⁴⁴Sc ε decay (4.0420 h) 1990Me15,1976Co06,1983Gu11

	Hist	ory	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Jun Chen and Balraj Singh	NDS 190,1 (2023)	20-Jun-2023

Parent: ⁴⁴Sc: E=0.0; $J^{\pi}=2^+$; $T_{1/2}=4.0420$ h 25; $Q(\varepsilon)=3652.7$ 18; $\%\varepsilon+\%\beta^+$ decay=100

⁴⁴Sc-J^{π},T_{1/2}: From ⁴⁴Sc Adopted Levels.

⁴⁴Sc-Q(ε): From 2021Wa16.

1990Me15, 1976Co06: Source of ⁴⁴Sc was prepared by the (γ ,n) reactions on natural Sc at the Livermore linear accelerator or by

the (α, dxn) reaction on natural Ca metal at the Berkeley 88-inch cyclotron. γ rays were detected with a Ge(Li) detector. Measured

 $E\gamma$, $I\gamma$. Deduced levels, branching ratios, $\log ft$.

Additional information 1.

1983Gu11: Ge(Li) detectors. Measured $E\gamma$, $I\gamma$. Deduced levels, $I\beta$.

1973Si05: Activity of ⁴⁴Sc from a ⁴⁴Ti source deposited on thin mylar in a spot of 0.3 cm diameter. A 25 cm³ and a 70 cm³

Ge(Li) detectors for detecting γ -rays. Measured E γ , I γ , $\gamma\gamma$ -coin. Deduced levels, branching ratios.

Other main references: 1990Sc08, 1974HeYW.

Others:

T_{1/2}(⁴⁴Sc): 1954An25, 1950Br52, 1948Wa13, 1945Hi05, 1942Sm01, 1940Wa01.

Isotopic identification: 1937Wa07, 1937Wa04, 1937Wa05, 1937Po04, 1938Bu05, 1938Co01, 1938Ge01, 1939Bo05, 1940Wa01, 1946Bl27, 1950Br52, 1951Ba84, 1954An25, 1954Sh30, 1963Di06, 1963Kl06, 1973Si05.

β⁺: 1937Ja03, 1942Sm01, 1950Br52, 1950Cu14, 1954La40, 1955Bl23, 1958Ko92, 1934Zy01.

γ,*γγ*: 2006Va23, 1981Yu03, 1973Si05, 1973Gr28, 1972Vo03, 1972Ta36, 1971Ok03, 1970Le05, 1970Ei07, 1968Ki03, 1968Wa21, 1963Di06, 1961Mc03, 1955Bl23, 1950Br52, 1950Cu14.

 $\gamma\gamma(\theta)$: 1968Wa21, 1971Ok03.

βγ(circ pol): 1965Ma06, 1962Ma13, 1962Bl02, 1958Bo90.

 ε/β^+ : 1983Ba41 (also 1976St21).

The total released energy calculated by RADLIST is 3652.9 20, as compared with 3652.7 18 (2021Wa16), indicating completeness of the ⁴⁴Sc decay scheme.

⁴⁴Ca Levels

E(level) [‡]	$J^{\pi \dagger}$	T _{1/2} †
0.0	0^{+}	
1157.045 14	2^{+}	2.94 ps 12
2656.527 19	2^{+}	30 fs <i>3</i>
3301.47 5	2^{+}	35 fs 18
3307.941 26	3-	0.15 ps 6

[†] From the Adopted Levels.

[‡] From a least-squares fit to γ -ray energies.

ε, β^+ radiations

The log *ft* systematic trend of second-forbidden transitions suggests log *ft*>10.6 (1998Si17) for the 2⁺ to 0⁺ ε transition to ⁴⁴Ca ground state. This limit corresponds to I ε <0.005%.

E(decay)	E(level)	Iβ ⁺ ‡#	$I\varepsilon^{\#}$	$\log ft^{\ddagger}$	$\mathrm{I}(\varepsilon + \beta^+)^{\dagger \#}$	Comments
(344.8 [@] 18) (351.2 18) (996.2 18) (2495.7 18)	3307.941 3301.47 2656.527 1157.045	94.278 11	0.0011 <i>3</i> 0.0051 <i>8</i> 1.021 <i>15</i> 4.696 <i>11</i>	7.22 <i>12</i> 6.57 <i>7</i> 5.177 <i>10</i> 5.3257 22	98.974 <i>16</i>	εK=0.8976 5; εL=0.08770 33; εM+=0.01471 17 εK=0.8976 5; εL=0.08767 33; εM+=0.01471 17 εK=0.8988 5; εL=0.08665 32; εM+=0.01452 17 av Eβ=630.2 8; εK=0.0427 8; εL=0.00410 8;
(2000) 10)	110,1010	,		010207 22	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	$\varepsilon M + = 6.86 \times 10^{-4} \ 14$

⁴⁴Sc ε decay (4.0420 h) **1990Me15,1976Co06,1983Gu11** (continued)

ϵ, β^+ radiations (continued)

E(decay)	E(level)	Comments
		av E β =630.2 8; ε K=0.0427 8; ε L=0.00410 8; ε M+=6.86×10 ⁻⁴ 14 I β ⁺ : 94.27 5 from ratio ε/β^+ =0.0499 5, weighted average of 0.0499 5 (1983Ba41) and 0.0497 23

(1976St21). From the annihilation radiation intensity of 188 3 (1990Sc08) one obtains $I\beta^+(1157)=94.0\%$ 15 and $I\varepsilon(1157)=4.97\%$ 15. These values are consistent with values above but less accurate.

 † From %Iy intensity balance at each level.

[‡] Calculated using the LOGFT code.

[#] Absolute intensity per 100 decays.

[@] Existence of this branch is questionable.

				44 Sc ε d	ecay (4.0420 h)	1990Me15,	1976Co06,1983G	u11 (continued)
							γ (⁴⁴ Ca)	
I γ normalization: assuming no $\varepsilon + \beta^+$ to g.s. and $\Sigma I(\gamma + ce)(g.s.) = 100\%$.									
Eγ	I_{γ}^{\ddagger}	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Mult. [†]	δ^{\dagger}	a [#]	Comments
1157.022 15	1000 <i>3</i>	1157.045	2+	0.0	0+	E2		6.92×10 ⁻⁵ 10	$\begin{aligned} &\alpha(K) = 5.93 \times 10^{-5} \ 8; \ \alpha(L) = 5.09 \times 10^{-6} \ 7; \\ &\alpha(M) = 6.05 \times 10^{-7} \ 8 \\ &\alpha(N) = 3.43 \times 10^{-8} \ 5; \ \alpha(IPF) = 4.15 \times 10^{-6} \ 6 \\ &\% I_{Y} = 99.8867 \ 30 \\ &E_{\gamma}: \ weighted \ average \ of \ 1157.031 \ 15 \ (1990Me15), \\ &1157.015 \ 15 \ (1983Gu11), \ 1156.92 \ 15 \ (1974HeYW), \\ &1156.9 \ 6 \ (1973Si05), \ 1157.0 \ 3 \ (1970Ei07), \ 1156.6 \ 5 \\ &(1968Wa21). \\ &I_{\gamma}: \ from \ 1990Me15. \ Other: \ 1000 \ (1983Gu11), \ 1000 \ 5 \\ &(1974HeYW), \ 1000 \ 5 \ (1968Wa21). \end{aligned}$
1499.449 <i>15</i>	9.10 <i>15</i>	2656.527	2+	1157.04	5 2+	M1+E2	-0.123 17	9.68×10 ⁻⁵ 14	$\alpha(K)=2.93\times10^{-5} 4; \alpha(L)=2.508\times10^{-6} 35; \alpha(M)=2.98\times10^{-7} 4 \alpha(N)=1.695\times10^{-8} 24; \alpha(IPF)=6.47\times10^{-5} 9 \%I\gamma=0.909 15 E_{\gamma}: weighted average of 1499.489 25 (1990Me15), 1499.436 15 (1983Gu11), 1499.20 20 (1974HeYW), 1499.4 3 (1973Si05), 1499.6 6 (1970Ei07), 1499.0 5 (1968Wa21). I_{\gamma}: weighted average of 9.0 2 (1990Me15), 9.22 37 (1983Gu11), 9.0 10 (1974HeYW), 9.1 4 (1973Si05), 9.2 5 (1968Wa21), 9.12 15 (1990Sc08). \delta: values from this dataset: -0.137 17 (1968Wa21), -0.07 3 (1971Ok03)$
2144.33 10	0.037 7	3301.47	2+	1157.04	5 2+				%Iy=0.0037 7 E_y : weighted average of 2144.3 <i>I</i> (1990Me15), 2144.43 <i>20</i> (1983Gu11), 2144.8 8 (1973Si05). I _y : weighted average of 0.02 <i>2</i> (1990Me15), 0.039 7 (1973Si05). Other: 0.035 (1983Gu11). Accurate value is lacking due to large corrections to this peak from single escape of 2656.5 γ .
2150.840 [@] 22	0.011 <i>3</i>	3307.941	3-	1157.04	5 2+				%I γ =0.00110 30 E $_{\gamma}$: from ⁴⁴ K decay (1976Co06,1990Me15). I $_{\gamma}$: γ ray reported by 1976Co06 (1990Me15) only. Its existence and assignment is considered (evaluator) uncertain due to lack of confirmation in other studies of ⁴⁴ Sc decay.
2656.48 4	1.12 3	2656.527	2+	0.0	0^+	E2		0.000643 9	$\alpha(K)=1.185\times10^{-5}$ 17; $\alpha(L)=1.014\times10^{-6}$ 14;

ω

L

					⁴⁴ Sc ε decay (4.0420 h)		1990Me15,1976Co06,1983Gu11 (continued)
							$\gamma(^{44}Ca)$ (continued)
Eγ	I_{γ}^{\ddagger}	E _i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f \mathbf{J}_f^{\pi}$	Mult. [†]	α #	Comments
3301.35 6	0.014 4	3301.47	2+	0.0 0+	E2	0.000919 <i>13</i>	$\begin{split} &\alpha(\mathrm{M}) = 1.204 \times 10^{-7} \ 17 \\ &\alpha(\mathrm{N}) = 6.85 \times 10^{-9} \ 10; \ \alpha(\mathrm{IPF}) = 0.000630 \ 9 \\ &\%\mathrm{I}\gamma = 0.1119 \ 30 \\ \mathrm{E}_{\gamma}: \ \text{weighted average of } 2656.478 \ 30 \ (1990\mathrm{Me15}), \ 2656.435 \ 50 \ (1983\mathrm{Gu11}), \ 2657.14 \ 20 \\ &(1974\mathrm{He}\mathrm{Y}\mathrm{W}), \ 2656.4 \ 5 \ (1973\mathrm{Si}05), \ 2656.6 \ 6 \ (1970\mathrm{Ei}07), \ 2655.9 \ 8 \ (1968\mathrm{Wa21}). \\ \mathrm{I}_{\gamma}: \ \mathrm{weighted average of } 1.11 \ 4 \ (1990\mathrm{Me15}), \ 1.11 \ 3 \ (1983\mathrm{Gu11}), \ 1.4 \ 5 \ (1974\mathrm{He}\mathrm{Y}\mathrm{W}), \ 1.3 \\ I \ (1973\mathrm{Si}05), \ 0.9 \ I \ (1968\mathrm{Wa21}), \ 1.15 \ 6 \ 1990\mathrm{Sc}08. \\ &\alpha(\mathrm{K}) = 8.37 \times 10^{-6} \ 12; \ \alpha(\mathrm{L}) = 7.16 \times 10^{-7} \ 10; \ \alpha(\mathrm{M}) = 8.50 \times 10^{-8} \ 12 \\ &\alpha(\mathrm{N}) = 4.84 \times 10^{-9} \ 7; \ \alpha(\mathrm{IPF}) = 0.000910 \ 13 \\ &\%\mathrm{I}\gamma = 0.0014 \ 4 \\ &\mathrm{E}_{\gamma}: \ \mathrm{weighted average of } 3301.3 \ I \ (1990\mathrm{Me15}), \ 3301.361 \ 55 \ (1983\mathrm{Gu11}), \ 3301.6 \ 15 \\ &(1973\mathrm{Si}05). \\ &\mathrm{I}_{\gamma}: \ \mathrm{unweighted average of } 0.0064 \ 8 \ (1990\mathrm{Me15}), \ 0.016 \ 2 \ (1983\mathrm{Gu11}), \ 0.018 \ 3 \\ &(1973\mathrm{Si}05). \end{split}$
[†] From the	Adopted C	Gammas.				-2 -2	

[‡] For absolute intensity per 100 decays, multiply by 9.99×10⁻² 3.
[#] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ-ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.
[@] Placement of transition in the level scheme is uncertain.

4

From ENSDF

 ${}^{44}_{20}\mathrm{Ca}_{24}\text{-}4$

⁴⁴Sc ε decay (4.0420 h) 1990Me15,1976Co06,1983Gu11

Decay Scheme

⁴⁴₂₀Ca₂₄