Skip to main content
Log in

Realistic Shell Model with Chiral Interaction and Its Application to Drip-Line Predictions

  • Published:
Few-Body Systems Aims and scope Submit manuscript

Abstract

We employ the shell model with the chiral two- and three-nucleon forces. The effective Hamiltonian relevant to the valence-model space is computed microscopically. This framework is applied to the study of the neutron-drip line of the calcium isotopes. Our simulation shows that the calculated two-neutron separation energies are consistent with those of currently available experiment and \(^{70}\mathrm {Ca}\) is possibly bound, as other theoretical attempts predict.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. D.S. Ahn, N. Fukuda, H. Geissel, N. Inabe, N. Iwasa, T. Kubo, K. Kusaka, D.J. Morrissey, D. Murai, T. Nakamura, M. Ohtake, H. Otsu, H. Sato, B.M. Sherrill, Y. Shimizu, H. Suzuki, H. Takeda, O.B. Tarasov, H. Ueno, Y. Yanagisawa, K. Yoshida, Phys. Rev. Lett. 123, 212501 (2019). https://doi.org/10.1103/PhysRevLett.123.212501

    Article  ADS  Google Scholar 

  2. T. Otsuka, T. Suzuki, J.D. Holt, A. Schwenk, Y. Akaishi, Phys. Rev. Lett. 105, 032501 (2010). https://doi.org/10.1103/PhysRevLett.105.032501

    Article  ADS  Google Scholar 

  3. O.B. Tarasov, D.S. Ahn, D. Bazin, N. Fukuda, A. Gade, M. Hausmann, N. Inabe, S. Ishikawa, N. Iwasa, K. Kawata, T. Komatsubara, T. Kubo, K. Kusaka, D.J. Morrissey, M. Ohtake, H. Otsu, M. Portillo, T. Sakakibara, H. Sakurai, H. Sato, B.M. Sherrill, Y. Shimizu, A. Stolz, T. Sumikama, H. Suzuki, H. Takeda, M. Thoennessen, H. Ueno, Y. Yanagisawa, K. Yoshida, Phys. Rev. Lett. 121, 022501 (2018). https://doi.org/10.1103/PhysRevLett.121.022501

    Article  ADS  Google Scholar 

  4. R. Machleidt, D. Entem, Phys. Rep. 503(1), 1 (2011)

    Article  ADS  Google Scholar 

  5. P. Navrátil, V.G. Gueorguiev, J.P. Vary, W.E. Ormand, A. Nogga, Phys. Rev. Lett. 99, 042501 (2007). https://doi.org/10.1103/PhysRevLett.99.042501

    Article  ADS  Google Scholar 

  6. T. Fukui, L. De Angelis, Y.Z. Ma, L. Coraggio, A. Gargano, N. Itaco, F.R. Xu, Phys. Rev. C 98, 044305 (2018). https://doi.org/10.1103/PhysRevC.98.044305

    Article  ADS  Google Scholar 

  7. R. Roth, S. Binder, K. Vobig, A. Calci, J. Langhammer, P. Navrátil, Phys. Rev. Lett. 109, 052501 (2012). https://doi.org/10.1103/PhysRevLett.109.052501

    Article  ADS  Google Scholar 

  8. L. Coraggio, A. Covello, A. Gargano, N. Itaco, T. Kuo, Ann. Phys. 327(9), 2125 (2012)

    Article  ADS  Google Scholar 

  9. L. Coraggio, N. Itaco, Front. Phys. 8, 345 (2020)

    Article  Google Scholar 

  10. K. Suzuki, R. Okamoto, H. Kumagai, S. Fujii, Phys. Rev. C 83, 024304 (2011). https://doi.org/10.1103/PhysRevC.83.024304

    Article  ADS  Google Scholar 

  11. Y.Z. Ma, L. Coraggio, L. De Angelis, T. Fukui, A. Gargano, N. Itaco, F.R. Xu, Phys. Rev. C 100, 034324 (2019). https://doi.org/10.1103/PhysRevC.100.034324

    Article  ADS  Google Scholar 

  12. L. Coraggio, G. De Gregorio, A. Gargano, N. Itaco, T. Fukui, Y.Z. Ma, F.R. Xu, Phys. Rev. C 102, 054326 (2020). https://doi.org/10.1103/PhysRevC.102.054326

    Article  ADS  Google Scholar 

  13. Data extracted using the NNDC On-line Data Service from the ENSDF database. https://www.nndc.bnl.gov/ensdf

  14. P. Maris, J.P. Vary, P. Navrátil, Phys. Rev. C 87, 014327 (2013). https://doi.org/10.1103/PhysRevC.87.014327

    Article  ADS  Google Scholar 

  15. E. Caurier, P. Navrátil, W.E. Ormand, J.P. Vary, Phys. Rev. C 66, 024314 (2002). https://doi.org/10.1103/PhysRevC.66.024314

    Article  ADS  Google Scholar 

  16. Y. Kanada-Enyo, H. Morita, F. Kobayashi, Phys. Rev. C 91, 054323 (2015). https://doi.org/10.1103/PhysRevC.91.054323

    Article  ADS  Google Scholar 

  17. Q. Zhao, Z. Ren, M. Lyu, H. Horiuchi, Y. Kanada-Enyo, Y. Funaki, G. Röpke, P. Schuck, A. Tohsaki, C. Xu, T. Yamada, B. Zhou, Phys. Rev. C 100, 014306 (2019). https://doi.org/10.1103/PhysRevC.100.014306

    Article  ADS  Google Scholar 

  18. S.C. Pieper, R.B. Wiringa, Ann. Rev. Nucl. Particle Sci. 51(1), 53 (2001). https://doi.org/10.1146/annurev.nucl.51.101701.132506

    Article  ADS  Google Scholar 

  19. N. Itagaki, H. Matsuno, Y. Kanada-Enyo, Prog. Theor. Exp. Phys. 2019(6), 063D02 (2019). https://doi.org/10.1093/ptep/ptz046

    Article  Google Scholar 

  20. J.D. Holt, J. Menéndez, J. Simonis, A. Schwenk, Phys. Rev. C 90, 024312 (2014). https://doi.org/10.1103/PhysRevC.90.024312

    Article  ADS  Google Scholar 

  21. G. Audi, A. Wapstra, C. Thibault, Nucl. Phys. A 729(1), 337 (2003)

    Article  ADS  Google Scholar 

  22. F. Wienholtz, D. Beck, K. Blaum, C. Borgmann, M. Breitenfeldt, R.B. Cakirli, S. George, F. Herfurth, J.D. Holt, M. Kowalska, S. Kreim, D. Lunney, V. Manea, J. Menéndez, D. Neidherr, M. Rosenbusch, L. Schweikhard, A. Schwenk, J. Simonis, J. Stanja, R.N. Wolf, K. Zuber, Nature 498(7454), 346 (2013). https://doi.org/10.1038/nature12226

    Article  ADS  Google Scholar 

  23. S. Michimasa, M. Kobayashi, Y. Kiyokawa, S. Ota, D.S. Ahn, H. Baba, G.P.A. Berg, M. Dozono, N. Fukuda, T. Furuno, E. Ideguchi, N. Inabe, T. Kawabata, S. Kawase, K. Kisamori, K. Kobayashi, T. Kubo, Y. Kubota, C.S. Lee, M. Matsushita, H. Miya, A. Mizukami, H. Nagakura, D. Nishimura, H. Oikawa, H. Sakai, Y. Shimizu, A. Stolz, H. Suzuki, M. Takaki, H. Takeda, S. Takeuchi, H. Tokieda, T. Uesaka, K. Yako, Y. Yamaguchi, Y. Yanagisawa, R. Yokoyama, K. Yoshida, S. Shimoura, Phys. Rev. Lett. 121, 022506 (2018). https://doi.org/10.1103/PhysRevLett.121.022506

    Article  ADS  Google Scholar 

  24. M. Kortelainen, J. McDonnell, W. Nazarewicz, P.G. Reinhard, J. Sarich, N. Schunck, M.V. Stoitsov, S.M. Wild, Phys. Rev. C 85, 024304 (2012). https://doi.org/10.1103/PhysRevC.85.024304

    Article  ADS  Google Scholar 

  25. S. Goriely, N. Chamel, J.M. Pearson, Phys. Rev. C 88, 024308 (2013). https://doi.org/10.1103/PhysRevC.88.024308

    Article  ADS  Google Scholar 

  26. N. Wang, M. Liu, X. Wu, J. Meng, Phys. Lett. B 734, 215 (2014)

    Article  ADS  Google Scholar 

  27. L. Neufcourt, Y. Cao, W. Nazarewicz, E. Olsen, F. Viens, Phys. Rev. Lett. 122, 062502 (2019). https://doi.org/10.1103/PhysRevLett.122.062502

    Article  ADS  Google Scholar 

  28. S.R. Stroberg, J.D. Holt, A. Schwenk, J. Simonis, Phys. Rev. Lett. 126, 022501 (2021). https://doi.org/10.1103/PhysRevLett.126.022501

    Article  ADS  Google Scholar 

  29. Y. Ma, F. Xu, L. Coraggio, B. Hu, J. Li, T. Fukui, L. De Angelis, N. Itaco, A. Gargano, Phys. Lett. B 802, 135257 (2020)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This research was supported in part by the National Key R&D Program of China under Grant No. 2018YFA0404401, the National Natural Science Foundation of China under Grants Nos. 11921006, 11835001, and 12035001, as well as the CUSTIPEN (China-US Theory Institute for Physics with Exotic Nuclei) funded by the US Department of Energy, Office of Science under Grant No. DE-SC0009971. We acknowledge the CINECA award under the ISCRA initiative through the INFN-CINECA agreement, for the availability of high performance computing resources and support, and the High-performance Computing Platform of Peking University for providing computational resources. G. De Gregorio acknowledges the support by the funding program “VALERE” of Università degli Studi della Campania “Luigi Vanvitelli”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tokuro Fukui.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fukui, T., Coraggio, L., De Gregorio, G. et al. Realistic Shell Model with Chiral Interaction and Its Application to Drip-Line Predictions. Few-Body Syst 62, 64 (2021). https://doi.org/10.1007/s00601-021-01655-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00601-021-01655-8

Navigation