⁴²Ca(t,p) **1967Bj06**

History									
Туре	Author	Citation	Literature Cutoff Date						
Full Evaluation	Jun Chen and Balraj Singh	NDS 190,1 (2023)	20-Jun-2023						

Target $J^{\pi}(^{42}Ca \text{ g.s.})=0^+$.

1967Bj06: E=12.10 MeV triton beam was produced from the Aldermaston Tandem generator. Targets were prepared by vacuum evaporation of isotopically enriched CaCO₃ on 50 μ g/cm² backings. Protons were momentum-analyzed in a multi-angle broad-range spectrograph (FWHM=15-25 keV) and detected in photographic emulsion plates. Measured σ (E_p, θ). Deduced levels, J, π , L-transfers.

Other: 1967Ha41.

Additional information 1.

⁴⁴Ca Levels

E(level) [†]	L [†]	relative yield [†]	E(level) [†]	L [†]	relative yield [†]	E(level) [†]	L [†]	relative yield
0	0	100 5	4396 15			5646 20		3.5 2
1157 10	2	13 1	4479 15	2	5.7 3	5729 20		3.0 2
1903 20		1.2 2	4562 15		2.0 1	5864 20	0	81 4
2285 10		1.6 2	4646 15	2	26 1	6014 20		8.5 4
2655 10	2	2.6 1	4898 15			6438 20		
3044 10	4	4.9 2	4991 <i>15</i>			6578 20		
3298 [‡] 10		4.0 2	5015 15			6744 20		
3354 10		0.8 1	5222 [#] 20		13 [#] 1	6778 20		
3592 10	(0)	1.3 2	5245 [#] 20		#	6913 20		
3671 [‡] 15		1.1 2	5333 20		5.1 3	6996 20		15 <i>I</i>
4357 15			5361 20		3.6 2	7844 20		

[†] From 1967Bj06. L-transfers are deduced from comparisons of the shape of measured $\sigma(\theta)$ with those of known L-transfers of other (t,p) reactions.

[‡] Possible doublet.

[#] 5222 and 5245 are unresolved and the relative yield applies to the doublet.