+   XREF: O(4662).
   4848.391 17 fs +5-3  Jπ(level): From ΔJ=1 excitation and γ(linear polarization) in (γ,γ’) and (polarized γ,γ’).
T1/2(level): Deduced by the evaluators from Γγ in (γ,γ’). Actual T1/2 could be smaller for levels from which only the g.s. transitions are reported, with the possibility that competing transitions to the low-lying 2+ and 0+ excited states in 44Ca might have missed observation, making Γγ underestimated, thus T1/2 overestimated.
   4866.091 4.3 fs +14-9  Jπ(level): From ΔJ=1 excitation and γ(linear polarization) in (γ,γ’) and (polarized γ,γ’).
T1/2(level): Deduced by the evaluators from Γγ in (γ,γ’). Actual T1/2 could be smaller for levels from which only the g.s. transitions are reported, with the possibility that competing transitions to the low-lying 2+ and 0+ excited states in 44Ca might have missed observation, making Γγ underestimated, thus T1/2 overestimated.
   4892.6   XREF: α(?).
   4904.583-   XREF: α(?)Q(4900)b(4905)f(4912).
   4930.74(6-)   E(level): Band based on 4-, α=0.
   49922+,3+,4+,5+   XREF: J(4991).
   5005.694+   XREF: O(5016)t(5031)b(5006?).
   5087.628+ 0.53 ps 14  E(level): Yrast g.s. band.
   5096.873-,4-   XREF: e(5070).
   5130.22(2,3)+   XREF: O(5143)f(5120?).
   5161.81 2.6 fs 3  XREF: O(5172).
Jπ(level): From ΔJ=1 excitation and γ(linear polarization) in (γ,γ’) and (polarized γ,γ’).
T1/2(level): Deduced by the evaluators from Γγ in (γ,γ’). Actual T1/2 could be smaller for levels from which only the g.s. transitions are reported, with the possibility that competing transitions to the low-lying 2+ and 0+ excited states in 44Ca might have missed observation, making Γγ underestimated, thus T1/2 overestimated.
   5210.01+ 2.0 fs +4-3  Jπ(level): From ΔJ=1 excitation and γ(linear polarization) in (γ,γ’) and (polarized γ,γ’).
   5230.332+,3+,4+,5+ < 4.2 ns XREF: J(5245)O(5243)t(5235).
   5245.197-   E(level): Band based on 5-, α=1.
   5300.5   XREF: f(5306).
   5342.2(2)+   XREF: O(5351).
   5375.0(2,3,4)+   XREF: O(5385).
   54063-,4-   XREF: e(5430).
   5512.3   XREF: α(5512?)f(5518).
   5561.03-   XREF: f(5579).
   5611.561 1.4 fs +7-4  Jπ(level): From ΔJ=1 excitation and γ(linear polarization) in (γ,γ’) and (polarized γ,γ’).
T1/2(level): Deduced by the evaluators from Γγ in (γ,γ’). Actual T1/2 could be smaller for levels from which only the g.s. transitions are reported, with the possibility that competing transitions to the low-lying 2+ and 0+ excited states in 44Ca might have missed observation, making Γγ underestimated, thus T1/2 overestimated.
   5656(1 TO 6)-   XREF: J(5646)O(5666).
   5800.611 11 fs +5-3  Jπ(level): From ΔJ=1 excitation and γ(linear polarization) in (γ,γ’) and (polarized γ,γ’).
T1/2(level): Deduced by the evaluators from Γγ in (γ,γ’). Actual T1/2 could be smaller for levels from which only the g.s. transitions are reported, with the possibility that competing transitions to the low-lying 2+ and 0+ excited states in 44Ca might have missed observation, making Γγ underestimated, thus T1/2 overestimated.
   5806.311- 2.3 fs 3  Jπ(level): From ΔJ=1 excitation and γ(linear polarization) in (γ,γ’) and (polarized γ,γ’).
T1/2(level): Deduced by the evaluators from Γγ in (γ,γ’). Actual T1/2 could be smaller for levels from which only the g.s. transitions are reported, with the possibility that competing transitions to the low-lying 2+ and 0+ excited states in 44Ca might have missed observation, making Γγ underestimated, thus T1/2 overestimated.
E(level)Jπ(level)T1/2(level)Comments
   5832   XREF: X(5830).
   58640+   XREF: H(5850)J(5864)K(5860).
   5866.82(4+,5+)   XREF: O(5873?).
   5875.821- 4.2 fs +8-5  XREF: X(5880)f(5891).
Jπ(level): From ΔJ=1 excitation and γ(linear polarization) in (γ,γ’) and (polarized γ,γ’).
T1/2(level): Deduced by the evaluators from Γγ in (γ,γ’). Actual T1/2 could be smaller for levels from which only the g.s. transitions are reported, with the possibility that competing transitions to the low-lying 2+ and 0+ excited states in 44Ca might have missed observation, making Γγ underestimated, thus T1/2 overestimated.
   5911.131 1.9 fs +6-4  XREF: X(5940?).
Jπ(level): From ΔJ=1 excitation and γ(linear polarization) in (γ,γ’) and (polarized γ,γ’).
T1/2(level): Deduced by the evaluators from Γγ in (γ,γ’). Actual T1/2 could be smaller for levels from which only the g.s. transitions are reported, with the possibility that competing transitions to the low-lying 2+ and 0+ excited states in 44Ca might have missed observation, making Γγ underestimated, thus T1/2 overestimated.
   5971.308(-)   E(level): Band based on 4-, α=0.
   5975   XREF: X(5970).
   6014   XREF: X(6020).
   6040.02+,3+,4+,5+   XREF: O(6050).
   6082.91+ 2.1 fs +4-3  Jπ(level): From ΔJ=1 excitation and γ(linear polarization) in (γ,γ’) and (polarized γ,γ’).
T1/2(level): Deduced by the evaluators from Γγ in (γ,γ’). Actual T1/2 could be smaller for levels from which only the g.s. transitions are reported, with the possibility that competing transitions to the low-lying 2+ and 0+ excited states in 44Ca might have missed observation, making Γγ underestimated, thus T1/2 overestimated.
   6136.591- 1.27 fs +20-15  XREF: e(6100).
Jπ(level): From ΔJ=1 excitation and γ(linear polarization) in (γ,γ’) and (polarized γ,γ’).
T1/2(level): Deduced by the evaluators from Γγ in (γ,γ’). Actual T1/2 could be smaller for levels from which only the g.s. transitions are reported, with the possibility that competing transitions to the low-lying 2+ and 0+ excited states in 44Ca might have missed observation, making Γγ underestimated, thus T1/2 overestimated.
   6211.4   XREF: K(6210).
   6245.481 9 fs +3-2  Jπ(level): From ΔJ=1 excitation and γ(linear polarization) in (γ,γ’) and (polarized γ,γ’).
T1/2(level): Deduced by the evaluators from Γγ in (γ,γ’). Actual T1/2 could be smaller for levels from which only the g.s. transitions are reported, with the possibility that competing transitions to the low-lying 2+ and 0+ excited states in 44Ca might have missed observation, making Γγ underestimated, thus T1/2 overestimated.
   6422.121- 0.21 fs 2  XREF: J(6438).
Jπ(level): From ΔJ=1 excitation and γ(linear polarization) in (γ,γ’) and (polarized γ,γ’).
T1/2(level): Deduced by the evaluators from Γγ in (γ,γ’). Actual T1/2 could be smaller for levels from which only the g.s. transitions are reported, with the possibility that competing transitions to the low-lying 2+ and 0+ excited states in 44Ca might have missed observation, making Γγ underestimated, thus T1/2 overestimated.
   6446.51+ 5.9 fs +16-11  Jπ(level): From ΔJ=1 excitation and γ(linear polarization) in (γ,γ’) and (polarized γ,γ’).
T1/2(level): Deduced by the evaluators from Γγ in (γ,γ’). Actual T1/2 could be smaller for levels from which only the g.s. transitions are reported, with the possibility that competing transitions to the low-lying 2+ and 0+ excited states in 44Ca might have missed observation, making Γγ underestimated, thus T1/2 overestimated.
   6507.11 3.3 fs +9-6  Jπ(level): From ΔJ=1 excitation and γ(linear polarization) in (γ,γ’) and (polarized γ,γ’).
T1/2(level): Deduced by the evaluators from Γγ in (γ,γ’). Actual T1/2 could be smaller for levels from which only the g.s. transitions are reported, with the possibility that competing transitions to the low-lying 2+ and 0+ excited states in 44Ca might have missed observation, making Γγ underestimated, thus T1/2 overestimated.
   6657.659(-)   E(level): Band based on 5-, α=1.
   6675.441 4.5 fs +9-6  Jπ(level): From ΔJ=1 excitation and γ(linear polarization) in (γ,γ’) and (polarized γ,γ’).
T1/2(level): Deduced by the evaluators from Γγ in (γ,γ’). Actual T1/2 could be smaller for levels from which only the g.s. transitions are reported, with the possibility that competing transitions to the low-lying 2+ and 0+ excited states in 44Ca might have missed observation, making Γγ underestimated, thus T1/2 overestimated.
   6960.71 5.6 fs +13-9  Jπ(level): From ΔJ=1 excitation and γ(linear polarization) in (γ,γ’) and (polarized γ,γ’).
T1/2(level): Deduced by the evaluators from Γγ in (γ,γ’). Actual T1/2 could be smaller for levels from which only the g.s. transitions are reported, with the possibility that competing transitions to the low-lying 2+ and 0+ excited states in 44Ca might have missed observation, making Γγ underestimated, thus T1/2 overestimated.
   6972.141 0.47 fs +14-9  Jπ(level): From ΔJ=1 excitation and γ(linear polarization) in (γ,γ’) and (polarized γ,γ’).
T1/2(level): Deduced by the evaluators from Γγ in (γ,γ’). Actual T1/2 could be smaller for levels from which only the g.s. transitions are reported, with the possibility that competing transitions to the low-lying 2+ and 0+ excited states in 44Ca might have missed observation, making Γγ underestimated, thus T1/2 overestimated.
   7065.91 2.7 fs +6-4  Jπ(level): From ΔJ=1 excitation and γ(linear polarization) in (γ,γ’) and (polarized γ,γ’).
T1/2(level): Deduced by the evaluators from Γγ in (γ,γ’). Actual T1/2 could be smaller for levels from which only the g.s. transitions are reported, with the possibility that competing transitions to the low-lying 2+ and 0+ excited states in 44Ca might have missed observation, making Γγ underestimated, thus T1/2 overestimated.
   7226.041 2.8 fs +6-4  Jπ(level): From ΔJ=1 excitation and γ(linear polarization) in (γ,γ’) and (polarized γ,γ’).
T1/2(level): Deduced by the evaluators from Γγ in (γ,γ’). Actual T1/2 could be smaller for levels from which only the g.s. transitions are reported, with the possibility that competing transitions to the low-lying 2+ and 0+ excited states in 44Ca might have missed observation, making Γγ underestimated, thus T1/2 overestimated.
   7275.21 1.9 fs +4-3  Jπ(level): From ΔJ=1 excitation and γ(linear polarization) in (γ,γ’) and (polarized γ,γ’).
T1/2(level): Deduced by the evaluators from Γγ in (γ,γ’). Actual T1/2 could be smaller for levels from which only the g.s. transitions are reported, with the possibility that competing transitions to the low-lying 2+ and 0+ excited states in 44Ca might have missed observation, making Γγ underestimated, thus T1/2 overestimated.
   7403.01 3.7 fs +9-6  Jπ(level): From ΔJ=1 excitation and γ(linear polarization) in (γ,γ’) and (polarized γ,γ’).
T1/2(level): Deduced by the evaluators from Γγ in (γ,γ’). Actual T1/2 could be smaller for levels from which only the g.s. transitions are reported, with the possibility that competing transitions to the low-lying 2+ and 0+ excited states in 44Ca might have missed observation, making Γγ underestimated, thus T1/2 overestimated.
   7572.01(+) 2.6 fs +8-5  Jπ(level): From ΔJ=1 excitation and γ(linear polarization) in (γ,γ’) and (polarized γ,γ’).
T1/2(level): Deduced by the evaluators from Γγ in (γ,γ’). Actual T1/2 could be smaller for levels from which only the g.s. transitions are reported, with the possibility that competing transitions to the low-lying 2+ and 0+ excited states in 44Ca might have missed observation, making Γγ underestimated, thus T1/2 overestimated.
E(level)Jπ(level)T1/2(level)Comments
   7578.901- 0.51 fs +7-6  Jπ(level): From ΔJ=1 excitation and γ(linear polarization) in (γ,γ’) and (polarized γ,γ’).
T1/2(level): Deduced by the evaluators from Γγ in (γ,γ’). Actual T1/2 could be smaller for levels from which only the g.s. transitions are reported, with the possibility that competing transitions to the low-lying 2+ and 0+ excited states in 44Ca might have missed observation, making Γγ underestimated, thus T1/2 overestimated.
   7662.11- 4.7 fs +21-11  Jπ(level): From ΔJ=1 excitation and γ(linear polarization) in (γ,γ’) and (polarized γ,γ’).
T1/2(level): Deduced by the evaluators from Γγ in (γ,γ’). Actual T1/2 could be smaller for levels from which only the g.s. transitions are reported, with the possibility that competing transitions to the low-lying 2+ and 0+ excited states in 44Ca might have missed observation, making Γγ underestimated, thus T1/2 overestimated.
   7783.31- 4.2 fs +19-11  Jπ(level): From ΔJ=1 excitation and γ(linear polarization) in (γ,γ’) and (polarized γ,γ’).
T1/2(level): Deduced by the evaluators from Γγ in (γ,γ’). Actual T1/2 could be smaller for levels from which only the g.s. transitions are reported, with the possibility that competing transitions to the low-lying 2+ and 0+ excited states in 44Ca might have missed observation, making Γγ underestimated, thus T1/2 overestimated.
   7808.91- 8 fs +4-2  Jπ(level): From ΔJ=1 excitation and γ(linear polarization) in (γ,γ’) and (polarized γ,γ’).
T1/2(level): Deduced by the evaluators from Γγ in (γ,γ’). Actual T1/2 could be smaller for levels from which only the g.s. transitions are reported, with the possibility that competing transitions to the low-lying 2+ and 0+ excited states in 44Ca might have missed observation, making Γγ underestimated, thus T1/2 overestimated.
   7828.91 6 fs +3-2  Jπ(level): From ΔJ=1 excitation and γ(linear polarization) in (γ,γ’) and (polarized γ,γ’).
T1/2(level): Deduced by the evaluators from Γγ in (γ,γ’). Actual T1/2 could be smaller for levels from which only the g.s. transitions are reported, with the possibility that competing transitions to the low-lying 2+ and 0+ excited states in 44Ca might have missed observation, making Γγ underestimated, thus T1/2 overestimated.
   7834.81- 3.0 fs +9-6  Jπ(level): From ΔJ=1 excitation and γ(linear polarization) in (γ,γ’) and (polarized γ,γ’).
T1/2(level): Deduced by the evaluators from Γγ in (γ,γ’). Actual T1/2 could be smaller for levels from which only the g.s. transitions are reported, with the possibility that competing transitions to the low-lying 2+ and 0+ excited states in 44Ca might have missed observation, making Γγ underestimated, thus T1/2 overestimated.
   7879.97(10-)   E(level): Band based on 4-, α=0.
   7953.11 1.7 fs +7-4  Jπ(level): From ΔJ=1 excitation and γ(linear polarization) in (γ,γ’) and (polarized γ,γ’).
T1/2(level): Deduced by the evaluators from Γγ in (γ,γ’). Actual T1/2 could be smaller for levels from which only the g.s. transitions are reported, with the possibility that competing transitions to the low-lying 2+ and 0+ excited states in 44Ca might have missed observation, making Γγ underestimated, thus T1/2 overestimated.
   8070.21 2.2 fs +5-3  Jπ(level): From ΔJ=1 excitation and γ(linear polarization) in (γ,γ’) and (polarized γ,γ’).
T1/2(level): Deduced by the evaluators from Γγ in (γ,γ’). Actual T1/2 could be smaller for levels from which only the g.s. transitions are reported, with the possibility that competing transitions to the low-lying 2+ and 0+ excited states in 44Ca might have missed observation, making Γγ underestimated, thus T1/2 overestimated.
   8086.01 2.1 fs +5-3  Jπ(level): From ΔJ=1 excitation and γ(linear polarization) in (γ,γ’) and (polarized γ,γ’).
T1/2(level): Deduced by the evaluators from Γγ in (γ,γ’). Actual T1/2 could be smaller for levels from which only the g.s. transitions are reported, with the possibility that competing transitions to the low-lying 2+ and 0+ excited states in 44Ca might have missed observation, making Γγ underestimated, thus T1/2 overestimated.
   8286.28(11-)   E(level): Band based on 5-, α=1.
   8321.51 9.5 fs +7-3  Jπ(level): From ΔJ=1 excitation and γ(linear polarization) in (γ,γ’) and (polarized γ,γ’).
T1/2(level): Deduced by the evaluators from Γγ in (γ,γ’). Actual T1/2 could be smaller for levels from which only the g.s. transitions are reported, with the possibility that competing transitions to the low-lying 2+ and 0+ excited states in 44Ca might have missed observation, making Γγ underestimated, thus T1/2 overestimated.
   8395.31 1.6 fs +5-3  Jπ(level): From ΔJ=1 excitation and γ(linear polarization) in (γ,γ’) and (polarized γ,γ’).
T1/2(level): Deduced by the evaluators from Γγ in (γ,γ’). Actual T1/2 could be smaller for levels from which only the g.s. transitions are reported, with the possibility that competing transitions to the low-lying 2+ and 0+ excited states in 44Ca might have missed observation, making Γγ underestimated, thus T1/2 overestimated.
   8405.41 0.42 fs +7-5  Jπ(level): From ΔJ=1 excitation and γ(linear polarization) in (γ,γ’) and (polarized γ,γ’).
T1/2(level): Deduced by the evaluators from Γγ in (γ,γ’). Actual T1/2 could be smaller for levels from which only the g.s. transitions are reported, with the possibility that competing transitions to the low-lying 2+ and 0+ excited states in 44Ca might have missed observation, making Γγ underestimated, thus T1/2 overestimated.
   8556.71- 2.4 fs +16-7  Jπ(level): From ΔJ=1 excitation and γ(linear polarization) in (γ,γ’) and (polarized γ,γ’).
T1/2(level): Deduced by the evaluators from Γγ in (γ,γ’). Actual T1/2 could be smaller for levels from which only the g.s. transitions are reported, with the possibility that competing transitions to the low-lying 2+ and 0+ excited states in 44Ca might have missed observation, making Γγ underestimated, thus T1/2 overestimated.
   8615.21- 2.3 fs +10-5  Jπ(level): From ΔJ=1 excitation and γ(linear polarization) in (γ,γ’) and (polarized γ,γ’).
T1/2(level): Deduced by the evaluators from Γγ in (γ,γ’). Actual T1/2 could be smaller for levels from which only the g.s. transitions are reported, with the possibility that competing transitions to the low-lying 2+ and 0+ excited states in 44Ca might have missed observation, making Γγ underestimated, thus T1/2 overestimated.
   8801.91- 11 fs +13-4  Jπ(level): From ΔJ=1 excitation and γ(linear polarization) in (γ,γ’) and (polarized γ,γ’).
T1/2(level): Deduced by the evaluators from Γγ in (γ,γ’). Actual T1/2 could be smaller for levels from which only the g.s. transitions are reported, with the possibility that competing transitions to the low-lying 2+ and 0+ excited states in 44Ca might have missed observation, making Γγ underestimated, thus T1/2 overestimated.
   8828.01- 0.8 fs +3-2  Jπ(level): From ΔJ=1 excitation and γ(linear polarization) in (γ,γ’) and (polarized γ,γ’).
T1/2(level): Deduced by the evaluators from Γγ in (γ,γ’). Actual T1/2 could be smaller for levels from which only the g.s. transitions are reported, with the possibility that competing transitions to the low-lying 2+ and 0+ excited states in 44Ca might have missed observation, making Γγ underestimated, thus T1/2 overestimated.
   8851.51- 0.70 fs +17-12  Jπ(level): From ΔJ=1 excitation and γ(linear polarization) in (γ,γ’) and (polarized γ,γ’).
T1/2(level): Deduced by the evaluators from Γγ in (γ,γ’). Actual T1/2 could be smaller for levels from which only the g.s. transitions are reported, with the possibility that competing transitions to the low-lying 2+ and 0+ excited states in 44Ca might have missed observation, making Γγ underestimated, thus T1/2 overestimated.
   8908.81- 0.33 fs +7-5  Jπ(level): From ΔJ=1 excitation and γ(linear polarization) in (γ,γ’) and (polarized γ,γ’).
T1/2(level): Deduced by the evaluators from Γγ in (γ,γ’). Actual T1/2 could be smaller for levels from which only the g.s. transitions are reported, with the possibility that competing transitions to the low-lying 2+ and 0+ excited states in 44Ca might have missed observation, making Γγ underestimated, thus T1/2 overestimated.
   9024.11-   Jπ(level): From ΔJ=1 excitation and γ(linear polarization) in (γ,γ’) and (polarized γ,γ’).
   9148.41-   Jπ(level): From ΔJ=1 excitation and γ(linear polarization) in (γ,γ’) and (polarized γ,γ’).
   9273.61- 1.1 fs +3-2  Jπ(level): From ΔJ=1 excitation and γ(linear polarization) in (γ,γ’) and (polarized γ,γ’).
T1/2(level): Deduced by the evaluators from Γγ in (γ,γ’). Actual T1/2 could be smaller for levels from which only the g.s. transitions are reported, with the possibility that competing transitions to the low-lying 2+ and 0+ excited states in 44Ca might have missed observation, making Γγ underestimated, thus T1/2 overestimated.
   9317.21-   Jπ(level): From ΔJ=1 excitation and γ(linear polarization) in (γ,γ’) and (polarized γ,γ’).
   9664.91-   Jπ(level): From ΔJ=1 excitation and γ(linear polarization) in (γ,γ’) and (polarized γ,γ’).
E(level)Jπ(level)T1/2(level)Comments
   9814.11-   Jπ(level): From ΔJ=1 excitation and γ(linear polarization) in (γ,γ’) and (polarized γ,γ’).
   9859.5(12-)   E(level): Band based on 4-, α=0.
   9898.21-   Jπ(level): From ΔJ=1 excitation and γ(linear polarization) in (γ,γ’) and (polarized γ,γ’).
  10567.8(13-)   E(level): Band based on 5-, α=1.
  11132.734- 1.13 eV Jπ(level): From analysis of neutron resonance.
  11134.44+   Jπ(level): From analysis of neutron resonance.
  11134.52(4)- 0.67 eV Jπ(level): From analysis of neutron resonance.
  11135.494- 0.522 eV 7  Jπ(level): From analysis of neutron resonance.
  11135.72+   Jπ(level): From analysis of neutron resonance.
  11136.333- 1.23 eV 10  Jπ(level): From analysis of neutron resonance.
  11136.354-   Jπ(level): From analysis of neutron resonance.
  11138.073- 0.69 eV 7  Jπ(level): From analysis of neutron resonance.
  11139.934- 0.68 eV 7  Jπ(level): From analysis of neutron resonance.
  11141.00+   Jπ(level): From analysis of neutron resonance.
  11141.22+   Jπ(level): From analysis of neutron resonance.
  11141.52(4)- 0.76 eV 10  Jπ(level): From analysis of neutron resonance.
  11143.77+   Jπ(level): From analysis of neutron resonance.
  11144.94- 1.0 eV 1  Jπ(level): From analysis of neutron resonance.
  11145.29(3)- 0.8 eV 9  Jπ(level): From analysis of neutron resonance.
  11145.65+   Jπ(level): From analysis of neutron resonance.
  11146.04+   Jπ(level): From analysis of neutron resonance.
  11146.19+   Jπ(level): From analysis of neutron resonance.
  11147.533-,4-   Jπ(level): From analysis of neutron resonance.
  11149.994- 0.66 eV 7  Jπ(level): From analysis of neutron resonance.
  11150.62+   Jπ(level): From analysis of neutron resonance.
E(level)Jπ(level)T1/2(level)Comments
  11151.10(3)- 0.80 eV 12  Jπ(level): From analysis of neutron resonance.
  11152.19(3)- 0.79 eV 10  Jπ(level): From analysis of neutron resonance.
  11152.71(3) 0.5 eV Jπ(level): From analysis of neutron resonance.
  11153.68(4)- 0.57 eV 9  Jπ(level): From analysis of neutron resonance.
  11154.10+   Jπ(level): From analysis of neutron resonance.
  11154.90(2)+ 0.92 eV 12  Jπ(level): From analysis of neutron resonance.
  11155.07(3)- 0.81 eV 12  Jπ(level): From analysis of neutron resonance.
  11155.29+   Jπ(level): From analysis of neutron resonance.
  11155.41(2)+ 0.74 eV 11  Jπ(level): From analysis of neutron resonance.
  11157.71(4)- 0.60 eV 8  Jπ(level): From analysis of neutron resonance.
  11157.993-,4-   Jπ(level): From analysis of neutron resonance.
  11158.69+   Jπ(level): From analysis of neutron resonance.
  11158.84+   Jπ(level): From analysis of neutron resonance.
  11160.27(4)- 0.66 eV 8  Jπ(level): From analysis of neutron resonance.
  11160.40(4)- 0.75 eV 10  Jπ(level): From analysis of neutron resonance.
  11161.47+   Jπ(level): From analysis of neutron resonance.
  11161.65(4)- 0.66 eV 7  Jπ(level): From analysis of neutron resonance.
  11161.86+   Jπ(level): From analysis of neutron resonance.
  11162.06(4)- 0.75 eV 9  Jπ(level): From analysis of neutron resonance.
  11167.58(4)- 1.4 eV 2  Jπ(level): From analysis of neutron resonance.
     16.5E3 4.9 MeV +21-24  E(level): From (α,α’) for giant resonance.
T1/2(level): From (α,α’) for giant resonance.
     17.13E3 9.40 MeV 14  E(level): From (α,α’) for giant resonance.
T1/2(level): From (α,α’) for giant resonance.
     19.5E3 5.8 MeV +9-7  E(level): From (α,α’) for giant resonance.
T1/2(level): From (α,α’) for giant resonance.
     34.9E3 16.3 MeV 23  E(level): From (α,α’) for giant resonance.
T1/2(level): From (α,α’) for giant resonance.

Back to top

Additional Gamma Comments:

E(level)E(gamma)Comments
   1157.0208   1157.004E(γ): weighted average of 1157.002 3 from 44K β- decay, 1157.022 15 from 44Sc ε decay (4.0420 h), 1157.002 15 from 44Sc ε decay (58.61 h), 1157 1 from (16O,2pγ), 1157.0 2 from (18O,2p2nγ), 1157.031 15 from (14C,α2nγ), 1156.89 15 from (n,γ) E=thermal, 1158 1 from (p,p’γ), and 1155.9 5 from (μ-,nγ)
M(γ): ΔJ=2, Q γ from DCO in (18O,2p2nγ); M2 rejected by RUL
   1883.516    726.490M(γ): Q from pγ(θ) in (p,p’γ); M2 ruled out by RUL
   2283.119   1126.078E(γ): weighted average of 1126.076 10 from 44K β- decay, 1126.084 20 from 44Sc ε decay (58.61 h), and 1126.092 40 from (14C,α2nγ). Others: 1126 1 from (16O,2pγ), 1126.1 2 from (18O,2p2nγ), 1126.03 15 from (n,γ) E=thermal, 1127 1 from (p,p’γ), and 1124.1 7 from (μ-,nγ)
   2656.509   1499.449E(γ): from 44Sc ε decay (4.0420 h). Others: 1499.45 4 from 44K β- decay, 1499.4 3 from (18O,2p2nγ), 1499.30 18 from (n,γ) E=thermal, 1501 2 from (p,p’γ), and 1510 10 from (μ-,nγ)
I(γ): from 44Sc ε decay (4.0420 h). Others: 100.0 37 from 44K β- decay and 100.0 25 from (p,p’γ)
   2656.44E(γ): weighted average of 2656.41 3 from 44K β- decay, 2656.48 4 from 44Sc ε decay (4.0420 h), 2656.2 5 from (n,γ) E=thermal, and 2656 3 from (p,p’γ)
I(γ): weighted average of 12.52 59 from 44K β- decay, 12.31 33 from 44Sc ε decay (4.0420 h), and 17.0 38 from (p,p’γ)
M(γ): Q from pγ(θ) in (p,p’γ); M2 ruled out by RUL
   3044.292    761.12E(γ): weighted average of 761.10 3 from 44K β- decay, 761.3 1 from (18O,2p2nγ), and 761.19 10 from (n,γ) E=thermal. Others: 761.19 20 from (14C,α2nγ) and 764 1 from (p,p’γ)
I(γ): from (14C,α2nγ). Others: 100 50 from 44K β- decay, 100.0 52 from (18O,2p2nγ), and 100.0 79 from (p,p’γ)
   1887.34E(γ): weighted average of 1887.21 28 from 44K β- decay, 1887.3 2 from (18O,2p2nγ), 1887.45 20 from (14C,α2nγ), and 1887.3 3 from (n,γ) E=thermal. Other: 1890 2 from (p,p’γ)
I(γ): weighted average of 100 50 from 44K β- decay, 93.1 69 from (18O,2p2nγ), 85.4 42 from (14C,α2nγ), and 95.9 30 from (p,p’γ)
   3285.004   1001.869E(γ): weighted average of 1001.876 20 from 44Sc ε decay (58.61 h), 1001.9 1 from (18O,2p2nγ), and 1001.850 31 from (14C,α2nγ). Others: 1001 1 from (16O,2pγ) and 1001.85 15 from (n,γ) E=thermal
M(γ): Q, ΔJ=2 from DCO in (18O,2p2nγ); M2 ruled out by RUL
   3301.36   2144.27E(γ): weighted average of 2144.23 8 from 44K β- decay, 2144.33 10 from 44Sc ε decay (4.0420 h), 2144.5 5 from (n,γ) E=thermal, and 2144 2 from (p,p’γ)
I(γ): others: 100 19 from 44Sc ε decay (4.0420 h) and 100.0 90 from (p,p’γ)
   3301.33E(γ): weighted average of 3301.21 14 from 44K β- decay, 3301.35 6 from 44Sc ε decay (4.0420 h), 3301.5 6 from (n,γ) E=thermal, and 3304 4 from (p,p’γ)
I(γ): weighted average of 42.6 70 from 44K β- decay, 38 11 from 44Sc ε decay (4.0420 h), and 49.3 75 from (p,p’γ)
M(γ): Q from pγ(θ) in (p,p’γ); M2 ruled out by RUL
   3307.872    651.353E(γ): weighted average of 651.355 9 from 44K β- decay, 651.07 12 from (n,γ) E=thermal, and 652 1 from (p,p’γ)
I(γ): weighted average of 13.30 51 from 44K β- decay and 6.8 41 from (p,p’γ)
   1024.738E(γ): others: 1024.4 3 from (18O,2p2nγ), 1024.66 20 from (n,γ) E=thermal, and 1026 1 from (p,p’γ).
I(γ): other: 28.4 68 from (p,p’γ)
   2150.805E(γ): weighted average of 2150.786 17 from 44K β- decay, 2150.840 22 from 44Sc ε decay (4.0420 h), 2150.5 2 from (18O,2p2nγ), 2150.9 3 from (n,γ) E=thermal, and 2150 2 from (p,p’γ)
I(γ): others: 100.0 74 from (18O,2p2nγ) and 100.0 81 from (p,p’γ)
   3307.7M(γ): E3 excitation in (e,e’)
   3357.29   1074.13E(γ): others: 1074.1 4 from 44K β- decay and 1074 1 from (p,p’γ). From (n,γ) E=thermal
   3581.3   2426.2E(γ): unweighted average of 2423.3 6 from 44K β- decay and 2429 2 from (p,p’γ)
M(γ): (Q) from pγ(θ) in (p,p’γ); Δπ=no from level scheme
   3661.527    353.67E(γ): from (pol γ,γ’)
   1005.0E(γ): from (pol γ,γ’)
   1777.973E(γ): from (pol γ,γ’). Other: 1780 2 from (p,p’γ)
M(γ): d from pγ(θ) in (p,p’γ); Δπ=yes from level scheme
   2504.39E(γ): from (pol γ,γ’). Other: 2508 3 from (p,p’γ)
   3661.363E(γ): others: 3661.3 2 from (pol γ,γ’) and 3659 4 from (p,p’γ)
M(γ): d from pγ(θ) in (p,p’γ); Δπ=yes from level scheme
   3676.092    368.208E(γ): weighted average of 368.207 14 from 44K β- decay, 368.8 3 from (n,γ) E=thermal, and 367 1 from (p,p’γ)
    374.82E(γ): weighted average of 374.85 10 from 44K β- decay and 374.4 4 from (n,γ) E=thermal
   1017.5E(γ): unweighted average of 1019.55 7 from 44K β- decay, 1017.8 7 from (n,γ) E=thermal, and 1015 1 from (p,p’γ)
   2518.991E(γ): others: 2518.9 5 from (n,γ) E=thermal and 2520 3 from (p,p’γ)
E(level)E(gamma)Comments
   3691.7   3691.5E(γ): from (γ,γ’)
   3711.96    404.26E(γ): weighted average of 403.86 20 from 44K β- decay, 404.4 3 from (18O,2p2nγ), and 404.34 10 from (n,γ) E=thermal
I(γ): from (18O,2p2nγ). Other: 100 27 from 44K β- decay
M(γ): d, ΔJ=1 from DCO in (18O,2p2nγ); Δπ=no from level scheme
   1428.67E(γ): weighted average of 1428.7 4 from 44K β- decay, 1428.8 3 from (18O,2p2nγ), and 1428.56 25 from (n,γ) E=thermal
I(γ): from (18O,2p2nγ). Other: 36 18 from 44K β- decay
   3776.27   1119.7I(γ): weighted average of 8.3 56 from 44K β- decay and 7.7 38 from (p,p’γ)
   2619.16E(γ): others: 2619.1 5 from (n,γ) E=thermal and 2617 4 from (p,p’γ)
I(γ): from (p,p’γ). Other: 100 20 from 44K β- decay
M(γ): D+Q from (p,p’γ); Δπ=yes from level scheme
   3913.80    628.71E(γ): unweighted average of 628.9 1 from (18O,2p2nγ), 628.53 9 from (14C,α2nγ), and 628.69 10 from (n,γ) E=thermal
I(γ): weighted average of 92.1 32 from (18O,2p2nγ) and 100 11 from (14C,α2nγ)
    869.47E(γ): weighted average of 869.5 2 from (18O,2p2nγ) and 869.45 15 from (n,γ) E=thermal
I(γ): from (18O,2p2nγ)
M(γ): d, ΔJ=1 from DCO in (18O,2p2nγ); Δπ=yes from level scheme
   3922.71    637.68E(γ): weighted average of 637.8 2 from (18O,2p2nγ) and 637.63 12 from (n,γ) E=thermal
I(γ): From (n,γ) E=thermal
    878.25E(γ): weighted average of 878.4 2 from (18O,2p2nγ) and 878.10 20 from (n,γ) E=thermal
I(γ): From (n,γ) E=thermal
   1640.7E(γ): Multiply placed with undivided intensity. From (n,γ) E=thermal
I(γ): Multiply placed with undivided intensity. From (n,γ) E=thermal
   4011.4    299.5E(γ): From (n,γ) E=thermal
   4092.04    806.95E(γ): other: 807.0 3 from (18O,2p2nγ). From (n,γ) E=thermal
I(γ): from (18O,2p2nγ)
M(γ): from DCO in (18O,2p2nγ)
   1809.0E(γ): weighted average of 1809.1 4 from (18O,2p2nγ) and 1808.9 5 from (n,γ) E=thermal
I(γ): from (18O,2p2nγ). Other: 48 from (n,γ) E=thermal
M(γ): from DCO in (18O,2p2nγ)
   4196.10   3038.7E(γ): other: 3040 from (p,p’γ); not seen in (γ,γ’). From (n,γ) E=thermal
I(γ): from (p,p’γ)
   4196.1E(γ): from (γ,γ’), also seen in (p,p’γ). but this γ is not seen in (n,γ) E=thermal. It is likely a different level is populated in (n,γ) E=thermal
I(γ): from (p,p’γ).
M(γ): Q from pγ(θ) in (p,p’γ); Δπ=no from level scheme
   4358.440   1050.60E(γ): other: 1050.54 20 from (n,γ) E=thermal
   3201.26E(γ): weighted average of 3201.27 7 from 44K β- decay and 3200.1 7 from (n,γ) E=thermal
   4399.2   3242.0E(γ): other: 3242.1 7 from (n,γ) E=thermal
   4479.9   3322.8E(γ): From (n,γ) E=thermal
   4564.87    651.07E(γ): other: 651.0 3 from (18O,2p2nγ)
I(γ): from (n,γ) E=thermal, where the 651.07γ is a doubly placed with intensity not divided.
   2281.7E(γ): From (n,γ) E=thermal
I(γ): From (n,γ) E=thermal
   4584.08   1276.0E(γ): From (n,γ) E=thermal
I(γ): From (n,γ) E=thermal
   1539.40E(γ): From (n,γ) E=thermal
I(γ): From (n,γ) E=thermal
   2300.6E(γ): From (n,γ) E=thermal
I(γ): From (n,γ) E=thermal
   3427.5E(γ): From (n,γ) E=thermal
I(γ): From (n,γ) E=thermal
E(level)E(gamma)Comments
   4649.46   4649.2E(γ): from (γ,γ’)
   4650.3   1992.8E(γ): weighted average of 1992.4 5 from 44K β- decay and 1994.2 10 from (n,γ) E=thermal
   4650.1E(γ): From (n,γ) E=thermal
I(γ): from 44K β- decay. In (n,γ), Iγ(4651)/Iγ(1993)=1.43.
   4690.0   3532.9E(γ): From (n,γ) E=thermal
   4803.6   3647.2E(γ): From (n,γ) E=thermal
   4848.39   4848.1E(γ): from (γ,γ’)
   4866.09   2982.44E(γ): weighted average of 2982.47 15 from 44K β- decay and 2982.3 3 from (pol γ,γ’)
I(γ): other: 79 27 from (pol γ,γ’)
   4865.81E(γ): other: 4865.7 4 from (pol γ,γ’)
I(γ): other: 100 27 from (pol γ,γ’)
   4904.58   2248.2E(γ): From (n,γ) E=thermal
I(γ): From (n,γ) E=thermal
   3747.2E(γ): From (n,γ) E=thermal
I(γ): From (n,γ) E=thermal
   5005.69   1092.2E(γ): From (n,γ) E=thermal
I(γ): From (n,γ) E=thermal
   1648.1E(γ): From (n,γ) E=thermal
I(γ): From (n,γ) E=thermal
   2722.4E(γ): From (n,γ) E=thermal
I(γ): From (n,γ) E=thermal
   3848.9E(γ): From (n,γ) E=thermal
I(γ): From (n,γ) E=thermal
   5087.62   1802.59E(γ): from (14C,α2nγ). Others: 1802 1 from (16O,2pγ) and 1802.6 2 from (18O,2p2nγ)
M(γ): Q, ΔJ=2 from DCO in (18O,2p2nγ); M2 ruled out by RUL
   5096.87   1183.1E(γ): From (n,γ) E=thermal
   5130.22   1773.3E(γ): From (n,γ) E=thermal
I(γ): From (n,γ) E=thermal
   2846.9E(γ): weighted average of 2847.6 7 from 44K β- decay and 2846.8 3 from (n,γ) E=thermal
I(γ): From (n,γ) E=thermal
   3973.1E(γ): From (n,γ) E=thermal
I(γ): From (n,γ) E=thermal
   5161.8   5161.33E(γ): unweighted average of 5161.96 10 from 44K β- decay and 5160.7 3 from (pol γ,γ’)
   5210.0   5210M(γ): From γ(linear polarization) in (polarized γ,γ’)
   5230.33   1872.7E(γ): Multiply placed with undivided intensity. From (n,γ) E=thermal
I(γ): Multiply placed with undivided intensity. From (n,γ) E=thermal
   2186.2E(γ): From (n,γ) E=thermal
I(γ): From (n,γ) E=thermal
   2947.4E(γ): From (n,γ) E=thermal
I(γ): From (n,γ) E=thermal
   5245.19   1331.3M(γ): ΔJ=2 from DCO in (18O,2p2nγ)
   1960.2M(γ): ΔJ=1 from DCO in (18O,2p2nγ)
E(level)E(gamma)Comments
   5289.25   3006.0E(γ): From (n,γ) E=thermal
   5300.5   1588.7E(γ): From (n,γ) E=thermal
   5342.2   4185.6E(γ): From (n,γ) E=thermal
   5375.0   4217.9E(γ): From (n,γ) E=thermal
   5458.9   3176.2E(γ): From (n,γ) E=thermal
I(γ): From (n,γ) E=thermal
   4301.7E(γ): From (n,γ) E=thermal
I(γ): From (n,γ) E=thermal
   5548.68   1872.7E(γ): Multiply placed with undivided intensity. From (n,γ) E=thermal
I(γ): Multiply placed with undivided intensity. From (n,γ) E=thermal
   2891.2E(γ): From (n,γ) E=thermal
I(γ): From (n,γ) E=thermal
   3265.4E(γ): From (n,γ) E=thermal
I(γ): From (n,γ) E=thermal
   4391.5E(γ): From (n,γ) E=thermal
I(γ): From (n,γ) E=thermal
   5733.30   1640.7E(γ): Multiply placed with undivided intensity. From (n,γ) E=thermal
I(γ): Multiply placed with undivided intensity. From (n,γ) E=thermal
   2376.1E(γ): From (n,γ) E=thermal
I(γ): From (n,γ) E=thermal
   2688.7E(γ): From (n,γ) E=thermal
I(γ): From (n,γ) E=thermal
   3450.3E(γ): From (n,γ) E=thermal
I(γ): From (n,γ) E=thermal
   5775.76   2099.3E(γ): From (n,γ) E=thermal
I(γ): From (n,γ) E=thermal
   2474.9E(γ): From (n,γ) E=thermal
I(γ): From (n,γ) E=thermal
   2730.7E(γ): From (n,γ) E=thermal
I(γ): From (n,γ) E=thermal
   3120.5E(γ): From (n,γ) E=thermal
I(γ): From (n,γ) E=thermal
   3492.9E(γ): From (n,γ) E=thermal
I(γ): From (n,γ) E=thermal
   4618.0E(γ): From (n,γ) E=thermal
I(γ): From (n,γ) E=thermal
   5806.31   5805.9M(γ): From γ(linear polarization) in (polarized γ,γ’)
   5866.82   1773.3E(γ): From (n,γ) E=thermal
I(γ): From (n,γ) E=thermal
   2509.2E(γ): From (n,γ) E=thermal
I(γ): From (n,γ) E=thermal
   3583.4E(γ): From (n,γ) E=thermal
I(γ): From (n,γ) E=thermal
   5875.82   5875.4M(γ): From γ(linear polarization) in (polarized γ,γ’)
E(level)E(gamma)Comments
   6040.0   2682.8E(γ): From (n,γ) E=thermal
   6082.9   4199.5M(γ): From γ(linear polarization) in (polarized γ,γ’)
   6080.1M(γ): From γ(linear polarization) in (polarized γ,γ’)
   6136.59   6136.4M(γ): From γ(linear polarization) in (polarized γ,γ’)
   6146.14   2053.9E(γ): From (n,γ) E=thermal
I(γ): From (n,γ) E=thermal
   2223.3E(γ): From (n,γ) E=thermal
   3861.7E(γ): From (n,γ) E=thermal
I(γ): From (n,γ) E=thermal
   6211.4   2297.5E(γ): From (n,γ) E=thermal
   6422.12   4539.9M(γ): From γ(linear polarization) in (polarized γ,γ’)
   5263.8M(γ): From γ(linear polarization) in (polarized γ,γ’)
   6421.6M(γ): From γ(linear polarization) in (polarized γ,γ’)
   6446.5   6446.3M(γ): From γ(linear polarization) in (polarized γ,γ’)
   6672.92   2088.2E(γ): From (n,γ) E=thermal
I(γ): From (n,γ) E=thermal
   2896.7E(γ): From (n,γ) E=thermal
I(γ): From (n,γ) E=thermal
   3628.9E(γ): From (n,γ) E=thermal
I(γ): From (n,γ) E=thermal
   7556.58   2468.9E(γ): from (18O,2p2nγ).
   7572.0   7571.3M(γ): From γ(linear polarization) in (polarized γ,γ’)
   7578.90   7578.2M(γ): From γ(linear polarization) in (polarized γ,γ’)
   7662.1   7661.4M(γ): From γ(linear polarization) in (polarized γ,γ’)
   7783.3   7782.6M(γ): From γ(linear polarization) in (polarized γ,γ’)
   7808.9   7808.2M(γ): From γ(linear polarization) in (polarized γ,γ’)
   7834.8   7834.0M(γ): From γ(linear polarization) in (polarized γ,γ’)
   8556.7   8555.8M(γ): From γ(linear polarization) in (polarized γ,γ’)
   8615.2   8614.3M(γ): From γ(linear polarization) in (polarized γ,γ’)
   8801.9   8800.9M(γ): From γ(linear polarization) in (polarized γ,γ’)
E(level)E(gamma)Comments
   8828.0   6944.6M(γ): From γ(linear polarization) in (polarized γ,γ’)
   8826.6M(γ): From γ(linear polarization) in (polarized γ,γ’)
   8851.5   7692.9M(γ): From γ(linear polarization) in (polarized γ,γ’)
   8850.7M(γ): From γ(linear polarization) in (polarized γ,γ’)
   8908.8   8907.8M(γ): From γ(linear polarization) in (polarized γ,γ’)
   9024.1   9023.1M(γ): From γ(linear polarization) in (polarized γ,γ’)
   9148.4   9147.4M(γ): From γ(linear polarization) in (polarized γ,γ’)
   9273.6   9272.5M(γ): From γ(linear polarization) in (polarized γ,γ’)
   9317.2   9316.1M(γ): From γ(linear polarization) in (polarized γ,γ’)
   9664.9   9663.7M(γ): From γ(linear polarization) in (polarized γ,γ’)
   9788.6   2317.6E(γ): from (18O,2p2nγ)
   9814.1   9812.9M(γ): From γ(linear polarization) in (polarized γ,γ’)
   9859.5   1979.5E(γ): from (18O,2p2nγ).
   9898.2   9897.0M(γ): From γ(linear polarization) in (polarized γ,γ’)
  11131.60   4457.9E(γ): From (n,γ) E=thermal
I(γ): From (n,γ) E=thermal
   4919.9E(γ): From (n,γ) E=thermal
I(γ): From (n,γ) E=thermal
   4984.4E(γ): From (n,γ) E=thermal
I(γ): From (n,γ) E=thermal
   5091.6E(γ): From (n,γ) E=thermal
I(γ): From (n,γ) E=thermal
   5264.4E(γ): From (n,γ) E=thermal
I(γ): From (n,γ) E=thermal
   5355.7E(γ): From (n,γ) E=thermal
I(γ): From (n,γ) E=thermal
   5397.8E(γ): From (n,γ) E=thermal
I(γ): From (n,γ) E=thermal
   5582.4E(γ): From (n,γ) E=thermal
I(γ): From (n,γ) E=thermal
   5673.0E(γ): From (n,γ) E=thermal
I(γ): From (n,γ) E=thermal
   5756.3E(γ): From (n,γ) E=thermal
I(γ): From (n,γ) E=thermal
   5789.5E(γ): From (n,γ) E=thermal
I(γ): From (n,γ) E=thermal
   5831.4E(γ): From (n,γ) E=thermal
I(γ): From (n,γ) E=thermal
   5841.9E(γ): From (n,γ) E=thermal
I(γ): From (n,γ) E=thermal
   5900.9E(γ): From (n,γ) E=thermal
I(γ): From (n,γ) E=thermal
   6001.3E(γ): From (n,γ) E=thermal
I(γ): From (n,γ) E=thermal
   6034.4E(γ): From (n,γ) E=thermal
I(γ): From (n,γ) E=thermal
   6125.3E(γ): From (n,γ) E=thermal
I(γ): From (n,γ) E=thermal
   6226.7E(γ): From (n,γ) E=thermal
I(γ): From (n,γ) E=thermal
   6328.3E(γ): From (n,γ) E=thermal
I(γ): From (n,γ) E=thermal
   6441.1E(γ): From (n,γ) E=thermal
I(γ): From (n,γ) E=thermal
   6480.2E(γ): From (n,γ) E=thermal
I(γ): From (n,γ) E=thermal
   6546.6E(γ): From (n,γ) E=thermal
I(γ): From (n,γ) E=thermal
   6566.4E(γ): From (n,γ) E=thermal
I(γ): From (n,γ) E=thermal
   6651.3E(γ): From (n,γ) E=thermal
I(γ): From (n,γ) E=thermal
   6731.9E(γ): From (n,γ) E=thermal
I(γ): From (n,γ) E=thermal
   6772.3E(γ): From (n,γ) E=thermal
I(γ): From (n,γ) E=thermal
   6935.2E(γ): From (n,γ) E=thermal
I(γ): From (n,γ) E=thermal
   7119.7E(γ): From (n,γ) E=thermal
I(γ): From (n,γ) E=thermal
   7208.1E(γ): From (n,γ) E=thermal
I(γ): From (n,γ) E=thermal
   7354.2E(γ): From (n,γ) E=thermal
I(γ): From (n,γ) E=thermal
   7418.8E(γ): From (n,γ) E=thermal
I(γ): From (n,γ) E=thermal
   7454.4E(γ): From (n,γ) E=thermal
I(γ): From (n,γ) E=thermal
   7773.4E(γ): From (n,γ) E=thermal
I(γ): From (n,γ) E=thermal
   7822.3E(γ): From (n,γ) E=thermal
I(γ): From (n,γ) E=thermal
   7829.3E(γ): From (n,γ) E=thermal
I(γ): From (n,γ) E=thermal
   8086.4E(γ): From (n,γ) E=thermal
I(γ): From (n,γ) E=thermal
   8474.3E(γ): From (n,γ) E=thermal
I(γ): From (n,γ) E=thermal
   8848.0E(γ): From (n,γ) E=thermal
I(γ): From (n,γ) E=thermal
   9974.3E(γ): From (n,γ) E=thermal
I(γ): From (n,γ) E=thermal
E(level)E(gamma)Comments
  12188.1   2399.5E(γ): from (18O,2p2nγ).

Back to top