NSR Query Results


Output year order : Descending
Format : Normal

NSR database version of April 11, 2024.

Search: Author = L.Geng

Found 53 matches.

Back to query form



2024ZE02      Phys.Rev. C 109, 034318 (2024)

L.-X.Zeng, Y.-Y.Yin, X.-X.Dong, L.-Sh.Geng

Nuclear binding energies in artificial neural networks

doi: 10.1103/PhysRevC.109.034318
Citations: PlumX Metrics


2024ZH13      Chin.Phys.C 48, 014107 (2024)

R.-Y.Zheng, X.-X.Sun, G.-f.Shen, L.-Sh.Geng

Evolution of N = 20, 28, 50 shell closures in the 20≤Z≤30 region in deformed relativistic Hartree-Bogoliubov theory in continuum

NUCLEAR STRUCTURE Z=20-30; calculated charge radii, two-neutron separation energies, two-neutron gaps, quadrupole deformations, and single-particle levels with the deformed relativistic Hartree-Bogoliubov theory in continuum (DRHBc) with the density functional PC-PK1. Comparison with available data.

doi: 10.1088/1674-1137/ad0bf2
Citations: PlumX Metrics


2023DO02      Phys.Lett. B 838, 137726 (2023)

X.-X.Dong, R.An, J.-X.Lu, L.-S.Geng

Nuclear charge radii in Bayesian neural networks revisited

NUCLEAR STRUCTURE Z>19; analyzed available data; deduced nuclear charge radii using a refined Bayesian neural network (BNN) based approach with six inputs including the proton number, mass number, and engineered features associated with the pairing effect, shell effect, isospin effect, and "abnormal" shape staggering effect of mercury nuclei.

doi: 10.1016/j.physletb.2023.137726
Citations: PlumX Metrics


2023XI09      Phys.Lett. B 845, 138160 (2023)

Y.Xiao, S.-Z.Xu, R.-Y.Zheng, X.-X.Sun, L.-S.Geng, S.-S.Zhang

One-proton emission from 148-151Lu in the DRHBc+WKB approach

RADIOACTIVITY 148,149,150,151Lu(p); analyzed available data; deduced proton-nucleus potential from the deformed relativistic Hartree-Bogoliubov theory in continuum (DRHBc), oblate deformation, T1/2, the DRHBc + WKB approach provides a new alternative method to evaluate the half-lives of well-deformed proton emitters.

doi: 10.1016/j.physletb.2023.138160
Citations: PlumX Metrics


2022AN12      Chin.Phys.C 46, 054101 (2022)

R.An, S.-S.Zhang, L.-S.Geng, F.-S.Zhang

Charge radii of potassium isotopes in the RMF (BCS)* approach

NUCLEAR STRUCTURE 37,38,39,40,41,42,43,44,45,46,47,48,49,50,51K; calculated odd-even staggerings of binding energies, and charge radii of potassium isotopes. Comparison with available data.

doi: 10.1088/1674-1137/ac4b5c
Citations: PlumX Metrics


2022DO01      Phys.Rev. C 105, 014308 (2022)

X.-X.Dong, R.An, J.-X.Lu, L.-S.Geng

Novel Bayesian neural network based approach for nuclear charge radii

NUCLEAR STRUCTURE 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55Ca, 32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55K; calculated charge radii by the Nerlo-Pomorska and Pomorski (NP) formula, D2 and D4 models, and compared with the experimental data; deduced strong odd-even staggerings. Novel approach combining a three-parameter formula and Bayesian neural network for charge radii.

doi: 10.1103/PhysRevC.105.014308
Citations: PlumX Metrics


2022SO01      Phys.Rev. C 105, 035203 (2022)

J.Song, Z.-W.Liu, K.-W.Li, L.-S.Geng

Test of the hyperon-nucleon interaction within leading order covariant chiral effective field theory

NUCLEAR REACTIONS 1H(Σ-, nΛ), (Σ-, nΣ0), (Σ-, pΣ-), (Λ, pΛ), 1NN(Σ+, pΛ), (Σ+, pΣ0), (Σ+, nΣ+), E=100-900 MeV/c; 1H(Λ, nΣ+), pΣ0 E=600-900 MeV/c; calculated σ(E), σ(θ). Leading order covariant chiral effective field theory. Comparison to available experimental data and other theoretical predictions.

doi: 10.1103/PhysRevC.105.035203
Citations: PlumX Metrics


2022WA04      Phys.Rev. C 105, 014003 (2022)

C.-X.Wang, J.-X.Lu, Y.Xiao, L.-S.Geng

Nonperturbative two-pion exchange contributions to the nucleon-nucleon interaction in covariant baryon chiral perturbation theory

doi: 10.1103/PhysRevC.105.014003
Citations: PlumX Metrics


2021LI13      Phys.Rev. C 103, 025201 (2021)

Z.-W.Liu, J.Song, K.-W.Li, L.-S.Geng

Strangeness S = -3 ands S = -4 baryon-baryon interactions in relativistic chiral effective field theory

doi: 10.1103/PhysRevC.103.025201
Citations: PlumX Metrics


2021RE09      Chin.Phys.Lett. 38, 062101 (2021)

X.-L.Ren, C.-X.Wang, K.-W.Li, L.-S.Geng, J.Meng

Relativistic Chiral Description of the 1S0 Nucleon-Nucleon Scattering

doi: 10.1088/0256-307X/38/6/062101
Citations: PlumX Metrics


2020AN13      Phys.Rev. C 102, 024307 (2020)

R.An, L.-S.Geng, S.-S.Zhang

Novel ansatz for charge radii in density functional theories

NUCLEAR STRUCTURE 16,17,18,19,20,21,22,23,24,25,26,27O, 17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36Ne, 19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40Mg, 36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54Ca, 46,47,48,49,50,51,52,53,54,55,56,57,58,59,60Cr, 55,56,57,58,59,60,61,62,63,64,65,66,67,68Ni, 69,70,71,72,73,74,75,76,77,78,79,80,81,82Ge, 84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110Zr, 100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134Cd, 100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138Sn, 179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222Pb; calculated rms charge radii, odd-even staggering in the binding energies using the relativistic mean field model (RMF) with the pairing interaction treated by BCS method, and by adding a correction term, proportional to the number of Cooper pairs. Comparison to available experimental data, and with other theoretical calculations.

doi: 10.1103/PhysRevC.102.024307
Citations: PlumX Metrics


2020ME11      Phys.Rev. C 102, 064322 (2020)

X.Meng, S.Zhang, L.Guo, L.Geng, L.Cao

Isospin-density-dependent pairing from infinite nuclear matter to finite nuclei

ATOMIC MASSES Z=20, A=34-58; Z=28, A=48-80; Z=40, A=76-112; Z=50, A=98-140; calculated odd-even mass (OEM) staggering as a function of mass number using Skyrme Hartree-Fock plus BCS method (SHF+BCS) with the SkP force, and compared with other types of isovector and isoscalar effective pairing interactions. Comparison with and experimental data.

doi: 10.1103/PhysRevC.102.064322
Citations: PlumX Metrics


2020MO27      Eur.Phys.J. A 56, 173 (2020)

R.Molina, L.R.Dai, L.S.Geng, E.Oset

J/ψ decay into φ(w) and vector-vector molecular states

doi: 10.1140/epja/s10050-020-00176-y
Citations: PlumX Metrics


2020SO23      Phys.Rev. C 102, 065208 (2020)

J.Song, Y.Xiao, Z.-W.Liu, C.-X.Wang, K.-W.Li, L.-S.Geng

ΛcN interaction in leading-order covariant chiral effective field theory

doi: 10.1103/PhysRevC.102.065208
Citations: PlumX Metrics


2020XI06      Phys.Rev. C 102, 054001 (2020)

Y.Xiao, C.-X.Wang, J.-X.Lu, L.-S.Geng

Two-pion exchange contributions to the nucleon-nucleon interaction in covariant baryon chiral perturbation theory

doi: 10.1103/PhysRevC.102.054001
Citations: PlumX Metrics


2019NI10      Chin.Phys.C 43, 113001 (2019)

K.Ni, Y.Lai, A.Abdukerim, W.Chen, X.Chen, Y.Chen, X.Cui, Y.Fan, D.Fang, C.Fu, L.Geng, K.Giboni, F.Giuliani, L.Gu, X.Guo, K.Han, C.He, D.Huang, Y.Huang, Y.Huang, Z.Huang, P.Ji, X.Ji, Y.Ju, K.Liang, H.Liu, J.Liu, W.Ma, Y.Ma, Y.Mao, Y.Meng, P.Namwongsa, J.Ning, X.Ning, X.Ren, C.Shang, L.Si, A.Tan, A.Wang, H.Wang, M.Wang, Q.Wang, S.Wang, X.Wang, Z.Wang, M.Wu, S.Wu, J.Xia, M.Xiao, P.Xie, B.Yan, J.Yang, Y.Yang, C.Yu, J.Yuan, D.Zhang, H.Zhang, T.Zhang, L.Zhao, Q.Zheng, J.Zhou, N.Zhou, X.Zhou

Searching for neutrino-less double beta decay of 136Xe with PandaX-II liquid xenon detector

RADIOACTIVITY 136Xe(2β-); measured decay products, Eβ, Iβ; deduced T1/2 and Majorana neutrino mass limits. Comparison with available data.

doi: 10.1088/1674-1137/43/11/113001
Citations: PlumX Metrics

Data from this article have been entered in the XUNDL database. For more information, click here.


2019XI02      Phys.Rev. C 99, 024004 (2019)

Y.Xiao, L.-S.Geng, X.-L.Ren

Covariant nucleon-nucleon contact Lagrangian up to order O(q4)

doi: 10.1103/PhysRevC.99.024004
Citations: PlumX Metrics


2018LI66      Phys.Rev. C 98, 065203 (2018)

K.-W.Li, T.Hyodo, L.-S.Geng

Strangeness S = -2 baryon-baryon interactions in relativistic chiral effective field theory

doi: 10.1103/PhysRevC.98.065203
Citations: PlumX Metrics


2018SO10      Phys.Rev. C 97, 065201 (2018)

J.Song, K.-W.Li, L.-S.Geng

Strangeness S = -1 hyperon-nucleon interactions: Chiral effective field theory versus lattice QCD

doi: 10.1103/PhysRevC.97.065201
Citations: PlumX Metrics


2016CH26      Phys.Rev. C 93, 065203 (2016)

H.-X.Chen, L.-S.Geng, W.-H.Liang, E.Oset, E.Wang, J.-J.Xie

Looking for a hidden-charm pentaquark state with strangeness S = -1 from Ξ-b decay into J/ψ K-Λ

doi: 10.1103/PhysRevC.93.065203
Citations: PlumX Metrics


2016OS01      Nucl.Phys. A954, 371 (2016)

E.Oset, H.-X.Chen, A.Feijoo, L.-S.Geng, W.-H.Liang, D.-M.Li, J.-X.Lu, V.K.Magas, J.Nieves, A.Ramos, L.Roca, E.Wang, J.-J.Xie

Study of reactions disclosing hidden charm pentaquarks with or without strangeness

doi: 10.1016/j.nuclphysa.2016.04.038
Citations: PlumX Metrics


2016XI02      Phys.Rev. C 93, 025202 (2016)

J.-J.Xie, E.Oset, L.-S.Geng

Photoproduction of the f'2(1525), a2(1320) and k*2(1430)

doi: 10.1103/PhysRevC.93.025202
Citations: PlumX Metrics


2014NI07      Eur.Phys.J. A 50, 57 (2014)

F.Aceti, L.R.Dai, L.S.Geng, E.Oset, Y.Zhang

Meson-baryon components in the states of the baryon decuplet

doi: 10.1140/epja/i2014-14057-2
Citations: PlumX Metrics


2014RE10      Eur.Phys.J. A 50, 133 (2014)

X.-L.Ren, L.-S.Geng, E.Oset, J.Meng

Tes of h1(1830) made of K*K*-bar with the ηc → φK*K*-bar decay

doi: 10.1140/epja/i2014-14133-7
Citations: PlumX Metrics


2014XI07      Phys.Rev. C 90, 048201 (2014)

J.-J.Xie, L.-S.Geng, X.-R.Chen

The p-bar p → φφ reaction in an effective Lagrangian approach

doi: 10.1103/PhysRevC.90.048201
Citations: PlumX Metrics


2010GE03      Eur.Phys.J. A 44, 305 (2010)

L.S.Geng, F.K.Guo, C.Hanhart, R.Molina, E.Oset, B.S.Zou

Study of the f2(1270), f2'(1525), f0(1370) and f0(1710) in the J/ψ radiative decays

doi: 10.1140/epja/i2010-10971-5
Citations: PlumX Metrics


2010MA70      Nucl.Phys. A835, 337c (2010)

J.Martin Camalich, L.S.Geng, L.Alvarez-Ruso, M.J.Vicente Vacas

Properties of hyperons in chiral perturbation theory

doi: 10.1016/j.nuclphysa.2010.01.213
Citations: PlumX Metrics


2009GE03      Phys.Rev. C 79, 025203 (2009)

L.S.Geng, E.Oset, B.S.Zou, M.Doring

Role of the N*(1535) in the J/ψ → p(bar)ηp and J/ψ → p(bar)K+ Λ reactions

doi: 10.1103/PhysRevC.79.025203
Citations: PlumX Metrics


2009GE05      Eur.Phys.J. A 39, 81 (2009)

L.S.Geng, E.Oset, J.R.Pelaez, L.Roca

Nature of the axial-vector mesons from their Nc behavior within the chiral unitary approach

doi: 10.1140/epja/i2008-10689-y
Citations: PlumX Metrics


2009OS02      Nucl.Phys. A827, 255c (2009)

E.Oset, L.S.Geng, D.Gamermann, R.Molina, D.Nicmorus, J.Yamagata-Sekihara, H.Nagahiro, S.Hirenzaki, D.Jido, M.Doring, A.Ramos

Meson and Baryon resonances

doi: 10.1016/j.nuclphysa.2009.05.050
Citations: PlumX Metrics


2008GE06      Eur.Phys.J. A 38, 239 (2008)

L.S.Geng, E.Oset, B.S.Zou

Testing the nature of the Λ(1520) in the J\ψ → Λ-barK-p and J\ψ → Λ-barπ+π-Λ reactions

doi: 10.1140/epja/i2008-10673-7
Citations: PlumX Metrics


2008SU16      Phys.Rev. C 78, 025806 (2008)

B.Sun, F.Montes, L.S.Geng, H.Geissel, Yu.A.Litvinov, J.Meng

Application of the relativistic mean-field mass model to the r-process and the influence of mass uncertainties

NUCLEAR STRUCTURE A=60-220, Z=30-90; calculated one-neutron separation energies, neutron shell gaps, solar r-process abundances. Relativistic mean-field mass model.

doi: 10.1103/PhysRevC.78.025806
Citations: PlumX Metrics


2007AL33      Phys.Rev. C 75, 055501 (2007); Erratum Phys.Rev. C 80, 019906 (2009)

L.Alvarez-Ruso, L.S.Geng, S.Hirenzaki, M.J.Vicente Vacas

Charged current neutrino-induced coherent pion production

NUCLEAR REACTIONS 12C(ν, X), E< 2 GeV; calculated cross sections, σ, and momentum distributions for coherent pion production.

doi: 10.1103/PhysRevC.75.055501
Citations: PlumX Metrics


2007AL54      Phys.Rev. C 76, 068501 (2007); Erratum Phys.Rev. C 80, 029904 (2009)

L.Alvarez-Ruso, L.S.Geng, M.J.Vicente Vacas

Neutral current coherent pion production

NUCLEAR REACTIONS 12C, 27Al, 56Fe(ν, νπ0), E=0.3-2.4 GeV; calculated neutral colored pion production cross sections.

doi: 10.1103/PhysRevC.76.068501
Citations: PlumX Metrics


2007BA82      Eur.Phys.J. Special Topics 150, 139 (2007)

S.F.Ban, L.S.Geng, W.H.Long, J.Meng, J.Peng, J.M.Yao, S.Q.Zhang, S.G.Zhou

Structure of nuclei far from the stability in relativistic approach

doi: 10.1140/epjst/e2007-00288-2
Citations: PlumX Metrics


2007GE08      Chin.Phys.Lett. 24, 1865 (2007)

Li.-S.Geng, J.Meng, H.Toki

Reflection Asymmetric Relativistic Mean Field Approach and Its Application to the Octupole Deformed Nucleus 226Ra

NUCLEAR STRUCTURE 226Ra; calculated binding energy, neutron and proton density distributions, deformation parameters using a reflection asymmetric relativistic mean field approach.

doi: 10.1088/0256-307X/24/7/021
Citations: PlumX Metrics


2007GE09      Eur.Phys.J. A 32, 201 (2007)

L.S.Geng, E.Oset, M.Doring

The radiative decay of the Δ(1405) and its two-pole structure

doi: 10.1140/epja/i2007-10371-0
Citations: PlumX Metrics


2007GE13      Eur.Phys.J. A 34, 405 (2007)

L.S.Geng, E.Oset

The role of the Λ(1405) in the pp → pK+Λ(1405) reaction

doi: 10.1140/epja/i2008-10518-5
Citations: PlumX Metrics


2007LU05      Eur.Phys.J. A 31, 273 (2007)

H.F.Lu, L.S.Geng, J.Meng

Constrained relativistic mean-field approach with fixed configurations

NUCLEAR STRUCTURE 208Pb; calculated single-particle energies vs deformation, potential energy surfaces. Constrained relativistic mean-field approach, comparison of diabatic and adiabatic calculations.

doi: 10.1140/epja/i2006-10224-4
Citations: PlumX Metrics


2006BA71      Int.J.Mod.Phys. E15, 1447 (2006)

S.F.Ban, L.S.Geng, L.Liu, W.H.Long, J.Meng, J.Peng, J.M.Yao, S.Q.Zhang, S.G.Zhou

Recent progress in relativistic many-body approach

doi: 10.1142/S0218301306005010
Citations: PlumX Metrics


2006GE03      J.Phys.(London) G32, 573 (2006)

L.S.Geng, H.Toki, E.G.Zhao

The stability and the shape of the heaviest nuclei

NUCLEAR STRUCTURE Z=101-120; calculated binding energies, deformation parameters. Relativistic mean-field model, comparison with other models.

doi: 10.1088/0954-3899/32/4/013
Citations: PlumX Metrics


2006GE07      Chin.Phys.Lett. 23, 1139 (2006)

L.-S.Geng, J.Meng, H.Toki, W.-H.Long, G.Shen

Spurious Shell Closures in the Relativistic Mean Field Model

NUCLEAR STRUCTURE 132Sn, 140Ce, 208Pb, 218U; analyzed binding energies, related data; deduced spurious shell closures in relativistic mean field model.

doi: 10.1088/0256-307X/23/5/021
Citations: PlumX Metrics


2006LU16      Chin.Phys.Lett. 23, 2940 (2006)

H.-F.Lu, L.-S.Geng, J.Meng

Fission Barrier for 240Pu in the Quadrupole Constrained Relativistic Mean Field Approach

NUCLEAR STRUCTURE 240Pu; calculated potential energy surfaces, fission barrier features, correction for center-of-mass motion.

doi: 10.1088/0256-307X/23/11/016
Citations: PlumX Metrics


2006ME11      Prog.Part.Nucl.Phys. 57, 470 (2006)

J.Meng, H.Toki, S.G.Zhou, S.Q.Zhang, W.H.Long, L.S.Geng

Relativistic continuum Hartree Bogoliubov theory for ground-state properties of exotic nuclei

doi: 10.1016/j.ppnp.2005.06.001
Citations: PlumX Metrics


2005GE04      Prog.Theor.Phys.(Kyoto) 113, 785 (2005)

L.Geng, H.Toki, J.Meng

Masses, Deformations and Charge Radii -- Nuclear Ground-State Properties in the Relativistic Mean Field Model

NUCLEAR STRUCTURE Z=8-100; calculated binding energies, radii, deformations. Relativistic mean field model.

doi: 10.1143/PTP.113.785
Citations: PlumX Metrics


2005ME14      Eur.Phys.J. A 25, 23 (2005)

J.Meng, W.Zhang, S.G.Zhou, H.Toki, L.S.Geng

Shape evolution for Sm isotopes in relativistic mean-field theory

NUCLEAR STRUCTURE 144,146,148,150,152,154,156,158Sm; calculated potential energy vs deformation, single-particle level energies. Relativistic mean-field theory, several effective interactions compared.

doi: 10.1140/epja/i2005-10066-6
Citations: PlumX Metrics


2005ZH12      Nucl.Phys. A753, 106 (2005)

W.Zhang, J.Meng, S.Q.Zhang, L.S.Geng, H.Toki

Magic numbers for superheavy nuclei in relativistic continuum Hartree-Bogoliubov theory

NUCLEAR STRUCTURE Z=100-140; calculated two-particle separation energies, pair gap energies, α-decay T1/2; deduced shell closure features. 292,304,318,348,358,378120; calculated binding energy and shell correction energy vs deformation. Relativistic continuum Hartree-Bogoliubov theory.

doi: 10.1016/j.nuclphysa.2005.02.086
Citations: PlumX Metrics


2004GE02      Nucl.Phys. A730, 80 (2004)

L.S.Geng, H.Toki, A.Ozawa, J.Meng

Proton and neutron skins of light nuclei within the relativistic mean field theory

NUCLEAR STRUCTURE 16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34Ne, 18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37Na, 28,29,30,31,32,33,34,35,36,37,38,39,40,41Cl, 29,30,31,32,33,34,35,36,37,38,39,40,41Ar; calculated binding energies, radii, deformation parameters, neutron and proton separation energies. Deformed relativistic mean field.

doi: 10.1016/j.nuclphysa.2003.10.014
Citations: PlumX Metrics


2004GE16      Prog.Theor.Phys.(Kyoto) 112, 603 (2004)

L.Geng, H.Toki, J.Meng

Proton-Rich Nuclei at and beyond the Proton Drip Line in the Relativistic Mean Field Theory

NUCLEAR STRUCTURE 149,150,151,152,153,154Lu, 155,156,157,158Ta, 140,141Ho, 145,146,147Tm, 130,131Eu, 135,136Tb, 119,120Pr, 124,125Pm, 111,112,113Cs, 115,116,117La; calculated proton separation energy, deformation. Relativistic mean-field approach, comparisons with data.

doi: 10.1143/PTP.112.603
Citations: PlumX Metrics


2004GE17      J.Phys.(London) G30, 1915 (2004)

L.S.Geng, H.Toki, J.Meng

A systematic study of neutron magic nuclei with N = 8, 20, 28, 50, 82 and 126 in the relativistic mean-field theory

NUCLEAR STRUCTURE Z=2-98; calculated binding energies, one- and two-proton separation energies, radii, deformation parameters for N=8, 20, 28, 50, 82, 126 nuclides. Relativistic mean-field approach, comparisons with data.

doi: 10.1088/0954-3899/30/12/011
Citations: PlumX Metrics


2003GE09      Phys.Rev. C 68, 061303 (2003)

L.S.Geng, H.Toki, J.Meng

α-decay chains of 288173115 and 287172115 in the relativistic mean field theory

NUCLEAR STRUCTURE 287,288Mc, 283,284Nh, 279,280Rg, 275,276Mt, 271,272Bh, 267,268Db; calculated binding energies, deformations, Qα, α-decay T1/2. Relativistic mean-field theory, comparison with data.

doi: 10.1103/PhysRevC.68.061303
Citations: PlumX Metrics


2003GE10      Prog.Theor.Phys.(Kyoto) 110, 921 (2003)

L.Geng, H.Toki, S.Sugimoto, J.Meng

Relativistic Mean Field Theory for Deformed Nuclei with Pairing Correlations

NUCLEAR STRUCTURE 78,80,82,84,86,88,90,92,94,96,98,100,102,104,106,108,110,112,114,116,118,120,122,124,126,128,130,132,134,136,138,140Zr; calculated binding energies, radii, quadrupole deformation, pairing effects. Relativistic mean field approach.

doi: 10.1143/PTP.110.921
Citations: PlumX Metrics


2003SA53      Phys.Rev. C 68, 054323 (2003)

N.Sandulescu, L.S.Geng, H.Toki, G.C.Hillhouse

Pairing correlations and resonant states in the relativistic mean field theory

NUCLEAR STRUCTURE 120,122,124,126,128,130,132,134,136,138Zr; calculated single-particle energies, pairing energies, radii, resonant continuum coupling effects. Relativistic mean field theory.

doi: 10.1103/PhysRevC.68.054323
Citations: PlumX Metrics


Back to query form


Note: The following list of authors and aliases matches the search parameter L.Geng: , L.S.GENG