NSR Query Results

Output year order : Descending
Format : Normal

NSR database version of April 11, 2024.

Search: Author = W.L.Sun

Found 39 matches.

Back to query form

2024CH15      Chin.Phys.C 48, 014101 (2024)

W.Chen, D.Pang, H.Guo, T.Ye, W.Sun, Y.Ying

Elastic scattering and total reaction cross sections of 6Li examined via a microscopic continuum discretized coupled-channels model

NUCLEAR REACTIONS 27Al, 64Zn, 138Ba, 208Pb(6Li, 6Li), (6Li, X) E<50 MeV; analyzed available data; deduced σ, σ(θ) at incident energies around the Coulomb barrier within the continuum discretized coupled-channels (CDCC) framework.

doi: 10.1088/1674-1137/ad0453
Citations: PlumX Metrics

2023CH28      Phys.Rev. C 107, 064610 (2023)

W.Chen, D.Y.Pang, H.Guo, Y.Tao, W.Sun, Y.J.Ying

Continuum-discretized coupled-channels calculations for 6Li fusion reactions with closed channels

NUCLEAR REACTIONS 28Si(6Li, X), E(cm)=4-20 MeV;64Ni(6Li, X), E(cm)=11-25 MeV;144Sm(6Li, X), E(cm)=19-37 MeV;209Bi(6Li, X), E=28-48 MeV; calculated total and complete fusion σ(E), partial-wave fusion σ for J up to 30. 2H(α, α), E(cm)<8 MeV; calculated scattering phase-shift. 6Li(e, e'), E not given; calculated charge form factors. Continuum-discretized coupled-channels method. Comparison to available experimental data.

doi: 10.1103/PhysRevC.107.064610
Citations: PlumX Metrics

2023WA17      Phys.Lett. B 843, 138034 (2023)

W.Wang, C.Lv, X.Zhang, C.Fu, B.Guo, H.Cai, L.Chen, L.Cheng, C.He, J.He, L.Li, X.Xi, D.Yuan, G.Zhang, W.Sun, Z.Zhang, J.Zhang, Y.Ma

First measurement of the 7Li(D, n) astrophysical S-factor in laser-induced full plasma

NUCLEAR REACTIONS 7Li(d, n), E(cm)<0.7 MeV; measured reaction products, En, In; deduced neutron yields, neutron groups, astrophysical S-factor. The Shenguang-II laser facility, the National Laboratory on High Power Lasers and Physics, Shanghai, China.

doi: 10.1016/j.physletb.2023.138034
Citations: PlumX Metrics

2023ZH37      Phys.Rev. C 108, 024310 (2023)

X.Y.Zhang, Z.M.Niu, W.Sun, X.W.Xia

Nuclear charge radii and shape evolution of Kr and Sr isotopes with the deformed relativistic Hartree-Bogoliubov theory in continuum

NUCLEAR STRUCTURE 70,72,74,76,78,80,82,84,86,88,90,92,94,96,98,100,102,104,106,108,110,112,114,116,118,120,122,124,126,128,130,132,134Kr, 78,80,82,84,86,88,90,92,94,96,98,100,102,104,106,108,110,112,114,116,118,120,122,124,126,128,130,132,134,136,138,140,142,144Sr; calculated binding energy, two-neutron separation energy S(2n), charge radii, quadrupole deformation parameters, potential energy curves. 100Sn; calculated wave function, charge radii as a function of quadrupole deformation parameter. Deformed relativistic Hartree-Bogoliubov theory in continuum (DRHBc) calculations and DRHBc extended to go beyond mean-field framework by performing a two-dimensional collective Hamiltonian (2DCH). Comparison to experimental data.

doi: 10.1103/PhysRevC.108.024310
Citations: PlumX Metrics

2022CH45      J.Phys.(London) G49, 075104 (2022)

W.Chen, H.Guo, T.Ye, Y.-J.Ying, W.Sun, Y.Han

Application of the Lagrange-mesh method in continuum-discretized coupled-channel calculations

NUCLEAR REACTIONS 58Ni(d, X), E=80 MeV; 12C(6Li, X), E=168.6, 178 MeV; 59Co(6Li, X), E=12, 17.4, 18 MeV; analyzed available data; calculated the bound states and discretize the continuum states of weakly bound nuclei using the continuum-discretized coupled-channel (CDCC) method.

doi: 10.1088/1361-6471/ac7249
Citations: PlumX Metrics

2022GU01      Nucl.Sci.Eng. 196, 40 (2022)

H.Guo, W.Chen, Y.Han, X.Sun, T.Ye, W.Sun

Theoretical Calculations and Evaluations of Neutron-Induced Reactions on 121Sb, 123Sb, and Natural Sb

NUCLEAR REACTIONS 121,123Sb(n, X), Sb(n, n), (n, X), E<20 MeV; calculated σ, σ(θ). Comparison with CENDL-3, JENDL-4 libraries, experimental data.

doi: 10.1080/00295639.2021.1940067
Citations: PlumX Metrics

2022LI28      Few-Body Systems 63, 43 (2022)

W.P.Liu, Z.H.Li, J.J.He, X.D.Tang, G.Lian, J.Su, Y.P.Shen, Z.An, F.Q.Chao, J.J.Chang, L.H.Chen, H.Chen, X.J.Chen, Y.H.Chen, Z.J.Chen, B.Q.Cui, X.C.Du, X.Fang, C.B.Fu, L.Gan, B.Guo, Z.Y.Han, X.Y.Guo, G.Z.He, J.R.He, A.Heger, S.Q.Hou, H.X.Huang, N.Huang, B.L.Jia, L.Y.Jiang, S.Kubono, J.M.Li, M.C.Li, K.A.Li, E.T.Li, T.Li, Y.J.Li, M.Lugaro, X.B.Luo, H.Y.Ma, S.B.Ma, D.M.Mei, W.Nan, W.K.Nan, N.C.Qi, Y.Z.Qian, J.C.Qin, J.Ren, C.S.Shang, L.T.Sun, W.L.Sun, W.P.Tan, I.Tanihata, S.Wang, P.Wang, Y.B.Wang, Q.Wu, S.W.Xu, S.Q.Yan, L.T.Yang, Y.Yang, X.Q.Yu, Q.Yue, S.Zeng, L.Zhang, H.Zhang, H.Y.Zhang, L.Y.Zhang, N.T.Zhang, P.Zhang, Q.W.Zhang, T.Zhang, X.P.Zhang, X.Z.Zhang, W.Zhao, J.F.Zhou, Y.Zho

Progress of Underground Nuclear Astrophysics Experiment JUNA in China

NUCLEAR REACTIONS 12C(α, γ), 13C(α, n), 25Mg(p, γ), 19F(p, α), E(cm)<600 keV; measured reaction products; deduced yields near the Gamow window. Comparison with available data.

doi: 10.1007/s00601-022-01735-3
Citations: PlumX Metrics

2022LV04      Phys.Rev. C 105, 044319 (2022)

B.F.Lv, C.M.Petrache, K.K.Zheng, Z.H.Zhang, W.Sun, Z.P.Li, X.T.He, J.Zhang, A.Astier, P.Greenlees, T.Grahn, R.Julin, S.Juutinen, M.Luoma, J.Ojala, J.Pakarinen, J.Partanen, P.Rahkila, P.Ruotsalainen, M.Sandzelius, J.Saren, H.Tann, J.Uusitalo, G.Zimba, B.Cederwall, O.Aktas, A.Ertoprak, W.Zhang, S.Guo, M.L.Liu, H.J.Ong, Z.Y.Sun, J.G.Wang, X.H.Zhou, I.Kuti, B.M.Nyako, D.Sohler, J.Timar, C.Andreoiu, M.Doncel, D.T.Joss, R.D.Page

Refined description of the positive-parity bands and the extent of octupole correlations in 120Ba

NUCLEAR REACTIONS 58Ni(64Zn, 2p), E=255 MeV; measured Eγ, Iγ, γγγ-coin, γγ-coin, γ(θ). 120Ba; deduced levels, J, π, DCO ratios, two-point angular correlation (anisotropy) ratios, multipolarity, B(E1), B(E2), B(E3), high-spin states, bands, configurations, alignments, moments of inertia. Comparison with unpaired cranked shell model (CNS), particle number conserving cranked shell-model (PNC-CSM), and Quadrupole and Octupole Collective Hamiltonian based on the Relativistic Hartree-Bogoliubov Model calculations (QOCH-RHB). Systematics of B(E1)/B(E2) of 7- and 9- states in even-even Xe and Ba (A=116-124). JUROGAM3 array and MARA at K130 cyclotron (JYFL).

doi: 10.1103/PhysRevC.105.044319
Citations: PlumX Metrics

Data from this article have been entered in the XUNDL database. For more information, click here.

2022SU16      Chin.Phys.C 46, 064103 (2022)

W.Sun, K.-Y.Zhang, C.Pan, X.-H.Fan, S.-Q.Zhang, Z.-P.Li

Beyond-mean-field dynamical correlations for nuclear mass table in deformed relativistic Hartree-Bogoliubov theory in continuum

NUCLEAR STRUCTURE 120,122,124,126,128,130,132,134,136,138,140,142,144,146,148,150,152,154,156,158,160,162,164,166,168,170,172,174,176,178,180,182,184,186,188,190,192,194,196,198,200,202,204,206,208,210,212,214,216,218,220Nd, 62,64,66,68,70,72,74,76,78,80,82,84,86,88,90,92,94,96,98,100,102,104,106,108,110,112,114,116,118,120,122Se, 210,212,214,216,218,220,222,224,226,228,230,232,234,236,238,240,242,244,246,248,250,252,254,256,258,260,262,264,266,268,270,272,274,276,278,280,282,284,286,288,290,292,294,296,298,300,302,304,306,308,310,312,314,316,318,320,322,324,326,328,330,332,334,336,338,340,342,344,346,348,350Th; calculated dynamical correlation and rotational correction energies obtained from the cranking approximation, two-neutron seperation energies using the deformed relativistic Hartree-Bogoliubov theory in continuum (DRHBc) with the dynamical correlation energies (DCEs).

doi: 10.1088/1674-1137/ac53fa
Citations: PlumX Metrics

2022ZH67      Phys.Rev. C 106, 055803 (2022)

L.Y.Zhang, J.Su, J.J.He, R.J.deBoer, D.Kahl, M.Wiescher, D.Odell, Y.J.Chen, X.Y.Li, J.G.Wang, L.Zhang, F.Q.Cao, H.Zhang, Z.C.Zhang, T.Y.Jiao, Y.D.Sheng, L.H.Wang, L.Y.Song, X.Z.Jiang, Z.M.Li, E.T.Li, S.Wang, G.Lian, Z.H.Li, B.Guo, X.D.Tang, L.T.Sun, Q.Wu, J.Q.Li, B.Q.Cui, L.H.Chen, R.G.Ma, N.C.Qi, W.L.Sun, X.Y.Guo, P.Zhang, Y.H.Chen, Y.Zhou, J.F.Zhou, J.R.He, C.S.Shang, M.C.Li, J.P.Cheng, W.P.Liu

Direct measurement of the astrophysical 19F(p, αγ)16O reaction in a deep-underground laboratory

NUCLEAR REACTIONS 19F(p, αγ), E(cm)=72.4-344 keV; measured Eγ, Iγ; deduced astrophysical S-factor, thermonuclear astrophysical reaction rates (range 0.05–1 GK), contributions from different channels. R-matrix analysis with AZURE2 together with a MCMC Bayesian uncertainty estimation. Comparison to other experimental data. 4π BGO γ-array with proton beam from JUNA accelerator at China JinPing underground Laboratory (CJPL).

doi: 10.1103/PhysRevC.106.055803
Citations: PlumX Metrics

Data from this article have been entered in the XUNDL database. For more information, click here.

2021GU15      Ann.Nucl.Energy 158, 108248 (2021)

H.Guo, W.Chen, T.Ye, W.Sun, Y.Han, C.Cai

Theoretical calculation of n+235U reaction

NUCLEAR REACTIONS 235U(n, X)1NN/1H/2H/3H/3He/4He, E<150 MeV; calculated particle emission and γ-ray production σ, σ(θ), σ(θ, E). Comparison with ENDF/B-VIII.0 and JENDL-4.0 evaluated libraries.

doi: 10.1016/j.anucene.2021.108248
Citations: PlumX Metrics

2021PA29      Phys.Rev. C 104, 024331 (2021)

C.Pan, K.Y.Zhang, P.S.Chong, C.Heo, M.C.Ho, J.Lee, Z.P.Li, W.Sun, C.K.Tam, S.H.Wong, R.W.-Y.Yeung, T.C.Yiu, S.Q.Zhang

Possible bound nuclei beyond the two-neutron drip line in the 50 ≤ Z ≤ 70 region

NUCLEAR STRUCTURE 180,182,184,186,188,190,192,194,196,198,200Ba, 220,222,224,226,228,230,232,234,236Sm, 230,232,234,236,238,240,242,244Gd, 242,244,246,248,250,252,254Dy; calculated total energies, neutron Fermi energies, quadrupole deformation parameters β2. 182,184,186,188,190,192,194,196,198Ba, 224,226,228,230,232,234Sm; calculated single-neutron levels around the neutron Fermi energy, pairing energies as function of neutron number. 188Ba; estimated multi-neutron emission and the corresponding half-lives for 4n and 6n emissions as functions of the decay energy. Deformed relativistic Hartree-Bogoliubov in continuum (DRHBc) calculations with density functional PC-PK1. 192,194,196Ba, 192,194,196,198,200,202,204,206,208Ce, 232Sm, 238,240Gd, 250Dy; predicted as bound nuclei beyond the neutron drip line, forming peninsulas of stability in the nuclear landscape.

doi: 10.1103/PhysRevC.104.024331
Citations: PlumX Metrics

2021SU11      Appl.Radiat.Isot. 174, 109752 (2021)

W.Sun, W.Qiu, J.Su

Production of high-energy neutrons by interaction of a deuteron beam with matter

NUCLEAR REACTIONS 12C, 208Pb(p, n), E=256 MeV; 12C(d, n), E=100 MeV; analyzed available data; calculated neutron products σ(θ, E) by the IQMD model.

doi: 10.1016/j.apradiso.2021.109752
Citations: PlumX Metrics

2021ZH36      J.Phys.(London) G48, 075101 (2021)

X.Zhao, W.Sun, E.Sh.Soukhovitskii, D.S.Martyanov, J.M.Quesada, R.Capote

Nucleon scattering analysis with a lane-consistent dispersive optical potential for Hf, W and Ta isotopes

NUCLEAR REACTIONS 182,184,186W, 178,180Hf, 181Ta(n, X), (n, n), (n, n'), E<200 MeV; calculated σ, σ(θ); deduced optical model parameters. Comparison with experimental data.

doi: 10.1088/1361-6471/abe280
Citations: PlumX Metrics

2021ZH53      Phys.Rev.Lett. 127, 152702 (2021)

L.Y.Zhang, J.Su, J.J.He, M.Wiescher, R.J.deBoer, D.Kahl, Y.J.Chen, X.Y.Li, J.G.Wang, L.Zhang, F.Q.Cao, H.Zhang, Z.C.Zhang, T.Y.Jiao, Y.D.Sheng, L.H.Wang, L.Y.Song, X.Z.Jiang, Z.M.Li, E.T.Li, S.Wang, G.Lian, Z.H.Li, X.D.Tang, H.W.Zhao, L.T.Sun, Q.Wu, J.Q.Li, B.Q.Cui, L.H.Chen, R.G.Ma, B.Guo, S.W.Xu, J.Y.Li, N.C.Qi, W.L.Sun, X.Y.Guo, P.Zhang, Y.H.Chen, Y.Zhou, J.F.Zhou, J.R.He, C.S.Shang, M.C.Li, X.H.Zhou, Y.H.Zhang, F.S.Zhang, Z.G.Hu, H.S.Xu, J.P.Chen, W.P.Liu

Direct Measurement of the Astrophysical 19F(p, αγ)16O Reaction in the Deepest Operational Underground Laboratory

NUCLEAR REACTIONS 19F(p, α), E(cm)=72.4-188.8 keV; measured reaction products, Eγ, Iγ; deduced yields, S-factors, reaction rates. The China Jinping Underground Laboratory (CJPL), JUNA accelerator.

doi: 10.1103/physrevlett.127.152702
Citations: PlumX Metrics

2020CH17      Chin.Phys.C 44, 054109 (2020)

W.-D.Chen, H.-R.Guo, W.-L.Sun, T.Ye, Y.-J.Ying, Y.-L.Han, Q.B.Shen

Microscopic study of 7Li-nucleus potential

NUCLEAR REACTIONS 58Ni, 27Al, 65Cu, 89Y, 116Sn, 138Ba, 208Pb, 28Si, 13C(7Li, 7Li), E<300 MeV; analyzed available data. 7Li; calculated σ.

doi: 10.1088/1674-1137/44/5/054109
Citations: PlumX Metrics

2020CH49      J.Phys.(London) G47, 025106 (2020)

W.Chen, H.Guo, W.Sun, T.Ye, Y.J.Ying, Y.Han, Q.Shen

Microscopic optical potential for 7Li

NUCLEAR REACTIONS 40,44,48Ca, 56Fe, 60,62Ni, 64,68Zn, 90Zr, 46,48Ti, 140Ce, 142Nd, 28Si, 80Se, 120Sn, 144Sm, 208Pb(7Li, X), E<100 MeV; calculated σ(θ), σ. Comparison with available data.

doi: 10.1088/1361-6471/ab52d3
Citations: PlumX Metrics

2020GU07      Ann.Nucl.Energy 142, 107363 (2020)

H.Guo, W.Chen, T.Ye, W.Sun, Y.Han, C.Cai

Theoretical calculation and evaluation of N + 237, 241, 243, 245Pu reactions

NUCLEAR REACTIONS 237Pu(n, F), 241Pu(n, X), (n, γ), (n, F), Pu(n, X), (n, n'), (n, 2n), E<20 MeV; calculated σ using the optical model, distorted wave Born approximation theory, Hauser-Feshbach theory with width fluctuation correction, fission model, evaporation model, exciton model and the intranuclear cascade model. Comparison with ENDF/B-VIII, JENDL-4.0/HE and TENDL libraries.

doi: 10.1016/j.anucene.2020.107363
Citations: PlumX Metrics

2020RE11      Phys.Rev. C 102, 034604 (2020)

Z.Ren, Y.Yang, J.Wen, H.Guo, Z.Wen, R.Liu, Z.Han, W.Sun, X.Liu, Q.Chen, T.Ye, Q.An, H.Bai, J.Bao, P.Cao, Y.Chen, P.Cheng, Z.Cui, R.Fan, C.Feng, M.Gu, F.Guo, C.Han, G.He, Y.He, Y.He, H.Huang, W.Huang, X.Huang, X.Ji, X.Ji, H.Jiang, W.Jiang, H.Jing, L.Kang, M.Kang, B.Li, L.Li, Q.Li, X.Li, Y.Li, Y.Li, S.Liu, G.Luan, Y.Ma, C.Ning, B.Qi, J.Ren, X.Ruan, Z.Song, H.Sun, X.Sun, Z.Sun, Z.Tan, H.Tang, J.Tang, P.Wang, Q.Wang, T.Wang, Y.Wang, Z.Wang, Z.Wang, Q.Wu, X.Wu, X.Wu, L.Xie, H.Yi, L.Yu, T.Yu, Y.Yu, G.Zhang, J.Zhang, L.Zhang, L.Zhang, Q.Zhang, Q.Zhang, X.Zhang, Y.Zhang, Z.Zhang, Y.Zhao, L.Zhou, Z.Zhou, D.Zhu, K.Zhu, P.Zhu

Measurement of the 236U(n, f) cross section for neutron energies from 0.4 MeV to 40 MeV from the back-streaming white neutron beam at the China Spallation Neutron Source

NUCLEAR REACTIONS 235,236U(n, F), E AP 0.4-40 MeV beam from the China Spallation Neutron Source (CSNS)-Back-streaming white neutron source (WNS); measured fission fragments, energy spectra, time-of-flight using Fast Ionization Chamber Spectrometer; deduced 236U(n, F)/235U(n, F) cross section ratios. Comparison with theoretical calculation using the UNF code, and with evaluated data in JENDL-4.0, CENDL-3.1, and ENDF/B-VIII.0 libraries.

doi: 10.1103/PhysRevC.102.034604
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 dataset32811.

2020ZH21      Phys.Rev. C 101, 064618 (2020)

X.Zhao, W.Sun, R.Capote, E.Sh.Soukhovitskih, D.S.Martyanov, J.M.Quesada

Dispersive optical model description of nucleon scattering on Pb and Bi isotopes

NUCLEAR REACTIONS 208Pb(n, X), E=6-16 MeV; 206,207,208Pb, 209Bi(n, X), E=0.3-200 MeV; calculated total reactions σ(E). 206Pb(n, n), E=2.53, 4.6, 8, 11.01, 13.7, 21.6 MeV; 207Pb(n, n), E=1.47, 2.02, 2.53, 3.04, 3.56, 13.7 MeV; 209Bi(n, n), E=3.99, 5.5, 7.5, 11, 20, 24 MeV; 209Bi(p, p), E=16, 38.7, 55, 57, 65, 153 MeV; calculated elastic scattering differential σ(E, θ). 208Pb(polarized n, n), E=5.969, 6.967, 7.962, 8.958, 9.95, 13.9 MeV; 208Pb(p, p), E=16, 65, 79.8, 98, 160, 182 MeV; 209Bi(n, n), E=3, 3.5, 4, 4.5, 6, 9 MeV; 209Bi(p, p), E=10.76, 12.96, 16, 65, 78, 153 MeV; calculated analyzing power Ay(E, θ). 208Pb(p, n), E=25.8, 35, 45 MeV; 206Pb(p, n), E=25.8 MeV; 209Bi(p, n), E=27 MeV; calculated quasielastic differential σ(E, θ). Modified dispersive optical model potential (DOMP). Comparison with experimental data, and with other theoretical calculations. 208Pb; calculated neutron single-particle energies, spectroscopic factors of valence-neutron-particle states and valence-neutron-hole states. Comparison with experimental data for energies, and with other theoretical calculations.

doi: 10.1103/PhysRevC.101.064618
Citations: PlumX Metrics

2019SU20      Yuan.Wul.Ping. 36, 144 (2019); Nucl.Phys.Rev. 36, 144 (2019)

W.Sun, S.Quan, J.Xiang, Z.Li

Beyond-mean-field Study of Octupole Shape Evolution in Neutron-deficient Ba Isotopes

NUCLEAR STRUCTURE 114,116,118,120,122,124Ba; calculated binding energies, J, π, potential energy surfaces to study octupole deformation and shape transition using a quadrupole-octupole collective Hamiltonian model.

doi: 10.11804/NuclPhysRev.36.02.144
Citations: PlumX Metrics

2019SU22      Phys.Rev. C 100, 044319 (2019)

W.Sun, S.Quan, Z.P.Li, J.Zhao, T.Niksic, D.Vretenar

Microscopic core-quasiparticle coupling model for spectroscopy of odd-mass nuclei with octupole correlations

NUCLEAR STRUCTURE 222,224,226,228Ra; calculated levels, J, π, B(E2), B(E3), relativistic Hartree-Bogoliubov (RHB) deformation energy surfaces in (β2, β3) plane. 223,225,227Ra; calculated levels, J, π, bands, B(E1), B(E2), B(E3), octupole correlations, probabilities of the dominant configurations in wave functions using microscopic core-quasiparticle coupling (CQC) model based on covariant density functional theory. Comparison with experimental data.

doi: 10.1103/PhysRevC.100.044319
Citations: PlumX Metrics

2019ZH56      J.Phys.(London) G46, 055103 (2019)

X.Zhao, W.Sun, E.S.Soukhovitskii, D.S.Martyanov, J.M.Quesada, R.Capote

Analysis of neutron bound states of 208Pb by a dispersive optical model potential

NUCLEAR REACTIONS 208Pb(n, X), (n, n), E<100 MeV; analyzed available data. 208Pb; calculated energy levels, J, π using Bear-Hodgon(BH) and Woods-Saxon potentials, rms radii of valence neutron particle and hole states, σ, σ(θ) using the real dispersive optical model potential for nucleon scattering; deduced optical model parameters.

doi: 10.1088/1361-6471/ab0010
Citations: PlumX Metrics

2017GU11      Nucl.Sci.Eng. 186, 156 (2017)

H.Guo, Y.Xu, Y.Han, Q.Shen, T.Ye, W.Sun

Calculation and Evaluation for the n+51V Reaction

NUCLEAR REACTIONS 51V(n, n), E<300 MeV; calculated σ, σ(E), σ(θ), σ(θ, E). Optical model, distorted wave Born approximation theory, Hauser-Feshbach theory, evaporation model, exciton model, and intranuclear cascade model, comparison with the experimental data and the evaluated results in ENDF/B-VII.1 and JENDL-4 libraries.

doi: 10.1080/00295639.2016.1273008
Citations: PlumX Metrics

2017GU15      Ann.Nucl.Energy 108, 151 (2017)

H.Guo, Y.Han, T.Ye, W.Sun, C.Cai

Theoretical analysis and evaluation for neutron-induced reaction on 239Pu

NUCLEAR REACTIONS 239Pu(n, X), (n, n), (n, n'), E<200 MeV; calculated σ, σ(θ, E). Comparison with ENDF/B-VII, JENDL-4 libraries, experimental data.

doi: 10.1016/j.anucene.2017.04.043
Citations: PlumX Metrics

2015SU06      J.Phys.(London) B48, 125201 (2015)

W.Sun, Q.Wang, Y.Zhang, H.Li, H.Feng, Q.Fan

Predicting differential cross sections of electron scattering from polyatomic molecules

NUCLEAR REACTIONS N, H, O, C, F, I(E, E), E<50 eV; calculated σ(θ). Comparison with available data.

doi: 10.1088/0953-4075/48/12/125201
Citations: PlumX Metrics

2014SU13      Nucl.Data Sheets 118, 191 (2014)

W.Sun, R.Li, E.S.Soukhovitskii, J.M.Quesada, R.Capote

A Fully Lane-consistent Dispersive Optical Model Potential for Even Fe Isotopes Based on a Soft-rotator Model

NUCLEAR REACTIONS 54,56Fe(n, n), E=0-20 MeV; calculated σ using DCCOM (Lane-consistent dispersive CC optical model); deduced optical model parameters. Cross sections compared to data. 54Fe(n, n'), E=9.9-16.9 MeV;54Fe(p, p'), E=10.0=40.0 MeV;56Fe(n, n'), E=9.993 MeV;56Fe(p, p'), E=17.2-65.0 MeV; calculated analyzing power to discrete states. Compared to data.

NUCLEAR STRUCTURE 54,58Fe; calculated collective levels, J, π using soft rotator model. Compared with data.

doi: 10.1016/j.nds.2014.04.034
Citations: PlumX Metrics

2014YE05      Nucl.Data Sheets 118, 582 (2014)

T.Ye, W.Sun, L.Deng, R.She, G.Xiao

Prompt Neutron Decay Constants of Reflected Systems

doi: 10.1016/j.nds.2014.04.141
Citations: PlumX Metrics

2013LI22      Phys.Rev. C 87, 054611 (2013)

R.Li, W.Sun, E.Sh.Soukhovitskih, J.M.Quesada, R.Capote

Dispersive coupled-channels optical-model potential with soft-rotator couplings for Cr, Fe, and Ni isotopes

NUCLEAR REACTIONS 52Cr, 54,56,58Fe, 59,60,62Ni(n, X), E=0.1-200 MeV; calculated total cross sections and compared with measurements. 54Fe(n, n), E=7.0, 7.96, 8.5, 9.94, 11.0, 11.93, 13.92, 14.7, 16.93, 20.0, 22.0, 24.0, 26.0 MeV; 54Fe(n, n'), E=13.92, 16.93, 20.0, 22.0, 24.0, 26.0 MeV; 56Fe(n, n), E=7.96, 9.94, 11.0, 11.93, 14.0, 14.7, 20.0, 26.0, 55.0, 65.0, 96.0 MeV; 56Fe(n, n'), E=7.96, 9.94, 11.0, 11.93, 13.92, 15.20, 21.1, 26.0 MeV; 54Fe(p, p), E=19.6, 20.4, 24.6, 28.8, 30.4, 35.2, 38.8, 39.7, 40.0, 61.5, 65.0 MeV; 54Fe(p, p'), E=17.9, 18.6, 30.4, 39.7, 40.0, 61.5, 65.0 MeV; 56Fe(p, p), E=7.74, 10.93, 17.2, 19.1, 20.4, 24.6, 30.3, 35.2, 39.8, 61.5, 65.0, 156.0 MeV; 56Fe(p, p'), E=17.2, 19.1, 61.5, 65.0 MeV; 58Fe(p, p), E=6.0, 10.93, 11.66, 22.2, 35.2 MeV; 58Fe(p, p'), E=10.93, 11.66, 17.5, 49.35 MeV; calculated differential σ(θ) and compared with experimental data. 52Cr, 54,56,58Fe, 59,60,62Ni(p, p'), E=1-200 MeV; calculated inelastic cross sections and compared with measurements. 52Cr(p, n), E=17.3, 18.0, 120.0 MeV; 54Fe(p, n), E=23.0, 35.0, 135.0 MeV; 56Fe(p, n), E=17.0, 23.0, 35.2 MeV; 58Fe(p, n), E=23.0, 120.0 MeV; 58Ni(p, n), E=23.0, 32.0, 35.0 MeV; 62Ni(p, n), E=16.0, 22.8, 35.0 MeV; calculated σ(θ) for transition exciting IAS and EAS. 54Fe(polarized p, p), E=10.0, 14.0, 18.6, 30.4, 40.0, 65.0 MeV; 56Fe(polarized p, p), E=5.77, 14.0, 18.6, 24.6, 30.3, 65.0, 179.0 MeV; 58Fe(polarized p, p), E=5.85, 6.51, 14.0, 14.5 MeV; 58Ni(polarized p, p), E=20.9, 30.3, 40.0, 65.0, 172.0 MeV; 54Fe(polarized n, n), (polarized n, n'), E=9.941, 13.9, 13.94, 16.93 MeV; 56Fe(polarized n, n), (polarized n, n'), E=9.993 MeV; 57Fe(polarized p, p), E=5.88, 6.15, 6.51, 14.0 MeV; 58Fe(polarized n, n), E=9.92, 13.91, 16.93 MeV; 54Fe(polarized p, p'), E=10.0, 18.6, 30.4, 40.0 MeV; 56Fe(polarized p, p'), E=17.2, 18.6, 20.4, 24.6, 65.0, 179.0 MeV; 58Ni(polarized p, p'), E=20.4, 24.6, 40.0, 57.5, 60.2, 178.0 MeV; calculated analyzing powers and compared with experimental data, and with TALYS calculations, including DWBA. Derived approximate Lane-consistent dispersive coupled-channels optical potential.

NUCLEAR STRUCTURE 54,56,58Fe; analyzed levels, J, π; assigned soft-rotor model (SRM) quantum numbers and Hamiltonian parameters. Coupled-channels optical model analysis using matrix elements derived by the soft-rotator model.

doi: 10.1103/PhysRevC.87.054611
Citations: PlumX Metrics

2011SU22      J.Korean Phys.Soc. 59, 947s (2011)

W.L.Sun, Z.H.Hu, J.Wang

A Semi-microscopic Proton Optical Potential for the Mass Range of A = 28 - 90 up to 200 MeV

NUCLEAR REACTIONS 32S(p, p), E=15.0, 17.0, 17.5, 19.0, 20.1, 23.0, 25.0, 53 MeV;40Ca(p, p), E=18.07, 30.3, 40.0, 61.4, 65.0, 80.0, 135.0, 152.0, 156.0, 160.0, 201.4 MeV;90Zr(p, p), E=7.97, 12.70, 16.0, 2.50, 40.0, 65.0, 80.0, 100.4, 156.0, 160.0, 185 MeV; calculated σ(θ). 58Ni(p, p), E=16.0, 18.6, 20.4, 24.6, 30.3, 40.0, 65.0, 178.0, 192.0 MeV;90Zr(p, p), E=9.7, 16.0, 40.0, 65.0, 79.6, 134.8, 160.0, 185 MeV; calculated analyzing power. One-body density matrix introduced into single folding model. Comparison to data, JLM and Koning-Delaroche models.

doi: 10.3938/jkps.59.947
Citations: PlumX Metrics

2011SU24      J.Korean Phys.Soc. 59, 1088s (2011)

W.L.Sun, Z.P.Chen, Y.F.Lin

Evaluations of Neutron Data for T and 3He with R-Matrix Method

NUCLEAR REACTIONS 3H, 3He(n, n), (n, d), (p, p);3H(p, n);3He(p, 2p), (p, 2pn), (n, d), (n, p), (n, np), (n, 2np), (n, γ), E=0-40 MeV; calculated, evaluated σ, σ(θ), covariance matrices using R-matrix; deduced R-matrix parameters.

doi: 10.3938/jkps.59.1088
Citations: PlumX Metrics

2011WA36      Chin.Phys.Lett. 28, 112401 (2011)

J.Wang, T.Ye, W.-L.Sun, Y.Watanabe, K.Ogata

Inclusive Proton Energy Spectra of the Deuteron Induced Reaction

NUCLEAR REACTIONS 58Ni(d, xn), (d, xp), E<80 MeV; calculated σ(E), σ(θ, E). Coupled channel method combined with Glauber model, comparison with experimental data.

doi: 10.1088/0256-307X/28/11/112401
Citations: PlumX Metrics

2009OU03      Chin.Phys.Lett. 26, 052501 (2009)

L.Ou, Z.-X.Li, X.-Z.Wu, W.-L.Sun

Disentangling the Effects of Thickness of the Neutron Skin and Symmetry Potential in Nucleon Induced Reactions on Sn Isotopes

NUCLEAR REACTIONS 112Sn, 132Sn, 112Cd, 132Ba(n, X), E=100 MeV; 112Sn, 132Sn, 112Cd, 132Ba(p, X), E=100 MeV; calculated σ for target nuclei with normal and enlarged neutron skin. Improved molecular dynamics model.

doi: 10.1088/0256-307X/26/5/052501
Citations: PlumX Metrics

2008HA28      J.Phys.(London) G35, 095103 (2008)

L.Hao, W.Sun, E.Sh.Soukhovitskii

A global dispersive coupled-channel potential for the A = 24-122 mass range up to 200 MeV

NUCLEAR REACTIONS 24Mg, 28Si, 32S, 40Ca, 48Ti, 52Cr, 56Fe, 58Ni, 90Zr, 98Mo, 120Sn(n, X), E=1 keV-200 MeV; 28Si, 40Ca, 56Fe, 90Zr, 120Sn(p, X), E=1 keV-200 MeV; analyzed σ, σ(θ), analyzing power Ay(θ); deduced global optical model parameters; dispersive coupled channel optical model approach.

doi: 10.1088/0954-3899/35/9/095103
Citations: PlumX Metrics

2006ZO01      Phys.Rev. C 73, 035206 (2006)

H.Zong, Y.Shi, W.Sun, J.Ping

Modified approach for calculating axial vector vacuum susceptibility

doi: 10.1103/PhysRevC.73.035206
Citations: PlumX Metrics

2003SU31      J.Nucl.Sci.Technol.(Tokyo) 40, 635 (2003)

W.Sun, Y.Watanabe, E.Sh.Sukhovitskii, O.Iwamoto, S.Chiba

Coupled-Channels Analysis of Nucleon Interaction Data of 28, 30Si up to 200 MeV Based on the Soft Rotator Model

NUCLEAR REACTIONS 28Si(n, n), (n, n'), (p, p), (p, p'), E=14-180 MeV; 30Si(p, p'), E=52 MeV; calculated σ(θ). 28Si(p, X), E=5-200 MeV; calculated reaction σ. Soft rotator model, coupled-channels approach, comparison with data.

NUCLEAR STRUCTURE 28,30Si; calculated levels, J, π. Soft rotator model.

doi: 10.1080/18811248.2003.9715401
Citations: PlumX Metrics

1999OG12      Phys.Rev. C60, 054605 (1999); Erratum Phys.Rev. C63, 019902 (2001)

K.Ogata, M.Kawai, Y.Watanabe, W.Sun, M.Kohno

Theoretical Modification on Semiclassical Distorted Wave Model and Its Application to the Study of Spin Observables

NUCLEAR REACTIONS 90Zr(p, p'X), (p, nX), E=160 MeV; 58Ni(p, p'X), E=80 MeV; calculated σ(E, θ), spin observables. Extended semiclassical distorted wave model, comparisons with data.

doi: 10.1103/PhysRevC.60.054605
Citations: PlumX Metrics

1999SU15      Phys.Rev. C60, 064605 (1999); Erratum Phys.Rev. C63, 019903 (2001)

W.Sun, Y.Watanabe, M.Kohno, K.Ogata, M.Kawai

Semiclassical Distorted Wave Model with Wigner Transform of One-Body Density Matrix

NUCLEAR REACTIONS 90Zr(p, p'X), E=80, 160 MeV; calculated σ(E, θ); deduced target nucleon momentum effects. Semiclassical distorted wave model, finite range single particle potential. Comparison with data, other models.

doi: 10.1103/PhysRevC.60.064605
Citations: PlumX Metrics

1999WA07      Phys.Rev. C59, 2136 (1999); Erratum Phys.Rev. C63, 019901 (2001)

Y.Watanabe, R.Kuwata, W.Sun, M.Higashi, H.Shinohara, M.Kohno, K.Ogata, M.Kawai

Semiclassical Distorted Wave Model Analysis of Multistep Direct (p, p'x) and (p, nx) Reactions to the Continuum

NUCLEAR REACTIONS 90Zr(p, p'X), (p, nX), E=80, 120, 160 MeV; 58Ni(p, p'X), E=65, 120 MeV; 209Bi(p, p'X), E=62 MeV; calculated σ(E, θ); deduced role of three-step processes. Extended semiclassical distorted wave model. Comparison with data, other models.

doi: 10.1103/PhysRevC.59.2136
Citations: PlumX Metrics

Back to query form

Note: The following list of authors and aliases matches the search parameter W.L.Sun: , W.L.SUN