## $^{36}S(^{14}C,\alpha 2n\gamma)$ 1986Wa19

History

| Type            | Author                    | Citation         | Literature Cutoff Date |  |
|-----------------|---------------------------|------------------|------------------------|--|
| Full Evaluation | Jun Chen and Balraj Singh | NDS 190,1 (2023) | 20-Jun-2023            |  |

1986Wa19: E=32 MeV  $^{14}$ C beam was produced from the Brookhaven National Laboratory (BNL) tandem Van de Graaff facility. Target was 300  $\mu$ g/cm<sup>2</sup> Ag<sub>2</sub>S (81.1%  $^{36}$ S).  $\gamma$  rays were detected with four Ge detectors. Measured E $\gamma$ , I $\gamma$ ,  $\gamma\gamma$ -coin,  $\gamma(\theta)$ , Doppler-shift attenuation. Deduced levels, J,  $\pi$ , T<sub>1/2</sub>,  $\gamma$ -ray branching ratios and mixing ratios. Comparisons with available data.

## <sup>44</sup>Ca Levels

| E(level) <sup>†</sup> | $J^{\pi \ddagger}$             | $T_{1/2}^{@}$ |
|-----------------------|--------------------------------|---------------|
| 0.0                   | 0+                             |               |
| 1157.047 <i>15</i>    | 2+                             |               |
| 2283.16 <i>4</i>      | 4+                             |               |
| 3044.39 9             | 4+                             |               |
| 3285.03 <i>5</i>      | 6 <sup>+#</sup>                |               |
| 3913.58 9             | 5-                             | >2 ps         |
| 5087.66 10            | (8 <sup>+</sup> ) <sup>#</sup> | 0.53 ps 14    |

<sup>&</sup>lt;sup>†</sup> From a least-squares fit to  $\gamma$ -ray energies.

 $\gamma$ (<sup>44</sup>Ca)

 $A_2$  and  $A_4$  values under comments are from  $\gamma(\theta)$  in 1986Wa19.

| $E_{\gamma}^{\dagger}$                           | ${\rm I}_{\gamma}{}^{\dagger}$   | $E_i(level)$        | $\mathbf{J}_i^{\pi}$             | $\mathbb{E}_f$     | $J_f^{\pi}$                      | Mult.#     | δ#                                | Comments                                                                                                                                                                                                              |
|--------------------------------------------------|----------------------------------|---------------------|----------------------------------|--------------------|----------------------------------|------------|-----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 628.53 <i>9</i><br>761.19 <i>20</i>              | 13.4 <i>14</i><br>5.01 <i>25</i> | 3913.58<br>3044.39  | 5 <sup>-</sup><br>4 <sup>+</sup> | 3285.03<br>2283.16 | 6 <sup>+</sup><br>4 <sup>+</sup> | D+Q<br>D+Q | -0.30 <i>14</i><br>-0.18 <i>8</i> | A <sub>2</sub> =+0.22 3; A <sub>4</sub> =-0.04 5<br>A <sub>2</sub> =+0.25 3; A <sub>4</sub> =+0.10 5                                                                                                                  |
| 869.19 <sup>@</sup>                              | <10                              | 3913.58             | 5-                               | 3044.39            | 4+                               | Dig        | 0.10                              | E <sub>γ</sub> : unresolved with a more intense transition from <sup>47</sup> Sc (1986Wa19); quoted value is from level-energy difference. I <sub>γ</sub> : from <9.3 7 (1986Wa19).                                   |
| 1001.850 <sup>‡</sup> 31                         | 59 12                            | 3285.03             | 6+                               | 2283.16            | 4+                               | Q(+O)      | 0.00 8                            | $A_2$ =+0.35 $I$ ; $A_4$ =-0.06 $I$<br>$E_{\gamma}$ , $I_{\gamma}$ : unresolved with a more intense transition from <sup>47</sup> Sc (1986Wa19).                                                                      |
| 1126.092 <sup>‡</sup> <i>40</i>                  | 70.0 14                          | 2283.16             | 4+                               | 1157.047           | 2+                               | Q(+O)      | 0.00 4                            | $A_2 = +0.31 I$ ; $A_4 = -0.07 I$                                                                                                                                                                                     |
| 1157.031 <sup>‡</sup> <i>15</i> 1802.59 <i>8</i> | 100 <i>3</i><br>30 <i>3</i>      | 1157.047<br>5087.66 | 2 <sup>+</sup> (8 <sup>+</sup> ) | 0.0<br>3285.03     | 0 <sup>+</sup><br>6 <sup>+</sup> | Q<br>(E2)  |                                   | A <sub>2</sub> =+0.31 $I$ ; A <sub>4</sub> =-0.05 $I$<br>A <sub>2</sub> =+0.34 $4$ ; A <sub>4</sub> =-0.05 $5$<br>Mult.: (O(+Q)) with $\delta$ =+0.01 $6$ from $\gamma(\theta)$ in 1986Wa19; M2, M3 ruled out by RUL. |
| 1887.45 20                                       | 4.28 21                          | 3044.39             | 4+                               | 1157.047           | 2+                               | Q(+O)      | -0.04 22                          | $A_2 = +0.32 \ 7; \ A_4 = -0.23 \ 7$                                                                                                                                                                                  |

<sup>&</sup>lt;sup>†</sup> From 1986Wa19, unless otherwise noted. Original intensity values have been re-normalized by the evaluators relative to  $I_{\gamma}$ =100 for 1157 $\gamma$ .

<sup>‡</sup> From the Adopted Levels, unless otherwise noted.

<sup>#</sup> Proposed in 1986Wa19.

<sup>&</sup>lt;sup>@</sup> From DSAM in 1986Wa19.

<sup>&</sup>lt;sup>‡</sup> Quoted in 1986Wa19 as taken from 1978MeZK.

<sup>&</sup>lt;sup>#</sup> From  $\gamma(\theta)$  in 1986Wa19, unless otherwise noted.

<sup>&</sup>lt;sup>®</sup> Placement of transition in the level scheme is uncertain.

