NSR Query Results


Output year order : Descending
Format : Normal

NSR database version of April 27, 2024.

Search: Author = H.Liang

Found 92 matches.

Back to query form



2024NA07      Nuovo Cim. C 47, 52 (2024)

T.Naito, G.Colo, T.Hatsuda, H.Liang, X.Roca-Maza, H.Sagawa

Possible inconsistency between phenomenological and theoretical determinations of charge symmetry breaking in nuclear energy density functionals

NUCLEAR STRUCTURE 10Be, 10C; calculated mass difference with the Green's function Monte Carlo (GFMC) with the Argonne v18 (AV18) and Urbana X (UX) interactions.

doi: 10.1393/ncc/i2024-24052-9
Citations: PlumX Metrics


2024XI05      Phys.Rev. C 109, 034309 (2024)

H.Xie, J.Li, H.Liang

Extraction of higher-order radial moments of nuclear charge density from muonic atom spectroscopy

doi: 10.1103/PhysRevC.109.034309
Citations: PlumX Metrics


2024YI03      Chin.Phys.C 48, 024102 (2024)

T.Ch.Yiu, H.Liang, J.Lee

Nuclear mass predictions based on a deep neural network and finite-range droplet model (2012)

NUCLEAR STRUCTURE N=65-105; analyzed available data; deduced atomic masses using a neural network with two hidden layers for nuclear mass prediction, based on the finite-range droplet model (FRDM12).

doi: 10.1088/1674-1137/ad021c
Citations: PlumX Metrics


2023HO11      Phys.Rev. C 108, 054312 (2023)

D.S.Hou, A.Takamine, M.Rosenbusch, W.D.Xian, S.Iimura, S.D.Chen, M.Wada, H.Ishiyama, P.Schury, Z.M.Niu, H.Z.Liang, S.X.Yan, P.Doornenbal, Y.Hirayama, Y.Ito, S.Kimura, T.M.Kojima, W.Korten, J.Lee, J.J.Liu, Z.Liu, S.Michimasa, H.Miyatake, J.Y.Moon, S.Naimi, S.Nishimura, T.Niwase, T.Sonoda, D.Suzuki, Y.X.Watanabe, K.Wimmer, H.Wollnik

First direct mass measurement for neutron-rich 112Mo with the new ZD-MRTOF mass spectrograph system

doi: 10.1103/PhysRevC.108.054312
Citations: PlumX Metrics


2023NA16      Phys.Rev. C 107, 064302 (2023)

T.Naito, G.Colo, H.Liang, X.Roca-Maza, H.Sagawa

Effects of Coulomb and isospin symmetry breaking interactions on neutron-skin thickness

NUCLEAR STRUCTURE 16O, 40,48Ca, 48Ni, 208Pb; calculated neutron-skin-thickness. 40,48Ca; calculated charge radii difference between 40Ca and 48Ca. 48Ca, 48Ni; calculated mass difference of mirror nuclei.Investigated the influence of the corrections to the Hartree-Fock-Slater approximation by the Coulomb interaction and charge-symmetry breaking term originating from the strong interaction. Comparison to experimental values.

doi: 10.1103/PhysRevC.107.064302
Citations: PlumX Metrics


2023NI11      Nucl.Instrum.Methods Phys.Res. A1057, 168703 (2023)

M.Niu, Z.Long, R.Fan, W.Jiang, J.Liu, Q.Xiu, R.Xu, H.Wang, Zh.Zhou, K.Sun, Zh.Zhang, H.Zhang, H.Yi, Y.Chen, D.Wang, X.Xia, H.Liang

Research on the performance of a diamond detector for the cross-section measurements at CSNS Back-n

NUCLEAR REACTIONS 12C, 6Li(n, α), 12C(n, n'), E=0.00001-100 MeV; measured reaction products, En, In, TOF; deduced the bi-parametric contour plot facilitated the identification of event bands in a bi-parameter experiment (neutron time of flight and deposited energy). Comparison with MATLAB simulations. The Back-n white neutron facility located within the China Spallation Neutron Source (CSNS).

doi: 10.1016/j.nima.2023.168703
Citations: PlumX Metrics


2023XI10      Phys.Lett. B 846, 138232 (2023)

H.H.Xie, T.Naito, J.Li, H.Liang

Revisiting the extraction of charge radii of 40Ca and 208Pb with muonic atom spectroscopy

NUCLEAR STRUCTURE 40Ca, 208Pb; calculated charge densities, together with the corresponding muonic transition energies using the covariant density functional theory as a benchmark; deduced nuclear charge radii from muonic atom spectroscopy.

doi: 10.1016/j.physletb.2023.138232
Citations: PlumX Metrics


2023YA26      Phys.Rev. C 108, 034315 (2023)

Z.-X.Yang, X.-H.Fan, T.Naito, Z.-M.Niu, Z.-Pa.Li, H.Liang

Calibration of nuclear charge density distribution by back-propagation neural networks

doi: 10.1103/PhysRevC.108.034315
Citations: PlumX Metrics


2022GU02      Phys.Rev. C 105, 024317 (2022)

Y.Guo, H.Tajima, H.Liang

Cooper quartet correlations in infinite symmetric nuclear matter

doi: 10.1103/PhysRevC.105.024317
Citations: PlumX Metrics


2022MI14      Phys.Rev. C 106, 024306 (2022)

F.Minato, Z.Niu, H.Liang

Calculation of β-decay half-lives within a Skyrme-Hartree-Fock-Bogoliubov energy density functional with the proton-neutron quasiparticle random-phase approximation and isoscalar pairing strengths optimized by a Bayesian method

RADIOACTIVITY 87,88,89,90,91,92,93,94,95,96,97,98,99,100Kr, 88,89,90,91,92,93,94,95,96,97,98,99,100,101Rb, 101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137Mo, 102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138Tc(β-); 113,115,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143Cd, 116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144In(β-); 155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192Sm, 156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193Eu(β-); Z=8-110(β-); A=20-368(β-); calculated β--decay T1/2, partial T1/2 for Gamow-Teller decays, Q values, isoscalar spin-triplet strength for neutron-rich nuclei using proton-neutron quasiparticle random-phase approximation (pnQRPA), proton-neutron quasiparticle Tamm-Dancoff approximation (pnQTDA), with Skryme energy density functional, and Bayesian neural network (BNN), the last for isoscalar spin-triplet strength. Calculated T1/2, Q values, isoscalar spin-triplet strength for 5580 neutron-rich nuclei spanning Z=8-110, N=12-258 and A=20-368 are listed in Supplemental Material of the paper. Comparison with available experimental T1/2 in NUBASE2016.

doi: 10.1103/PhysRevC.106.024306
Citations: PlumX Metrics


2022NA10      Phys.Rev. C 105, L021304 (2022)

T.Naito, G.Colo, H.Liang, X.Roca-Maza, H.Sagawa

Toward ab initio charge symmetry breaking in nuclear energy density functionals

NUCLEAR STRUCTURE 48Ca, 208Pb; calculated neutron skin thickness, mass difference for mirror nuclei 48Ca-48Ni, dependence of neutron-skin thickness on the charge symmetry breaking strength s0. Comparison to experimental data.

doi: 10.1103/PhysRevC.105.L021304
Citations: PlumX Metrics


2022NA38      Phys.Rev. C 106, L061306 (2022)

T.Naito, X.Roca-Maza, G.Colo, H.Liang, H.Sagawa

Isospin symmetry breaking in the charge radius difference of mirror nuclei

NUCLEAR STRUCTURE 48Ca, 48Ni; calculated charge radius difference of mirror nuclei. Discussed the connection of obtained values with the nuclear equation of state and effect of isospin symmetry breaking on such relation. Hartree-Fock calculations with SAMi-J family of energy density functionals.

doi: 10.1103/PhysRevC.106.L061306
Citations: PlumX Metrics


2022NI10      Phys.Rev. C 106, L021303 (2022)

Z.M.Niu, H.Z.Liang

Nuclear mass predictions with machine learning reaching the accuracy required by r-process studies

ATOMIC MASSES 159,160,161,162,163,164,165,166Nd, 160,161,162,163,164,165,166,167Pm, 161,162,163,164,165,166,167,168Sm, 162,163,164,165,166,167,168,169Eu, 163,164,165,166,167,168,169,170Gd, 164,165,166,167,168,169,170,171Tb; calculated S(2n). Machine learning algorithm. Bayesian neural networks by learning the mass surface of even-even nuclei and the correlation energies to their neighboring nuclei. Comparison to experimental data.

doi: 10.1103/PhysRevC.106.L021303
Citations: PlumX Metrics


2021AC04      Phys.Rev. C 103, 044304 (2021)

G.Accorto, T.Naito, H.Liang, T.Niksic, D.Vretenar

Nuclear energy density functionals from empirical ground-state densities

NUCLEAR STRUCTURE 16O, 40Ca, 56Ni, 100Sn; calculated sum of neutron vector and scalar potentials for 16O (N=Z=8 system) as a function of the radial coordinate, vector densities of four symmetric systems: 16O (N=Z=8), 40Ca (N=Z=20), 56Ni (N=Z=28) and 100Sn (N=Z=50) using density functional perturbation theory and the inverse Kohn-Sham method, with the improved relativistic energy density functional (EDF) DD-PC1 determined by empirical exact ground-state densities of finite systems.

doi: 10.1103/PhysRevC.103.044304
Citations: PlumX Metrics


2021NA16      Phys.Rev. C 104, 024316 (2021)

T.Naito, G.Colo, H.Liang, X.Roca-Maza

Second and fourth moments of the charge density and neutron-skin thickness of atomic nuclei

NUCLEAR STRUCTURE 36,38,40,42,44,46,48,50,52,54Ca, 100,102,104,106,108,110,112,114,116,118,120,122,124,126,128,130,132,134,136,138,140Sn; calculated second r2 and fourth r4 moments of the proton, neutron, and charge density distributions as function of mass number, correlation of proton second and fourth moments for 44,46Ca, 110,112Sn. Skyrme Hartree-Fock-Bogoliubov calculation with the assumption of axial symmetry using the code HFBTHO and SLy4 energy density functional. Comparison with experimental data. Relevance to extraction of neutron radius using the experimentally measured second and fourth moments of the charge distribution.

doi: 10.1103/PhysRevC.104.024316
Citations: PlumX Metrics


2021WA30      Chin.Phys.C 45, 064103 (2021)

Z.Wang, T.Naito, H.Liang, W.H.Long

Exploring effects of tensor force and its strength via neutron drops

doi: 10.1088/1674-1137/abf036
Citations: PlumX Metrics


2021WA32      Phys.Rev. C 103, 064326 (2021)

Z.Wang, T.Naito, H.Liang

Tensor-force effects on shell-structure evolution in N=82 isotones and Z=50 isotopes in the relativistic Hartree-Fock theory

NUCLEAR STRUCTURE 132Sn, 134Te, 136Xe, 138Ba, 140Ce, 142Nd, 144Sm, 146Gd, 148Dy, 150Er, 152Yb, 154Hf; 100,102,104,106,108,110,112,114,116,118,120,122,124,126,128,130,132Sn; calculated energy differences of ν1i13/2 and ν1h9/2 orbitals with respect to 140Ce for N=82 nuclei, and for π1h11/2 and π1g7/2 orbitals with respect to 108Sn for Z=50 nuclei using relativistic Hartree-Fock (RHF) theory with PKA1, PKO1, PKO2 and PKO3 effective interactions, with and without tensor-force contributions, the former with covariant density functional theory (CDFT), and compared with experimental data. 16,24O, 36S, 40,48,52,54Ca, 56,68,72Ni, 86Kr, 90Zr, 94Ru, 100,116,124,132Sn, 136Xe, 140Ce, 146Gd, 182,194,200,204,208,214Pb, 210Po, 214Ra, 218U; calculated binding energies and charge radii using the 'New' interaction and compared with results using PKO1 interaction, and with experimental data.

doi: 10.1103/PhysRevC.103.064326
Citations: PlumX Metrics


2021XU07      Chin.Phys.C 45, 114103 (2021)

Y.-L.Xu, Y.-L.Han, X.-W.Su, X.-J.Sun, H.-Y.Liang, H.-R.Guo, C.-H.Cai

Description of elastic scattering induced by the unstable nuclei 9, 10, 11, 13, 14C

NUCLEAR REACTIONS 208Pb(9C, 9C), (11C, 11C), E=222-227 MeV; 27Al, 58Ni, 208Pb(10C, 10C), E=29.1-256 MeV; 28Si, 208Pb(9C, 9C), E<500 MeV; 28Si, 208Pb(11C, 11C), E<500 MeV; 28Si(13C, 13C), E=25-60 MeV; 40Ca, 56Fe, 60Ni, 66Zn, 88Sr(14C, 14C), E=51 MeV; 92,100Mo(14C, 14C), E=71 MeV; 28Si(14C, 14C), E<500 MeV; analyzed available data; deduced σ, σ(θ), global optical model potentials.

doi: 10.1088/1674-1137/ac1fe1
Citations: PlumX Metrics


2020GU02      Phys.Rev. C 101, 024304 (2020)

Y.Guo, H.Liang

Nonrelativistic expansion of the Dirac equation with spherical scalar and vector potentials by a reconstituted Foldy-Wouthuysen transformation

NUCLEAR STRUCTURE 208Pb; calculated neutron density, neutron scalar density, and comparisons with exact density and various models using the reconstituted similarity renormalization group (SRG) method, as reconstituted Foldy-Wouthuysen (FW) transformation.

doi: 10.1103/PhysRevC.101.024304
Citations: PlumX Metrics


2020NA19      Phys.Rev. C 101, 064311 (2020)

T.Naito, X.Roca-Maza, G.Colo, H.Liang

Effects of finite nucleon size, vacuum polarization, and electromagnetic spin-orbit interaction on nuclear binding energies and radii in spherical nuclei

NUCLEAR STRUCTURE 4He, 14,16,24O, 40,48Ca, 48Ni, 100,124,132,162Sn, 208Pb, 310126; calculated total energies, Coulomb energies, and charge radii, ratios of the Coulomb direct and exchange energies, mirror nuclei mass difference between 48Ca and 48Ni using self-consistent Skyrme Hartree-Fock method with generalized gradient approximation (GGA), and including electromagnetic effects of nucleon finite size, vacuum polarization, and electromagnetic spin-orbit interaction. Comparison with other theoretical predictions.

doi: 10.1103/PhysRevC.101.064311
Citations: PlumX Metrics


2020WA17      Phys.Rev. C 101, 064306 (2020)

Z.Wang, T.Naito, H.Liang, W.H.Long

Self-consistent random-phase approximation based on the relativistic Hartree-Fock theory: Role of ρ-tensor coupling

NUCLEAR STRUCTURE 48Ca, 90Zr, 208Pb; calculated energies and transition probabilities of isobaric analog states (IAS) and Gamow-Teller resonances, neutron and proton single-particle spectra. Random-phase approximation (RPA) based on the relativistic Hartree-Fock theory, extended with self-consistent ρ-meson tensor coupling. Comparison with experimental data for excitation energies and transition strength distributions.

doi: 10.1103/PhysRevC.101.064306
Citations: PlumX Metrics


2020XU03      Chin.Phys.C 44, 034101 (2020)

Y.-L.Xu, Y.-L.Han, H.-Y.Liang, Z.-D.Wu, H.-R.Guo, C.-H.Cai

Applicability of 9Be global optical potential to description of 8, 10, 11B elastic scattering

NUCLEAR REACTIONS 12C, 27Al, 28Si, 58Ni, 208Pb(8B, 8B), 9Be, 12C, 16O, 28Si, 58Ni, 120Sn, 208Pb(10B, 10B), 12C, 28Si, 58Ni, 208Pb, 209Bi(11B, 11B), E<50 MeV; analyzed available data. 8,10,11B; calculated σ; deduced global phenomenological optical model potentials.

doi: 10.1088/1674-1137/44/3/034101
Citations: PlumX Metrics


2020XU04      Chin.Phys.C 44, 034101 (2020)

Y.-L.Xu, Y.-L.Han, H.-Y.Liang, Z.-D.Wu, H.-R.Guo, C.-H.Cai

Applicability of 9Be global optical potential to description of 8, 10, 11B elastic scattering

NUCLEAR REACTIONS 27Al, 58Ni, 208Pb, 12C, 28Si(8B, 8B), E<100 MeV; 27Al, 28Si, 58Ni, 120Sn, 16O, 9Be, 208Pb(10B, 10B), E<100 MeV; 28Si, 58Ni, 209Bi, 12C, 209Bi(11B, 11B), E<100 MeV; analyzed available data. 9Be; deduced optical model potential parameters, σ, σ(θ).

doi: 10.1088/1674-1137/44/3/034101
Citations: PlumX Metrics


2020XU10      Chin.Phys.C 44, 124103 (2020)

Y.-L.Xu, Y.-L.Han, X.-W.Su, X.-J.Sun, H.-Y.Liang, H.-R.Guo, C.-H.Cai

Global optical model potential describing 12C-nucleus elastic scattering

NUCLEAR REACTIONS 24Mg, 28Si, 32S, 39K, 40,42,48Ca, 50Cr, 56Fe, Fe, 58,64Ni, Ni, 90,91,92,94,96Zr, 92Mo, 116,117,118,119,120,122,124Sn, 194,198Pt, 208Pb, 209Bi(12C, 12C), E<200 MeV; analyzed available data; deduced a new global optical model potential parameters.

doi: 10.1088/1674-1137/abb4d0
Citations: PlumX Metrics


2019GU12      Phys.Rev. C 99, 054324 (2019)

Y.Guo, H.Liang

Nonrelativistic expansion of Dirac equation with spherical scalar and vector potentials by similarity renormalization group

doi: 10.1103/PhysRevC.99.054324
Citations: PlumX Metrics


2019MA56      Phys.Rev. C 100, 024330 (2019)

C.Ma, Z.Li, Z.M.Niu, H.Z.Liang

Influence of nuclear mass uncertainties on radiative neutron-capture rates

NUCLEAR REACTIONS 124Mo, 126Ru, 194Er, 196Yb(n, γ), T9=0.0001-10; Sb, Zr(n, γ), T9=1; calculated radiative n-capture rates with TALYS using ten mass models to determine the uncertainties. Z=5-100, N=10-230; analyzed uncertainties of radiative neutron-capture rates from nuclear mass uncertainties at different temperatures.

doi: 10.1103/PhysRevC.100.024330
Citations: PlumX Metrics


2019NA03      Phys.Rev. C 99, 024309 (2019)

T.Naito, X.Roca-Maza, G.Colo, H.Liang

Coulomb exchange functional with generalized gradient approximation for self-consistent Skyrme Hartree-Fock calculations

NUCLEAR STRUCTURE 4He, 14,16,24O, 40,48Ca, 100,124,132,162Sn, 208Pb, 310126; calculated Coulomb exchange energies with the LDA and PBE-GGA Coulomb exchange functionals and compared with the exact-Fock energies, radial Coulomb exchange potential, proton and neutron density distributions, and proton single-particle energies in 208Pb using self-consistent Skyrme Hartree-Fock calculations with Coulomb exchange functional and generalized gradient approximation (GGA). Comparison with values calculated by local density approximation.

doi: 10.1103/PhysRevC.99.024309
Citations: PlumX Metrics


2019NI07      Phys.Rev. C 99, 064307 (2019)

Z.M.Niu, H.Z.Liang, B.H.Sun, W.H.Long, Y.F.Niu

Predictions of nuclear β-decay half-lives with machine learning and their impact on r-process nucleosynthesis

RADIOACTIVITY 67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89Ni, 122Zr, 123Nb, 124Mo, 125Tc, 126Ru, 127Rh, 128Pd, 129Ag, 130Cd, 131In, 132Sn, 133Sb, 134Te, 187Pm, 188Sm, 189Eu, 190Gd, 191Tb, 192Dy, 193Ho, 194Er, 195Tm, 196Yb, 197Lu, 198Hf, 199Ta, 200W, 201Re, 202Os, 203Ir, 204Pt, 205Au, 206Hg, 207Tl(β-); calculated T1/2, and uncertainties using machine-learning approach based on Bayesian neural network (BNN). Comparison with experimental values, and with other theoretical predictions. A=90-210; discussed impact on r-process nucleosynthesis calculations.

doi: 10.1103/PhysRevC.99.064307
Citations: PlumX Metrics


2019SH24      Chin.Phys.C 43, 074104 (2019)

M.Shi, Z.-M.Niu, H.-Z.Liang

Mass predictions of the relativistic continuum Hartree-Bogoliubov model with radial basis function approach

ATOMIC MASSES N=0-160; analyzed available data; calculated nuclear masses using radial basis function (RBF) approach.

doi: 10.1088/1674-1137/43/7/074104
Citations: PlumX Metrics


2019SH41      Prog.Part.Nucl.Phys. 109, 103713 (2019)

S.Shen, H.Liang, W.H.Long, J.Meng, P.Ring

Towards an ab initio covariant density functional theory for nuclear structure

doi: 10.1016/j.ppnp.2019.103713
Citations: PlumX Metrics


2019XU05      Phys.Rev. C 99, 034618 (2019)

Y.Xu, Y.Han, H.Liang, Z.Wu, H.Guo, C.Cai

Global optical model potential for the weakly bound projectile 9Be

NUCLEAR REACTIONS Mg(9Be, 9Be), E=14.0, 20.0, 26.0 MeV; 27Al(9Be, 9Be), E=12.0, 14.0, 18.0, 20.0, 22.0, 25.0, 28.0, 32.0, 33.0, 35.0.40.0, 47.5 MeV; 28Si(9Be, 9Be), E=12.0, 13.0, 14.0, 17.0, 20.0, 23.0, 26.0, 30.0, 45.0, 50.0, 60.0 MeV; 40Ca(9Be, 9Be), E=14.0, 20.0, 26.0, 45.0.50.0, 60.0 MeV; 58Ni(9Be, 9Be), E=20.0, 26.0 MeV; 64Zn(9Be, 9Be), E=17.0, 19.0, 21.0, 23.0, 26.0, 28.0, 28.4, 28.97 MeV; 89Y(9Be, 9Be), E=18.6, 20.6, 22.7, 24.7, 26.7, 28.7, 33.2 MeV; Ag(9Be, 9Be), E=26.0 MeV; 144Sm(9Be, 9Be), E=30.0, 31.5, 33.0, 34.0, 35.0, 37.0, 39.0, 41.0, 44.0, 48.0 MeV; 208Pb(9Be, 9Be), E=37.0, 37.8, 38.0, 38.2, 38.5, 38.7, 39.0, 9.5, 40.0, 41.0, 42.0, 44.0, 46.0, 47.2, 48.0, 50.0, 60.0, 68.0, 75.0 MeV; 209Bi(9Be, 9Be), E=37.0, 37.8, 38.0, 38.2, 38.5, 38.7, 39.0, 39.5, 40.0, 41.0, 42.0, 44.0, 46.0, 48.0 MeV; analyzed elastic σ(θ, E) data for global phenomenological energy-dependent optical model potential parameters for 9Be. 9Be, 12,13C, 27Al, 64Zn, 89Y, 144Sm(9Be, X), E=10-300 MeV; 28Si, Cu(9Be, X), E=10-500 MeV; 89Y(α, X), (6He, X), (8He, X), (6Li, X), (7Li, X), (9Be, X), (11B, X); calculated reaction σ(E) using optical model and compared with experimental data. 9Be(9Be, 9Be), E=14.0, 20.0, 26.0 MeV; 12C(9Be, 9Be), E=13.0, 14.0, 14.5, 17.3, 19.0, 20.0, 21.0, 26.0, 153.8 MeV; 13C(9Be, 9Be), E=19.46, 25.05 MeV; 16O(9Be, 9Be), E=20.0, 25.94 MeV; calculated elastic σ(θ, E) using optical model parameters and compared with experimental data.

doi: 10.1103/PhysRevC.99.034618
Citations: PlumX Metrics


2018DI08      Phys.Rev. C 98, 014316 (2018)

K.-M.Ding, M.Shi, J.-Y.Guo, Z.-M.Niu, H.Liang

Resonant-continuum relativistic mean-field plus BCS in complex momentum representation

NUCLEAR STRUCTURE 120,122,124,126,128,130,132,134,136,138,140Zr; calculated neutron single particle energies and widths, occupation probabilities of neutron single particle levels, and neutron single particle spectra and density distributions in 124Zr. 80,82,84,86,88,90,92,94,96,98,100,102,104,106,108,110,112,114,116,118,120,122,124,126,128,130,132,134,136,138,140Zr; calculated S(2n), rms neutron radii. Resonant-continuum relativistic mean-field plus BCS in complex momentum representation with the BCS approximation for pairing correlations. Comparison with available experimental values.

doi: 10.1103/PhysRevC.98.014316
Citations: PlumX Metrics


2018LI32      Phys.Rev. C 98, 014311 (2018)

H.Z.Liang, H.Sagawa, M.Sasano, T.Suzuki, M.Honma

Gamow-Teller transitions from high-spin isomers in N = Z nuclei

RADIOACTIVITY 52Fe, 94Ag(β-); calculated Gamow-Teller transition strength distributions from 12+ isomeric state and g.s. in 52Fe and 21+ isomeric state and g.s. in 94Ag using sum-rule approach and shell model calculations; deduced stronger Gamow-Teller strengths from the high-spin states as compared to those from the low-spin ground states.

doi: 10.1103/PhysRevC.98.014311
Citations: PlumX Metrics


2018NA10      Phys.Rev. C 97, 044319 (2018)

T.Naito, R.Akashi, H.Liang

Application of a Coulomb energy density functional for atomic nuclei: Case studies of local density approximation and generalized gradient approximation

NUCLEAR STRUCTURE 4He, 12C, 16O, 40,48Ca, 58Ni, 116,124Sn, 206,208Pb; calculated direct, exchange, and correlation Coulomb energies, exchange energy densities weighted with charge-density distributions as a function of radius by the local density approximation (LDA), and by the generalized gradient approximation (GGA) using B88, PW91, PBE, and PBEsol energy density functionals; deduced deviation between LDA and generalized gradient approximation (GGA) exchange energies.

doi: 10.1103/PhysRevC.97.044319
Citations: PlumX Metrics


2018SH20      Phys.Rev. C 97, 054312 (2018)

S.Shen, H.Liang, J.Meng, P.Ring, S.Zhang

Relativistic Brueckner-Hartree-Fock theory for neutron drops

NUCLEAR STRUCTURE N=4-50; calculated ground-state energies, radii, neutron skin thickness, two-neutron energy difference, density distributions, single-particle energies, and neutron spin-orbit and pseudospin-orbit splittings of neutron drops for even numbers of neutrons from N=4 to N=50 using Relativistic Brueckner-Hartree-Fock (RBHF) theory with bare nucleon-nucleon interaction. Comparison with results from other nonrelativistic ab initio calculations, and from relativistic density functional theory.

doi: 10.1103/PhysRevC.97.054312
Citations: PlumX Metrics


2018SH21      Phys.Rev. C 97, 064301 (2018)

M.Shi, Z.-M.Niu, H.Liang

Combination of complex momentum representation and Green's function methods in relativistic mean-field theory

NUCLEAR STRUCTURE 74Ca; calculated single particle resonance for g7/2 orbital, level density distribution, and density of continuum states for the 1g7/2 orbital, continuum level density (CLD) for all the resonance states, density distributions for the 1g7/2, 2d3/2, 3s1/2, 2d5/2 and 1g9/2 orbitals, single-particle levels, and wave function of the 2d3/2 resonant state. Combined complex momentum representation method with Green's function method in the relativistic mean-field framework (RMF-CMR-GF); discussed single-particle wave functions and densities for halo structure in 74Ca.

doi: 10.1103/PhysRevC.97.064301
Citations: PlumX Metrics


2018WA26      Phys.Rev. C 98, 034313 (2018)

Z.Wang, Q.Zhao, H.Liang, W.H.Long

Quantitative analysis of tensor effects in the relativistic Hartree-Fock theory

NUCLEAR STRUCTURE 40,48,52,54Ca, 208Pb, 16,22O, 14C, 34,42Si, 36,44S, 56,60,66,68,78Ni; calculated contributions to the total energy from the tensor forces in different couplings, proton and neutron gap energies with and without tensor force in each meson-nucleon coupling using relativistic Hartree-Fock theory with PKA1 effective interaction. Comparison with experimental values.

doi: 10.1103/PhysRevC.98.034313
Citations: PlumX Metrics


2018XI02      At.Data Nucl.Data Tables 121-122, 1 (2018)

X.W.Xia, Y.Lim, P.W.Zhao, H.Z.Liang, X.Y.Qu, Y.Chen, H.Liu, L.F.Zhang, S.Q.Zhang, Y.Kim, J.Meng

The limits of the nuclear landscape explored by the relativistic continuum Hartree-Bogoliubov theory

NUCLEAR STRUCTURE Z=8-120; calculated ground-state properties using the spherical relativistic continuum Hartree-Bogoliubov (RCHB) theory with the relativistic density functional PC-PK1.

doi: 10.1016/j.adt.2017.09.001
Citations: PlumX Metrics


2018XU01      Phys.Rev. C 97, 014615 (2018)

Y.Xu, Y.Han, J.Hu, H.Liang, Z.Wu, H.Guo, C.Cai

Global phenomenological optical model potential for the 7Li projectile nucleus

NUCLEAR REACTIONS 9Be(7Li, 7Li), E=15.75, 24.0, 30.0, 63.0, 130.0 MeV; 12C(7Li, 7Li), E=7.5, 9.0, 12.0, 15.0, 36.0, 131.8 MeV; 16O(7Li, 7Li), E=26.0, 36.0, 42.0, 50.0 MeV; 11B, 12,13C, 24Mg(7Li, 7Li), E=34.0 MeV; 24,26Mg(7Li, 7Li), E=88.7 MeV; 27Al(7Li, 7Li), E=6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0, 16.0, 18.0, 19.0, 24.0 MeV; 28Si(7Li, 7Li), E=8.0, 8.5, 9.0, 10.0, 11.0, 11.5, 13.0, 15.0, 16.0, 21.0, 26.0, 36.0, 177.8 MeV; 40,44,48Ca(7Li, 7Li), E=34.0; 40Ca(7Li, 7Li), E=88.7 MeV; 46,48Ti(7Li, 7Li), E=17.0 MeV; 54Fe(7Li, 7Li), E=36.0, 42.0, 48.0 MeV; 56Fe, 65Cu, 90Zr(7Li, 7Li), E=34.0 MeV; 58Ni(7Li, 7Li), E=14.22, 16.25.18.28, 19.0, 20.31.34.0, 42.0 MeV; 60,62Ni, 64,68Zn(7Li, 7Li), E=34.0 MeV; 80Se(7Li, 7Li), E=14.0, 14.5, 15.0, 15.5, 16.0, 17.0, 18.0, 19.0, 20.0, 23.0, 26.0 MeV; 89Y(7Li, 7Li), E=60.0 MeV; 116Sn(7Li, 7Li), E=18.0, 19.0, 20.0, 21.0, 22.0, 23.0, 24.0, 26.0, 30.0, 35.0 MeV; 120Sn(7Li, 7Li), E=19.5, 20.0, 20.5, 22.0, 24.0, 25.0, 26.0, 28.0, 30.044.0 MeV; 138Ba(7Li, 7Li), E=21.0, 22.0, 23.0, 24.0, 28.0, 30.0, 32.0, 52.0 MeV; 140Ce, 142Nd(7Li, 7Li), E=52.0 MeV; 144Sm(7Li, 7Li), E=21.6, 22.1, 22.6.23.0, 25.0, 27.0, 29.0, 30.0, 32.0, 35.0, 40.8, 52.0 MeV; 208Pb(7Li, 7Li), E=27.0, 29.0, 33.0, 39.0, 42.0, 52.0 MeV; 232Th(7Li, 7Li), E=24.0, 26.0, 30.0, 32.0, 35.0, 40.0, 44.0 MeV; analyzed σ(θ, E) experimental data by global phenomenological optical model potential. 13C, 27Al, 64Zn, 116Sn, 138Ba, (7Li, X), E<300 MeV; 28Si, Cu, 208Pb(7Li, X), E<400 MeV; calculated reaction σ(E) using optical model, and compared with experimental data.

doi: 10.1103/PhysRevC.97.014615
Citations: PlumX Metrics


2018XU10      Phys.Rev. C 98, 024619 (2018)

Y.Xu, Y.Han, J.Hu, H.Liang, Z.Wu, H.Guo, C.Cai

6Li global phenomenological optical model potential

NUCLEAR REACTIONS 24Mg, 48Ca(6Li, 6Li), E=240.0 MeV; 25,26Mg, 39K, 91Zr(6Li, 6Li), E=34.0 MeV; 27Al(6Li, 6Li), E=7.0, 8.0, 10.0, 12.0, 18.0, 34.0 MeV; 28Si(6Li, 6Li), E=7.5, 9.0, 11.0, 13.0, 16.0, 20.0, 21.0, 25.0, 27.0, 34.0, 46.0, 99.0, 135.0, 154.0, 210.0, 240.0, 318.0, 350.0 MeV; 40Ca(6Li, 6Li), E=50.6, 99.0, 156.0, 210.0, 240.0 MeV; 54Fe(6Li, 6Li), E=38.0, 44.0, 50.0 MeV; 59Co(6Li, 6Li), E=12.0, 18.0, 26.0, 30.0 MeV; 58Ni(6Li, 6Li), E=9.85, 11.21, 12.13, 13.04, 14.04, 34.0, 50.6, 73.7, 90.0, 99.0, 210.0, 240.0 MeV; 65Cu(6Li, 6Li), E=25.0 MeV; 64Zn(6Li, 6Li), E=10.77, 11.69, 12.0, 12.43, 13.0, 13.54, 13.8, 14.92, 15.0, 16.30, 16.5, 18.0, 18.14, 19.98, 22.0 MeV; 72,74,76Ge(6Li, 6Li), E=28.0 MeV; 80Se(6Li, 6Li), E=14.0, 14.5, 15.0, 15.5, 16.0, 17.0, 18.0, 19.0, 20.0, 22.19, 23.0, 26.0 MeV; 89Y(6Li, 6Li), E=60.0 MeV; 90Zr(6Li, 6Li), E=11.0, 12.0, 13.0, 15.0, 17.0, 19.0, 21.0, 25.0, 30.0, 34.0, 60.0, 70.0, 73.7, 99.0, 156.0, 210.0, 240.0 MeV; 92,94,96Zr(6Li, 6Li), E=70.0 MeV; 112Sn(6Li, 6Li), E=21.0, 22.0, 23.0, 25.0, 30.0, 35.0 MeV; 116Sn(6Li, 6Li), E=20.0, 21.0, 22.0, 23.0, 24.0, 26.0, 30.0, 35.0, 40.0 MeV; 118Sn(6Li, 6Li), E=42.0 MeV; 120Sn(6Li, 6Li), E=30.0, 44.0, 90.0 MeV; 124Sn(6Li, 6Li), E=73.7 MeV; 138Ba(6Li, 6Li), E=21.0, 22.0, 23.0, 24.0, 26.0, 28.0 MeV; 144Sm(6Li, 6Li), E=21.0, 22.1, 22.6, 24.1, 26.0, 28.0, 30.1, 32.2, 35.1, 42.3 MeV; 208Pb(6Li, 6Li), E=25.0, 29.0, 31.0, 33.0, 35.0, 36.0, 37.0, 39.0, 42.0, 43.0, 46.0, 48.0, 50.6, 73.7, 88.0, 90.0, 99.0, 156.0, 210.0 MeV; 209Bi(6Li, 6Li), E=24.0, 26.0, 28.0, 29.9, 30.0, 32.0, 32.8, 34.0, 36.0, 40.0, 44.0, 50.0 MeV; 232Th(6Li, 6Li), E=26.0, 30.0, 32.0, 35.0, 40.0, 44.0 MeV; analyzed differential σ(θ, E) data; deduced a new set of 6Li global phenomenological energy-dependent optical potential parameters based on the form of the Woods-Saxon potential within the optical model. 63,65Cu, 64Zn, 112,116Sn, 138Ba, 208Pb(6Li, X), E<400 MeV; calculated reaction σ(E), and compared with experimental data.

doi: 10.1103/PhysRevC.98.024619
Citations: PlumX Metrics


2017FA02      Phys.Rev. C 95, 024311 (2017)

Z.Fang, M.Shi, J.-Y.Guo, Z.-M.Niu, H.Liang, S.-S.Zhang

Probing resonances in the Dirac equation with quadrupole-deformed potentials with the complex momentum representation method

NUCLEAR STRUCTURE 37Mg; calculated levels, resonances, single-particle resonances, J, π, single-particle energies for deformation (Nilsson orbitals) for the bound and resonant states concerned, radial-momentum probability distributions for the bound and resonant deformed states by solving the Dirac equation in complex momentum representation, and a set of coupled differential equations by the coupled-channel method.

doi: 10.1103/PhysRevC.95.024311
Citations: PlumX Metrics


2017GU06      Phys.Rev. C 95, 034614 (2017)

H.Guo, H.Liang, Y.Xu, Y.Han, Q.Shen, C.Cai, T.Ye

Microscopic optical potential for 6He

NUCLEAR REACTIONS 12C(6He, 6He), E=8.79, 9.18, 9.9, 18, 230, 250 MeV; 27Al(6He, 6He), E=9.54, 11.0, 12.0, 13.4 MeV; 51V(6He, 6He), E=15.4, 23.0 MeV; 58Ni(6He, 6He), E=9.0, 10.0, 12.2, 16.5, 21.7 MeV; 64Zn(6He, 6He), E=10.0, 13.6 MeV; 65Cu(6He, 6He), E=19.56, 22.6, 30.05 MeV; 120Sn(6He, 6He), E=17.4, 18.05, 19.8, 20.05 MeV; 197Au(6He, 6He), E=10.1, 27.0 MeV; 209Bi(6He, 6He), E=14.71, 16.26, 17.8, 19.0, 19.14, 22.02, 22.5 MeV; 208Pb(6He, 6He), E=14.0, 16, 18, 22, 27, 56.6 MeV; 9Be(6He, 6He), E=16.2, 16.8, 21.3, 150 MeV; calculated differential σ(θ, E) relative to Rutherford cross section using microscopic optical potential (MOP) and global phenomenological 6He optical potential (GOP) based on experimental data. 28Si(6He, X), E<330 MeV; calculated total σ(E) using MOP and GOP. Comparison with experimental data. Isospin-dependent nucleon microscopic optical potential derived by using Green's function method through the nuclear matter approximation and the local density approximation based on the Skyrme nucleon-nucleon effective interaction.

doi: 10.1103/PhysRevC.95.034614
Citations: PlumX Metrics


2017LI21      Nucl.Sci.Eng. 187, 107 (2017)

H.Liang, Z.Wu, Z.Zhang, Y.Han, X.Jiao

Calculations and Analysis of n+93Nb Reaction

NUCLEAR REACTIONS 93Nb(n, X), E<200 MeV; calculated σ, σ(E), σ(θ), σ(θ, E) using theoretical models. Comparison with ENDF/B-VII, JENDL-4, TENDL-2015 libraries, experimental data.

doi: 10.1080/00295639.2017.1295699
Citations: PlumX Metrics


2017NI07      Phys.Rev. C 95, 044301 (2017)

Z.M.Niu, Y.F.Niu, H.Z.Liang, W.H.Long, J.Meng

Self-consistent relativistic quasiparticle random-phase approximation and its applications to charge-exchange excitations

NUCLEAR STRUCTURE 36,38,40,42,44,46,48,50,52,54,56,58,60Ca, 54,56,58,60,62,64,68,70,72,74,76,78,80,82,84,86,88Ni, 100,102,104,106,108,110,112,114,116,118,120,122,124,126,128,130,132,134,136,138,140,142,144,146,148Sn; calculated nuclear masses, S(2n), Q(β) values for Ca, Ni and Sn isotopes, neutron-skin thicknesses, IAS and GT excitation energies for Sn isotopes using the RHFB theory with PKO1 interaction and the RHB theory with DD-ME2 effective interaction. 118Sn; calculated running sum of the GT transition probabilities, and GT strength distribution using RHFB+QRPA approach with PKO1 interaction. 114Sn; calculated transition probabilities for the IAS by RHFB+QRPA, RHF+RPA, RHFB+RPA, RHFB+QRPA* with PKO1 interaction. Comparison with experimental data.

doi: 10.1103/PhysRevC.95.044301
Citations: PlumX Metrics


2017SH20      Phys.Rev. C 96, 014316 (2017)

S.Shen, H.Liang, J.Meng, P.Ring, S.Zhang

Fully self-consistent relativistic Brueckner-Hartree-Fock theory for finite nuclei

NUCLEAR STRUCTURE 4He, 16O, 40Ca; calculated ground state energies, charge and matter radii, single-particle spectra, binding energy per nucleon by relativistic ab initio approach. Solution of full relativistic Brueckner-Hartree-Fock (RBHF) equations with the relativistic form of the Bonn potential as a bare nucleon-nucleon interaction. Comparison with available experimental data.

doi: 10.1103/PhysRevC.96.014316
Citations: PlumX Metrics


2017SU16      Phys.Rev. C 95, 054606 (2017)

X.W.Su, Y.L.Han, H.Y.Liang, Z.D.Wu, H.R.Guo, C.H.Cai

Global phenomenological optical model potential for 8Li projectile

NUCLEAR REACTIONS 9Be(8Li, 8Li), E=14, 19.6, 27 MeV; 12C(8Li, 8Li), E=14, 23.9 MeV; 13C, 14N, 27Al, 197Au(8Li, 8Li), E=14 MeV; 51V(8Li, 8Li), E=18.5, 26 MeV; 58Ni(8Li, 8Li), E=14, 19.6, 20.2, 22 MeV; 208Pb(8Li, 8Li), E=24.4, 27.9, 28.9, 30.6, 33.1 MeV; calculated σ(θ, E) by optical potential model, and compared with experimental data; deduced global phenomenological optical model parameters (OMPs) for 8Li. 9Be(8Li, X), E=19.6 MeV; 12C(8Li, X), E=14 MeV; 51V(8Li, X), E=18.5, 26.0 MeV; 208Pb(8Li, X), E=24.4, 27.6, 28.89, 30.57, 33.13 MeV; calculated total σ(E), and compared with experimental data.

doi: 10.1103/PhysRevC.95.054606
Citations: PlumX Metrics


2016LI35      Phys.Rev.Lett. 117, 062502 (2016)

N.Li, M.Shi, J.-Y.Guo, Z.-M.Niu, H.Liang

Probing Resonances of the Dirac Equation with Complex Momentum Representation

NUCLEAR STRUCTURE 120Sn; calculated energies and widths of single neutron state resonances. Relativistic mean-field (RMF) theory.

doi: 10.1103/PhysRevLett.117.062502
Citations: PlumX Metrics


2016NI16      Phys.Rev. C 94, 054315 (2016)

Z.M.Niu, B.H.Sun, H.Z.Liang, Y.F.Niu, J.Y.Guo

Improved radial basis function approach with odd-even corrections

ATOMIC MASSES Z=8-100, N=8-160, A=16-260; calculated masses using relativistic mean-field (RMF) with radial basis function (RBF) approach, and RMF with RBF considering odd-even effects (RBFoe). Z=31, 32, N=31-53; calculated S(n) with RMF+RBF, and RMF+RBFoe approaches. Comparison with experimental data taken form AME-2012.

doi: 10.1103/PhysRevC.94.054315
Citations: PlumX Metrics


2016SH34      Chin.Phys.Lett. 33, 102103 (2016)

S.-H.Shen, J.-N.Hu, H.-Z.Liang, J.Meng, P.Ring, S.-Q.Zhang

Relativistic Brueckner-Hartree-Fock Theory for Finite Nuclei

NUCLEAR STRUCTURE 16O; calculated total energy, charge radius, single-particle spectra for protons and neutrons. Brueckner-Hartree-Fock equations solved for finite nuclei in a Dirac-Woods-Saxon basis.

doi: 10.1088/0256-307X/33/10/102103
Citations: PlumX Metrics


2016SU13      Int.J.Mod.Phys. E25, 1650033 (2016)

X.-W.Su, Y.-L.Han, H.-Y.Liang, Z.-D.Wu, H.-R.Guo, C.-H.Cai

Global 6He optical model potential

NUCLEAR REACTIONS 6,7Li, 9Be, 12C, 27Al, 28Si, 51V, 48Ti, 58Ni, 63,65Cu, 64Zn, 120Sn, 197Au, 206,208Pb, 209Bi(6He, X), (6He, 6He), E<300 MeV; analyzed available data; deduced optical potential; calculated σ, σ(θ).

doi: 10.1142/S0218301316500336
Citations: PlumX Metrics


2015TA16      Prog.Theor.Exp.Phys. 2015, 073D01 (2015)

Y.Tanimura, K.Hagino, H.Z.Liang

3D mesh calculations for covariant density functional theory

NUCLEAR STRUCTURE 16O, 24Mg, 28Si; calculated binding and single-particle energies, hexadecapole deformation parameters, potential energy surfaces.

doi: 10.1093/ptep/ptv083
Citations: PlumX Metrics


2014GU01      Nucl.Phys. A922, 84 (2014)

H.Guo, Y.Xu, H.Liang, Y.Han, Q.Shen

Microscopic optical model potential for triton

NUCLEAR REACTIONS A=6-232(t, t), (t, X), E=threshold-60 MeV/nucleon; calculated triton microscopic optical model potential, reaction σ, elastic scattering σ(θ). Compared with some data.

doi: 10.1016/j.nuclphysa.2013.11.007
Citations: PlumX Metrics


2014HA17      Nucl.Data Sheets 118, 132 (2014)

Y.Han, Y.Xu, H.Liang, H.Guo, C.Cai, Q.Shen

Theoretical Calculation of Actinide Nuclear Reaction Data

doi: 10.1016/j.nds.2014.04.018
Citations: PlumX Metrics


2014LI10      Ann.Nucl.Energy 69, 301 (2014)

H.Liang, Z.Wu, Y.Han, Q.Shen

The energy spectra and double-differential cross-sections for p+92, 94, 95, 96, 97, 98, 100Mo reactions at the incident energies from threshold to 200 MeV

NUCLEAR REACTIONS 92,94,95,96,97,98,100Mo(p, xn), (p, xp), (p, xd), (p, xα), (p, xt), E<160 MeV; calculated σ(E), σ(E, θ). Exciton model including the improved Iwamoto-Harada model, comparison with experimental data.

doi: 10.1016/j.anucene.2014.02.008
Citations: PlumX Metrics


2014LI14      Phys.Scr. 89, 054018 (2014)

H.Liang, T.Nakatsukasa, Z.Niu, J.Meng

Finite-amplitude method: an extension to the covariant density functionals

NUCLEAR STRUCTURE 208Pb; calculated isoscalar giant monopole resonances. The finite-amplitude method for optimizing the computational performance of the random-phase approximation.

doi: 10.1088/0031-8949/89/5/054018
Citations: PlumX Metrics


2014VA16      Phys.Scr. 89, 054008 (2014)

N.Van Giai, H.Liang, H.-Q.Gu, W.Long, J.Meng

Treating Coulomb exchange contributions in relativistic mean field calculations: why and how

NUCLEAR STRUCTURE Pb; calculated Coulomb exchange energy for A=180-272 using relativistic HFB using Slater approximation with relativistic local density approximation.

doi: 10.1088/0031-8949/89/5/054008
Citations: PlumX Metrics


2014WU07      Ann.Nucl.Energy 73, 17 (2014)

Z.Wu, H.Liang, J.Li, Z.Zhang, Y.Han

Theoretical calculations and evaluations of n + 32, 33, 34, 36, nat.S reactions

NUCLEAR REACTIONS 32,33,34,36S, S(n, n), (n, n'), (n, X), (n, p), (n, t), (n, xn), (n, xp), E<200 MeV; calculated σ, σ(θ, E), σ(θ). APMN nuclear model code, comparison ENDF/B-VII, JENDL-4, and TENDL-2012 libraries.

doi: 10.1016/j.anucene.2014.05.032
Citations: PlumX Metrics


2013GU14      Phys.Rev. C 87, 041301 (2013)

H.-Q.Gu, H.Liang, W.H.Long, N.Van Giai, J.Meng

Slater approximation for Coulomb exchange effects in nuclear covariant density functional theory

NUCLEAR STRUCTURE Z=20, A=36-76; Z=28, A=56-96; Z=40, A=80-136; Z=50, A=100-180; Z=82, A=180-270; calculated Coulomb exchange energies, relative deviation of Coulomb exchange energies using self-consistent relativistic and non-relativistic local density approximations (RLDA, NRLDA) for even-even nuclei. 188,208,228, 248Pb; calculated proton density distributions using relativistic Hartree-Fock-Bogoliubov (RHFB) with PKA1 interaction. 208Pb; calculated proton single-particle energy shifts. Implementation of the Coulomb exchange effects in the relativistic Hartree (RH) theory.

doi: 10.1103/PhysRevC.87.041301
Citations: PlumX Metrics


2013LI06      Phys.Rev. C 87, 014334 (2013)

H.Liang, S.Shen, P.Zhao, J.Meng

Pseudospin symmetry in supersymmetric quantum mechanics: Schrodinger equations

NUCLEAR STRUCTURE 132Sn; calculated discrete eigenstates for neutrons, pseudospin-orbit splittings. Supersymmetry (SUSY) quantum mechanics, perturbation theory, and similarity renormalization group (SRG) method. Pseudospin symmetry (PSS) and its breaking mechanism.

doi: 10.1103/PhysRevC.87.014334
Citations: PlumX Metrics


2013LI20      Phys.Rev. C 87, 054310 (2013)

H.Liang, T.Nakatsukasa, Z.Niu, J.Meng

Feasibility of the finite-amplitude method in covariant density functional theory

NUCLEAR STRUCTURE 16O; calculated unperturbed 0+ excitation strengths. 132Sn, 208Pb; calculated isoscalar giant monopole resonance (ISGMR). Self-consistent relativistic random-phase approximation (RPA) and finite-amplitude method (FAM) based on RMF theory. Comparison with experimental data. Discussed effects of the Dirac sea in the matrix-FAM scheme.

doi: 10.1103/PhysRevC.87.054310
Citations: PlumX Metrics


2013ME08      Phys.Scr. T154, 014010 (2013)

J.Meng, Y.Chen, H.Z.Liang, Y.F.Niu, Z.M.Niu, L.S.Song, W.Zhao, Z.Li, B.Sun, X.D.Xu, Z.P.Li, J.M.Yao, W.H.Long, T.Niksic, D.Vretenar

Mass and lifetime of unstable nuclei in covariant density functional theory

NUCLEAR STRUCTURE A=80-195; calculated masses, binding energies, β-decay T1/2. Finite-range droplet model and Weizsacker-Skyrme models, comparison with available data.

doi: 10.1088/0031-8949/2013/T154/014010
Citations: PlumX Metrics


2013NI09      Phys.Rev. C 87, 051303 (2013)

Z.M.Niu, Y.F.Niu, Q.Liu, H.Z.Liang, J.Y.Guo

Nuclear β+/EC decays in covariant density functional theory and the impact of isoscalar proton-neutron pairing

RADIOACTIVITY 32,34Ar, 36,38Ca, 40,42Ti, 46,48,50Fe, 50,52,54Ni, 56,58Zn, 96,98,100Cd, 100,102,104Sn(β+), (EC); calculated half-lives, B(GT). Self-consistent proton-neutron QRPA with relativistic Hartree-Bogoliubov (QRPA+RHB) calculations. Comparison with experimental data.

doi: 10.1103/PhysRevC.87.051303
Citations: PlumX Metrics


2013NI12      Phys.Lett. B 723, 172 (2013)

Z.M.Niu, Y.F.Niu, H.Z.Liang, W.H.Long, T.Niksic, D.Vretenar, J.Meng

β-decay half-lives of neutron-rich nuclei and matter flow in the r-process

RADIOACTIVITY Fe, Cd, 124Mo, 126Ru, 128Pd, 130Cd, 134Sn(β-); calculated T1/2, solar r-process abundances. Fully self-consistent proton-neutron quasiparticle random phase approximation (QRPA), based on the spherical relativistic Hartree-Fock-Bogoliubov (RHFB) framework.

doi: 10.1016/j.physletb.2013.04.048
Citations: PlumX Metrics


2013SH31      Phys.Rev. C 88, 024311 (2013)

S.Shen, H.Liang, P.Zhao, S.Zhang, J.Meng

Pseudospin symmetry in supersymmetric quantum mechanics. II. Spin-orbit effects

doi: 10.1103/PhysRevC.88.024311
Citations: PlumX Metrics


2012CH26      Phys.Rev. C 85, 067301 (2012)

Y.Chen, L.Li, H.Liang, J.Meng

Density-dependent deformed relativistic Hartree-Bogoliubov theory in continuum

NUCLEAR STRUCTURE 38Mg; calculated proton, neutron and matter rms radii, total ground state energy, quadrupole deformation, single particle energies of neutrons. Deformed relativistic continuum Hartree-Bogoliubov (RCHB) calculations, density-dependent meson-nucleon couplings. Comparison with spherical RCHB calculations.

doi: 10.1103/PhysRevC.85.067301
Citations: PlumX Metrics


2012HA16      Ann.Nucl.Energy 46, 179 (2012)

Y.Han, Y.Xu, H.Liang, H.Guo, C.Cai, Q.Shen

The analysis of n+237Np reactions for energies up to 200 MeV

NUCLEAR REACTIONS 237Np(n, γ), (n, F), (n, 2n), (n, xn), (n, xp), (n, xd), (n, xt), (n, xα) E<200 MeV; calculated σ, σ(θ, E), σ(θ), σ(E). Optical model, the intra-nuclear cascade model, the unified Hauser-Feshbach theory, comparison with ENDF/B-VII and JENDL-3 libraries and available data.

doi: 10.1016/j.anucene.2012.03.013
Citations: PlumX Metrics


2012HA24      Nucl.Sci.Eng. 172, 102 (2012)

Y.Han, Y.Xu, H.Liang, H.Guo, C.Cai, Q.Shen

Theoretical Calculations and Analysis of n + 27Al Reaction

NUCLEAR REACTIONS 27Al(n, X), (n, n), (n, n'), (n, p), (n, γ), (n, d), (n, t), (n, α), (n, 2n), (n, xn), (n, xp), (n, xα), E<200 MeV; calculated σ, σ(θ), σ(E), σ(θ, E). Comparison with ENDF/B-VII and JENDL-3 evaluated nuclear libraries.

doi: 10.13182/NSE11-28
Citations: PlumX Metrics


2012LI27      Phys.Rev. C 85, 064302 (2012)

H.Liang, P.Zhao, J.Meng

Fine structure of charge-exchange spin-dipole excitations in 16O

NUCLEAR REACTIONS 16O(polarized p, n), (n, p), E not given; analyzed fine structure of charge-exchange spin-dipole (SD) excitations using fully self-consistent random phase approximation based on the covariant density functional theory. Balance between the s- and ω-meson fields via the exchange terms.

doi: 10.1103/PhysRevC.85.064302
Citations: PlumX Metrics


2012LI36      Phys.Rev. C 86, 021302 (2012)

H.Liang, P.Zhao, P.Ring, X.Roca-Maza, J.Meng

Localized form of Fock terms in nuclear covariant density functional theory

NUCLEAR STRUCTURE 90Zr, 208Pb; calculated Gamow-Teller resonance (GTR) and spin-dipole resonance (SDR) strength distributions. Relativistic Hartree-Fock (RHF) covariant density functional. Comparison with experimental data.

doi: 10.1103/PhysRevC.86.021302
Citations: PlumX Metrics


2012ZH18      Phys.Rev. C 85, 054310 (2012)

P.W.Zhao, J.Peng, H.Z.Liang, P.Ring, J.Meng

Covariant density functional theory for antimagnetic rotation

NUCLEAR STRUCTURE 105Cd; calculated total Routhians, energy spectrum, total angular momenta, kinetic and dynamic moments of inertia, B(E2) values, alignments, Dirac currents, density distribution contours for antimagnetic rotational (AMR) band using tilted-axis cranking and relativistic mean field (TAC-RMF), and TAC with covariant density functional theory (CDFT). Comparison with experimental data.

doi: 10.1103/PhysRevC.85.054310
Citations: PlumX Metrics


2011GU15      Phys.Rev. C 83, 064618 (2011)

H.Guo, Y.Xu, H.Liang, Y.Han, Q.Shen

4He microscopic optical model potential

NUCLEAR REACTIONS 12C, 58Ni, 116Sn, 208Pb(α, X), E=20-300 MeV; calculated radial dependence of real and imaginary parts of the potential, volume integral and rms radii. 12C, 16O, 28Si, 40Ca, 58,60Ni, 112,116,120,124Sn, 208Pb, 209Bi(α, X), E=5-200 MeV; calculated reaction σ(E). 62,64Ni, 63,65Cu, 64,66,68,70Zn, 70,72Ge(α, α), E=25.0 MeV; 94Mo, 107Ag, 116,122,124Sn(α, α), E=25.2 MeV; 20,22Ne, 24,26Mg, 28Si, 40Ar, 40,42,44,48Ca, 56Fe, 56,58,60,62Ni, 90Zr, 124Sn, 208Pb(α, α), E=104 MeV; 16O, 46,48Ti, 58Ni, 116Sn, 197Au(α, α), E=240 MeV; 12C, 58Ni, 90Zr, 116Sn, 144Sm, 208Pb(α, α), E=386.0 MeV; calculated σ(θ). 12C(α, α), E=120.0-400 MeV; 58Ni(α, α), E=29.0-386 MeV; 24Mg(α, α), E=39.0-172.5 MeV; 107Ag(α, α), E=15.0-43.0 MeV; 116Sn(α, α), E=23.3-386 MeV; 124Sn(α, α), E=23.3-104 MeV; 208Pb(α, α), E=23.6-386.0 MeV; 209Bi(α, α), E=19.0-104 MeV; calculated σ(E, θ); deduced 4He microscopic optical model potential by Greens function method. Comparison with experimental data.

doi: 10.1103/PhysRevC.83.064618
Citations: PlumX Metrics


2011HA28      Ann.Nucl.Energy 38, 1852 (2011)

Y.Han, Y.Xu, H.Liang, H.Guo, Q.Shen

Calculation and evaluations for n + 63, 65, nat.Cu reactions

NUCLEAR REACTIONS Cu, 63,65Cu(n, X), (n, n), (n, n'), (n, γ), (n, p), (n, d), (n, α), (n, 2n), (n, 3n), E<250 MeV; calculated σ, σ(θ). Optical model, preequilibrium theory, comparison with ENDF/B-VII.0, JENDL-3.3 evaluated nuclear libraries and experimental data.

doi: 10.1016/j.anucene.2011.05.016
Citations: PlumX Metrics


2011HA29      Ann.Nucl.Energy 38, 1950 (2011)

Y.Han, Y.Xu, H.Liang, H.Guo, Q.Shen

Double differential cross sections of n + 63, 65, nat.Cu reactions

NUCLEAR REACTIONS Cu, 63,65Cu(n, X), (n, xn), (n, xp), (n, xα), (n, xd), (n, xt), E<200 MeV; calculated σ(θ, E). Optical model, unified Hauser-Feshbach and exciton model, comparison with ENDF/B-VII.0, JENDL-3.3 evaluated nuclear libraries and experimental data.

doi: 10.1016/j.anucene.2011.05.001
Citations: PlumX Metrics


2011HA44      J.Korean Phys.Soc. 59, 855s (2011)

Y.Han, Y.Xu, H.Liang, H.Guo, Q.Shen, C.Cai

The Theoretical Calculation of Cross Section and Spectrum for n+238U Reaction up to 150 MeV

NUCLEAR REACTIONS 238U(n, f), (n, xn), (n, d), (n, t), (n, p), (n, α), E=0-200 MeV; calculated σ, dσ(E, θ) using different reaction models.

doi: 10.3938/jkps.59.855
Citations: PlumX Metrics


2011LI03      Phys.Rev. C 83, 011302 (2011)

H.Liang, P.Zhao, L.Li, J.Meng

Spin-orbit and orbit-orbit strengths for the radioactive neutron-rich doubly magic nucleus 132Sn in relativistic mean-field theory

NUCLEAR STRUCTURE 132Sn; Z=50, N=62-86; N=82, Z=50-74; calculated S(2n), S(2p), Nilsson model spin-orbit parameter and orbit-orbit parameter using Relativistic mean-field theory with the PC-PK1, NL3*, DD-ME2, PK1, and PK-DD effective interactions for even-even Z=50 isotopes and N=82 isotones. Comparison with experimental data.

doi: 10.1103/PhysRevC.83.011302
Citations: PlumX Metrics


2011LI05      Nucl.Instrum.Methods Phys.Res. B269, 597 (2011)

H.Liang, Y.Han, Q.Shen

Calculation and analysis of p + 40, 42, 43, 44, 46, 48, natCa reaction cross sections at incident energies from threshold to 250 MeV

NUCLEAR REACTIONS 40,42,43,44,46,48Ca, Ca(p, p), (p, p'), (p, n), (p, 2n), (p, X), (p, 3He), (p, 2p), (p, xn), (p, xd), (p, x3He), (p, xα), E<250 MeV; calculated σ, σ(θ). Optical model calculations.

doi: 10.1016/j.nimb.2011.01.015
Citations: PlumX Metrics


2011LI09      Phys.Rev. C 83, 041301 (2011)

H.Liang, P.Zhao, Y.Zhang, J.Meng, N.Van Giai

Perturbative interpretation of relativistic symmetries in nuclei

doi: 10.1103/PhysRevC.83.041301
Citations: PlumX Metrics


2011LI27      Nucl.Instrum.Methods Phys.Res. B269, 1899 (2011)

H.Liang, Y.Han, Q.Shen

Theoretical calculation and analysis of the p+59Co reaction

NUCLEAR REACTIONS 59Co(p, X)57Co/58Co/56Co/56Mn/55Co/55Fe/54Mn/52Mn/51Cr, 59Co(p, n), (p, np), (p, 3n), (p, 4n), (p, xn), (p, xp), (p, xα), (p, xd), (p, xt), (p, x3He), E<200 MeV; calculated σ, σ(θ), σ(E), σ(θ, E). Optical model, comparison with experimental data.

doi: 10.1016/j.nimb.2011.05.014
Citations: PlumX Metrics


2011ZH28      Phys.Rev.Lett. 107, 122501 (2011)

P.W.Zhao, J.Peng, H.Z.Liang, P.Ring, J.Meng

Antimagnetic Rotation Band in Nuclei: A Microscopic Description

NUCLEAR STRUCTURE 105Cd; calculated angular momentum, energy and rotational frequency, B(E2). Covariant density functional theory.

doi: 10.1103/PhysRevLett.107.122501
Citations: PlumX Metrics


2011ZH57      Phys.Lett. B 699, 181 (2011)

P.W.Zhao, S.Q.Zhang, J.Peng, H.Z.Liang, P.Ring, J.Meng

Novel structure for magnetic rotation bands in 60Ni

NUCLEAR STRUCTURE 60Ni; calculated energy spectra, total angular momenta, evolution of deformation parameters, B(M1), B(E2), B(M1)/B(E2) ratios; deduced systematics of the newly observed shears bands. The self-consistent tilted axis cranking relativistic mean-field theory based on a point-coupling interaction.

doi: 10.1016/j.physletb.2011.03.068
Citations: PlumX Metrics


2010HA06      Phys.Rev. C 81, 024616 (2010)

Y.Han, Y.Xu, H.Liang, H.Guo, Q.Shen

Global phenomenological optical model potential for nucleon-actinide reactions at energies up to 300 MeV

NUCLEAR REACTIONS 232Th, 233,235,238U, 237Np, 239,240,242Pu, 241Am(n, X), E=0.01-300 MeV; calculated total σ. 235,238U(n, n), E=0.01-300 MeV; calculated σ. 232Th, 235,238U, 239Pu(n, n'), E=0.1-300 MeV; calculated non-inelastic σ. 232Th, 235,238U, 239Pu(n, n), (n, n'), E=0.14-15.2 MeV; 238U(n, n), E=96 MeV; calculated σ(θ) for elastic σ, inelastic σ and elastic+inelastic σ. 232Th, 238U(p, X), E=0-300 MeV; calculated σ. 232Th, 235,238U(p, p), (p, p'), E=16-95 MeV; calculated σ(θ). global phenomenological optical model potential. Deduced of neutron and proton global optical model potential parameters. Comparison and analysis with experimental data.

doi: 10.1103/PhysRevC.81.024616
Citations: PlumX Metrics


2010LI30      Eur.Phys.J. A 44, 119 (2010)

H.Liang, W.H.Long, J.Meng, N.Van Giai

Spin symmetry in Dirac negative-energy spectrum in density-dependent relativistic Hartree-Fock theory

NUCLEAR STRUCTURE 16O; calculated single-particle energies, spin-orbit splitting, associated features of the negative-energy spectrum. Density-dependent relativistic Hartree-Fock theory.

doi: 10.1140/epja/i2010-10938-6
Citations: PlumX Metrics


2010LI52      J.Phys.:Conf.Ser. 205, 012028 (2010)

H.Liang, N.Van Giai, J.Meng

Isospin symmetry-breaking corrections for superallowed β decay in relativistic RPA approaches

RADIOACTIVITY 10C, 14O, 18Ne, 26Al, 26Si, 30S, 34Cl, 34Ar, 38K, 38Ca, 42Sc, 42Ti, 54Co, 66As, 70Br, 74Br(EC), (β+); calculated ft, matrix elements, isospin symmetry-breaking corrections Δδc using self-consistent relativistic RPA.

doi: 10.1088/1742-6596/205/1/012028
Citations: PlumX Metrics


2010ME09      Nucl.Phys. A834, 436c (2010)

J.Meng, Z.P.Li, H.Z.Liang, Z.M.Niu, J.Peng, B.Qi, B.Sun, S.Y.Wang, J.M.Yao, S.Q.Zhang

Covariant Density Functional Theory for Nuclear Structure and Application in Astrophysics

NUCLEAR STRUCTURE 144,146,148,150,152,154,156Nd; calculated levels, J, π, B(E2), mass excess using covariant density functional theory. Comparison with data.

doi: 10.1016/j.nuclphysa.2010.01.058
Citations: PlumX Metrics


2010MO12      Phys.Rev. C 81, 064327 (2010)

M.Moreno Torres, M.Grasso, H.Liang, V.De Donno, M.Anguiano, N.Van Giai

Tensor effects in shell evolution at Z, N=8, 20, and 28 using nonrelativistic and relativistic mean-field theory

NUCLEAR STRUCTURE 14C, 16,22O, 40,48,52,54Ca, 34,42Si, 36,44S, 56,60,66,68,78Ni; analyzed effects of the tensor force on the neutron and proton gaps. Hartree-Fock calculations with Skyrme and Gogny interactions. Non-relativistic and relativistic mean-field approaches. Comparison with experimental data.

doi: 10.1103/PhysRevC.81.064327
Citations: PlumX Metrics


2010SU15      Nucl.Instrum.Methods Phys.Res. B268, 2585 (2010)

X.Su, H.Liang, Y.Han, C.Cai, Q.Shen

The theoretical calculation of p+232Th reaction for energies up to 250 MeV

NUCLEAR REACTIONS 232Th(p, n), (p, 2n), (p, 3n), (p, 6n), (p, xn), (p, xα), (p, xt), (p, F), (p, X), E<250 MeV; calculated σ, σ(θ), σ(E), σ(θ, E). Optical and Iwamoto-Harada models.

doi: 10.1016/j.nimb.2010.07.003
Citations: PlumX Metrics


2010ZH35      Chin.Phys.Lett. 27, 102103 (2010)

W.Zhang, H.-Z.Liang, S.-Q.Zhang, J.Meng

Search for Ring-Like Nuclei under Extreme Conditions

NUCLEAR STRUCTURE 24Mg; calculated potential energy surfaces, configurations, total and excitation energies, deformation parameters, rms radii. Adiabatic and diabatic constrained RMF approaches.

doi: 10.1088/0256-307X/27/10/102103
Citations: PlumX Metrics


2009LI22      Phys.Rev. C 79, 064316 (2009)

H.Liang, N.V.Giai, J.Meng

Isospin corrections for superallowed Fermi β decay in self-consistent relativistic random-phase approximation approaches

RADIOACTIVITY 10C, 14O, 18Ne, 26Si, 26Al, 30S, 34Ar, 34Cl, 38Ca, 38K, 42Ti, 42Sc, 54Co, 66As, 70Br, 74Rb(β+); calculated excitation energies, nucleus independent Ft values, and isospin symmetry-breaking corrections for superallowed 0+ to 0+ β transitions using self-consistent random phase approximation (RPA) in the relativistic framework. Comparison with experimental data. Discussed Vud matrix element and unitarity of the Cabibbo-Kobayashi-Maskawa matrix element.

doi: 10.1103/PhysRevC.79.064316
Citations: PlumX Metrics


2009NI01      Chin.Phys.Lett. 26, 032103 (2009)

Y.-F.Niu, H.-Z.Liang, J.Meng

Stability of Strutinsky Shell Correction Energy in Relativistic Mean Field Theory

NUCLEAR STRUCTURE 208Pb; calculated neutron shell correction energies using a RMF approach.

doi: 10.1088/0256-307X/26/3/032103
Citations: PlumX Metrics


2009ZH47      Chin.Phys.C 33, Supplement 1, 113 (2009)

Y.Zhang, H.-Z.Liang, J.Meng

First attempt to overcome the disaster of Dirac sea in imaginary time step method

doi: 10.1088/1674-1137/33/S1/036
Citations: PlumX Metrics


2008LI38      Phys.Rev.Lett. 101, 122502 (2008)

H.Liang, N.Van Giai, J.Meng

Spin-Isospin Resonances: A Self-Consistent Covariant Description

NUCLEAR STRUCTURE 48Ca, 90Zr, 208Pb; calculated GTR and SDR strength distributions using a RHF+RPA appraoch.

doi: 10.1103/PhysRevLett.101.122502
Citations: PlumX Metrics


2008TA12      Phys.Rev. C 77, 054316 (2008)

D.Tarpanov, H.Liang, N.Van Giai, C.Stoyanov

Mean-field study of single-particle spectra evolution in Z = 14 and N = 28 chains

NUCLEAR STRUCTURE 34,36,38,40,42Si, 44S, 46Ar, 48Ca; calculated spin-orbit splitting, subshell closure, single-particle levels. Skyrme-Hartree-Fock and relativistic Hartree-Fock mean field models.

doi: 10.1103/PhysRevC.77.054316
Citations: PlumX Metrics


Back to query form


Note: The following list of authors and aliases matches the search parameter H.Liang: , H.Y.LIANG, H.Z.LIANG