NSR Query Results


Output year order : Descending
Format : Normal

NSR database version of April 11, 2024.

Search: Author = K.Hagino

Found 231 matches.

    Showing 1 to 100.

   [Next]

Back to query form



2024HA07      Phys.Rev. C 109, 034611 (2024)

K.Hagino

Barrier penetration with a finite mesh method

doi: 10.1103/PhysRevC.109.034611
Citations: PlumX Metrics


2024HI01      Phys.Rev. C 109, 014312 (2024)

N.Hizawa, K.Hagino

Nonempirical shape dynamics of heavy nuclei with multitask deep learning

doi: 10.1103/PhysRevC.109.014312
Citations: PlumX Metrics


2023BE04      Phys.Rev. C 107, 044615 (2023)

G.F.Bertsch, K.Hagino

Modeling fission dynamics at the barrier in a discrete-basis formalism

NUCLEAR REACTIONS 235U(n, F), E<6 MeV; calculated potential energy surface the fission path in 236U, fission-to-capture branching ratio, transmission probability to decay channels, average reaction probabilities for capture and fission. Configuration-interaction framework with matrix Hamiltonian in a space of Slater determinants composed of nucleon orbitals and matrix elements derived from nucleon-nucleon interactions.

doi: 10.1103/PhysRevC.107.044615
Citations: PlumX Metrics


2023GU15      Phys.Lett. B 845, 138120 (2023)

Y.K.Gupta, V.B.Katariya, G.K.Prajapati, K.Hagino, D.Patel, V.Ranga, U.Garg, L.S.Danu, A.Pal, B.N.Joshi, S.Dubey, V.V.Desai, S.Panwar, N.Kumar, S.Mukhopadhyay, P.Singh, N.Sirswal, R.Sariyal, I.Mazumdar, B.V.John

Precise determination of quadrupole and hexadecapole deformation parameters of the sd-shell nucleus, 28Si

NUCLEAR REACTIONS 90Zr(28Si, 28Si), E=70-102 MeV; measured reaction products. 28Si; deduced σ, quadrupole and hexadecapole deformation parameters using a Bayesian analysis within the framework of coupled channels (CC) calculations. BARC-TIFR 14 MV Pelletron accelerator facility.

doi: 10.1016/j.physletb.2023.138120
Citations: PlumX Metrics

Data from this article have been entered in the XUNDL database. For more information, click here.


2023HI05      Phys.Rev. C 108, 034311 (2023)

N.Hizawa, K.Hagino, K.Yoshida

Analysis of a Skyrme energy density functional with deep learning

doi: 10.1103/PhysRevC.108.034311
Citations: PlumX Metrics


2023MA50      Phys.Rev. C 108, L051302 (2023)

M.Matsumoto, Y.Tanimura, K.Hagino

Extension of the generator coordinate method with basis optimization

doi: 10.1103/PhysRevC.108.L051302
Citations: PlumX Metrics


2023UZ01      Phys.Rev. C 108, 024319 (2023)

K.Uzawa, K.Hagino

Schematic model for induced fission in a configuration-interaction approach

NUCLEAR STRUCTURE 236U; calculated orbital level spacing, single-particle orbitals in a deformed Woods-Saxon potential. Investigated the fission reaction probability sensitivity to the off-diagonal neutron-proton interaction.

doi: 10.1103/PhysRevC.108.024319
Citations: PlumX Metrics


2022BE07      Phys.Rev. C 105, 034618 (2022)

G.F.Bertsch, K.Hagino

Generator coordinate method for transition-state dynamics in nuclear fission

doi: 10.1103/PhysRevC.105.034618
Citations: PlumX Metrics


2022HA09      Phys.Rev. C 105, 034323 (2022)

K.Hagino, G.F.Bertsch

Diabatic Hamiltonian matrix elements made simple

doi: 10.1103/PhysRevC.105.034323
Citations: PlumX Metrics


2022HA15      Prog.Part.Nucl.Phys. 125, 103951 (2022)

K.Hagino, K.Ogata, A.M.Moro

Coupled-channels calculations for nuclear reactions: From exotic nuclei to superheavy elements

NUCLEAR REACTIONS 12C(p, p), E<200 MeV; 12C, 24Mg(α, X), E<400 MeV; 16O(16O, 16O), E=70 MeV/nucleon; 12C(d, np), E=12 MeV; 1H(6He, 6He), E=25, 41 MeV/nucleon; 1H(11Be, X), E=63.7 MeV/nucleon; 197Au(11Be, X), E(cm)=29.64, 37.1 MeV; 248Cm(48Ca, X), E<200 MeV; calculated σ(θ), σ. Comparison with experimental data.

NUCLEAR STRUCTURE 11Li, 12Be, 22C, 24Mg; calculated energy levels, J, π.

doi: 10.1016/j.ppnp.2022.103951
Citations: PlumX Metrics


2022HA26      Phys.Rev. C 106, 034313 (2022)

K.Hagino, H.Sagawa

Spatial correlation of a particle-hole pair with a repulsive isovector interaction

NUCLEAR STRUCTURE 56Co; calculated energies, and components of the wave functions for the 4+ and 2+ states. 56Co, 40K; calculated uncorrelated and the correlated proton-hole distribution two-dimensional contours of the 4+ and 2+ states in 56Co, and 3- state in 40K using spatial correlation of an isovector particle-hole pair by Hartree-Fock + Tamm-Dancoff approximation with Skyrme interaction; deduced large concentration of the two-body density at positions where the neutron particle and the proton hole states located on the opposite sides to each other with respect to the core nucleus due to repulsive isovector residual interaction, in contrast to attractive pairing interaction between the valence neutrons in 11Li and 6He.

doi: 10.1103/PhysRevC.106.034313
Citations: PlumX Metrics


2022HI03      Phys.Rev. C 105, 064302 (2022)

N.Hizawa, K.Hagino, K.Yoshida

Applications of the dynamical generator coordinate method to quadrupole excitations

NUCLEAR STRUCTURE 16O; calculated energy surface for the quadrupole motion, rms radius, sum rule for the quadrupole and monopole operators, square of the collective wave functions for the ground and first excited states. Dynamical generator coordinate method (DGCM) using Gogny D1S interaction.

doi: 10.1103/PhysRevC.105.064302
Citations: PlumX Metrics


2022MO25      J.Phys.(London) G49, 095101 (2022)

G.Montagnoli, A.M.Stefanini, C.L.Jiang, K.Hagino, F.Niola, D.Brugnara, P.Colovic, G.Colucci, L.Corradi, R.Depalo, E.Fioretto, A.Goasduff, G.Pasqualato, F.Scarlassara, S.Szilner, I.Zanon

Fusion of 12C + 24Mg at extreme sub-barrier energies

NUCLEAR REACTIONS 12C(24Mg, X), E=25.5-48 MeV; measured reaction products, TOF; deduced evaporation residue σ(θ), fusion σ. Comparison with calculations. The XTU Tandem Van de Graaff accelerator at Laboratori Nazionali di Legnaro (LNL) of INFN.

doi: 10.1088/1361-6471/ac7edd
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 datasetD8051.


2022UZ01      Phys.Rev. C 105, 034326 (2022)

K.Uzawa, K.Hagino, K.Yoshida

Microscopic description of cluster decays based on the generator coordinate method

RADIOACTIVITY 222Ra(14C); 228Th(20O); 232U(24Ne); calculated decay rates. Investigated the preformation probabilities of the clusters. Generator coordinate method (GCM) with octupole moment used as generator coordinate. Comparison to experimental data.

NUCLEAR STRUCTURE 222Ra; calculated quadrupole and octupole deformation parameters, the rms matter radius, the rms radius of protons, the total energy. Skyrme Hartree-Fock+BCS calculations with SLy4 and SkM* interactions.

doi: 10.1103/PhysRevC.105.034326
Citations: PlumX Metrics


2021CA10      Eur.Phys.J. A 57, 11 (2021)

L.F.Canto, K.Hagino, M.Ueda

Semi-classical approaches to heavy-ion reactions: fusion, rainbow, and glory

NUCLEAR REACTIONS 208Pb(11Li, X), 209Bi(6Li, X), (7Li, X), E(cm)=10-40 MeV; analyzed available data; deduced fusion σ.

doi: 10.1140/epja/s10050-020-00312-8
Citations: PlumX Metrics


2021CH15      Phys.Rev. C 103, 034611 (2021)

K.-S.Choi, K.S.Kim, M.-K.Cheoun, W.Y.So, K.Hagino

Fusion reaction of a weakly bound nucleus with a deformed target

NUCLEAR REACTIONS 232Th(14C, X), (14C, X), E(cm)=50-70 MeV; calculated fusion σ(E). 232Th(15C, X), E not given; calculated potential between the valence neutron in 15C and the target nucleus. 15C; calculated density distribution with contributions from the core nucleus and the valence neutron. Double folding procedure with deformed Woods-Saxon (WS) potential for the relative motion between the target and the projectile nuclei. Comparison with experimental data.

doi: 10.1103/PhysRevC.103.034611
Citations: PlumX Metrics


2021HI07      Phys.Rev. C 103, 034313 (2021)

N.Hizawa, K.Hagino, K.Yoshida

Generator coordinate method with a conjugate momentum: Application to particle number projection

NUCLEAR STRUCTURE 16,18O, 40,42Ca, 56,58,64Ni; calculated ground-state energies using BCS, and three different versions of dynamical generator coordinate method (DGCM), pairing gap for 56Ni in the BCS approximation and for the basis states for the DGCM, total and pairing energies for 56,58Ni. Discussed comparison with the DGCM and variation after projection (VAP) methods.

doi: 10.1103/PhysRevC.103.034313
Citations: PlumX Metrics


2021JI09      Eur.Phys.J. A 57, 235 (2021), Erratum Eur.Phys.J. A 59, 84 (2023)

C.L.Jiang, B.B.Back, K.E.Rehm, K.Hagino, G.Montagnoli, A.M.Stefanini

Heavy-ion fusion reactions at extreme sub-barrier energies

NUCLEAR REACTIONS 64Ni(64Ni, X), E=82-102 MeV; 90Zr(90Zr, X), E=340-400 MeV; 89Y(58Ni, X), E=200-260 MeV; 24Mg, 30Si(12C, X), E=8-20 MeV; 10B(10B, X), 16O(16O, X), E<20 MeV; analyzed available data; deduced fusion barriers, the fusion hindrance effect with analytical forms of the barrier-height distributions or a modified version of the classic Wong formula.

doi: 10.1140/epja/s10050-021-00536-2
Citations: PlumX Metrics


2021UZ01      Phys.Rev. C 104, L011303 (2021)

K.Uzawa, K.Hagino, K.Yoshida

Role of triaxiality in deformed halo nuclei

NUCLEAR STRUCTURE N=43; calculated neutron levels as a function of quadrupole deformation parameter β using axially deformed Woods-Saxon potential. N=43, 19C; calculated root-mean-square (rms) radius as a function of single-particle energy and triaxial deformation parameter γ with fixed quadrupole deformation β parameter in deformed Woods-Saxon potential for deformed halo nuclei, Nilsson diagram for neutron levels for N around 13. Comparison with experimental rms values for 19C.

doi: 10.1103/PhysRevC.104.L011303
Citations: PlumX Metrics


2020BE28      J.Phys.(London) G47, 113002 (2020)

M.Bender, R.Bernard, G.Bertsch, S.Chiba, J.Dobaczewski, N.Dubray, S.A.Giuliani, K.Hagino, D.Lacroix, Z.Li, P.Magierski, J.Maruhn, W.Nazarewicz, J.Pei, S.Peru, N.Pillet, J.Randrup, D.Regnier, P.G.Reinhard, L.M.Robledo, W.Ryssens, J.Sadhukhan, G.Scamps, N.Schunck, C.Simenel, J.Skalski, I.Stetcu, P.Stevenson, S.Umar, M.Verriere, D.Vretenar, M.Warda, S.Aberg

Future of nuclear fission theory

doi: 10.1088/1361-6471/abab4f
Citations: PlumX Metrics


2020CO04      Acta Phys.Pol. B51, 769 (2020)

G.Colucci, G.Montagnoli, A.M.Stefanini, K.Hagino, A.Caciolli, P.Colovic, L.Corradi, E.Fioretto, F.Galtarossa, A.Goasduff, J.Grebosz, M.Mazzocco, D.Montanari, C.Parascandolo, F.Scarlassara, M.Siciliano, E.Strano, S.Szilner, N.Vukman

Study of Sub-barrier Fusion of 36S+50Ti, 51V Systems

doi: 10.5506/APhysPolB.51.769
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 datasetD8019.


2020CO07      Phys.Rev.Lett. 124, 212503 (2020)

K.J.Cook, T.Nakamura, Y.Kondo, K.Hagino, K.Ogata, A.T.Saito, N.L.Achouri, T.Aumann, H.Baba, F.Delaunay, Q.Deshayes, P.Doornenbal, N.Fukuda, J.Gibelin, J.W.Hwang, N.Inabe, T.Isobe, D.Kameda, D.Kanno, S.Kim, N.Kobayashi, T.Kobayashi, T.Kubo, S.Leblond, J.Lee, F.M.Marques, R.Minakata, T.Motobayashi, K.Muto, T.Murakami, D.Murai, T.Nakashima, N.Nakatsuka, A.Navin, S.Nishi, S.Ogoshi, N.A.Orr, H.Otsu, H.Sato, Y.Satou, Y.Shimizu, H.Suzuki, K.Takahashi, H.Takeda, S.Takeuchi, R.Tanaka, Y.Togano, J.Tsubota, A.G.Tuff, M.Vandebrouck, K.Yoneda

Halo Structure of the Neutron-Dripline Nucleus 19B

NUCLEAR REACTIONS Pb, C(19B, 2n)17B, E=220 MeV/nucleon; measured reaction products, Eγ, Iγ. 19B; deduced σ(E), exclusive and inclusive neutron removal σ, Coulomb dissociation σ, two-neutron probability densities, B(E1).

doi: 10.1103/PhysRevLett.124.212503
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 datasetE2670. Data from this article have been entered in the XUNDL database. For more information, click here.


2020FO02      Eur.Phys.J. A 56, 49 (2020)

L.Fortunato, C.E.Alonso, J.M.Arias, J.Casal, K.Hagino, J.A.Lay, E.G.Lanza, S.M.Lenzi, J.Lubian, T.Oishi, F.Perez-Bernal

An overview of the scientific contribution of Andrea Vitturi to nuclear physics

doi: 10.1140/epja/s10050-020-00034-x
Citations: PlumX Metrics


2020GU11      Phys.Lett. B 806, 135473 (2020)

Y.K.Gupta, B.K.Nayak, U.Garg, K.Hagino, K.B.Howard, N.Sensharma, M.Senyigit, W.P.Tan, P.D.O'Malley, M.Smith, R.Gandhi, T.Anderson, R.J.deBoer, B.Frentz, A.Gyurjinyan, O.Hall, M.R.Hall, J.Hu, E.Lamere, Q.Liu, A.Long, W.Lu, S.Lyons, K.Ostdiek, C.Seymour, M.Skulski, B.Vande Kolk

Determination of hexadecapole (β4) deformation of the light-mass nucleus 24Mg using quasi-elastic scattering measurements

NUCLEAR REACTIONS 90Zr(16O, 16O), (24Mg, 24Mg), E=61 MeV; measured reaction products. 24Mg; deduced deformation parameters, σ, B(Eλ). CCFULL calculations.

doi: 10.1016/j.physletb.2020.135473
Citations: PlumX Metrics

Data from this article have been entered in the XUNDL database. For more information, click here.


2020HA06      Prog.Theor.Exp.Phys. 2020, 023D01 (2020)

K.Hagino, H.Sagawa, S.Kanaya, A.Odahara

Resonance width for a particle-core coupling model with a square-well potential

doi: 10.1093/ptep/ptz163
Citations: PlumX Metrics


2020HA19      Phys.Rev. C 101, 064317 (2020)

K.Hagino, G.F.Bertsch

Microscopic model for spontaneous fission: Validity of the adiabatic approximation

doi: 10.1103/PhysRevC.101.064317
Citations: PlumX Metrics


2020HA25      Phys.Rev. C 102, 024316 (2020)

K.Hagino, G.F.Bertsch

Least action and the maximum-coupling approximations in the theory of spontaneous fission

doi: 10.1103/PhysRevC.102.024316
Citations: PlumX Metrics


2020TA02      Phys.Rev.Lett. 124, 052502 (2020)

T.Tanaka, K.Morita, K.Morimoto, D.Kaji, H.Haba, R.A.Boll, N.T.Brewer, S.Van Cleve, D.J.Dean, S.Ishizawa, Y.Ito, Y.Komori, K.Nishio, T.Niwase, B.C.Rasco, J.B.Roberto, K.P.Rykaczewski, H.Sakai, D.W.Stracener, K.Hagino

Study of Quasielastic Barrier Distributions as a Step towards the Synthesis of Superheavy Elements with Hot Fusion Reactions

NUCLEAR REACTIONS 248Cm(22Ne, X), (26Mg, X), 238U(48Ca, X), E(cm)=165.1, 203.7 MeV; measured reaction products; deduced σ. Comparison with available data.

doi: 10.1103/PhysRevLett.124.052502
Citations: PlumX Metrics


2020ZH02      Phys.Lett. B 801, 135170 (2020), Corrigendum Phys.Lett. B 803, 135278 (2020)

N.T.Zhang, X.Y.Wang, D.Tudor, B.Bucher, I.Burducea, H.Chen, Z.J.Chen, D.Chesneanu, A.I.Chilug, L.R.Gasques, D.G.Ghita, C.Gomoiu, K.Hagino, S.Kubono, Y.J.Li, C.J.Lin, W.P.Lin, R.Margineanu, A.Pantelica, I.C.Stefanescu, M.Straticiuc, X.D.Tang, L.Trache, A.S.Umar, W.Y.Xin, S.W.Xu, Y.Xu

Constraining the 12C+12C astrophysical S-factors with the 12C+13C measurements at very low energies

NUCLEAR REACTIONS 12C(13C, p)24Na, E=4.640-10.995 MeV; measured reaction products, Eγ, Iγ; deduced σ, branching ratio, S-factor.

doi: 10.1016/j.physletb.2019.135170
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 datasetD0970.


2019CO09      Eur.Phys.J. A 55, 111 (2019)

G.Colucci, G.Montagnoli, A.M.Stefanini, K.Hagino, A.Caciolli, P.Colovic, L.Corradi, E.Fioretto, F.Galtarossa, A.Goasduff, J.Grebosz, M.Mazzocco, D.Montanari, C.Parascandolo, F.Scarlassara, M.Siciliano, E.Strano, S.Szilner, N.Vukman

Sub-barrier fusion involving odd mass nuclei: The case of 36S + 50Ti, 51V

doi: 10.1140/epja/i2019-12796-0
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 datasetD8019.


2019HA33      Phys.Rev. C 100, 064614 (2019)

K.Hagino, S.Sakaguchi

Subbarrier fusion reactions of an aligned deformed nucleus

NUCLEAR REACTIONS 165Ho(16O, X), E(cm)=55-75 MeV; calculated fusion σ(E) and fusion barrier as a function of the incident beam energy and alignment of a well-deformed odd-mass nucleus with respect to the beam direction using isocentrifugal and the sudden tunneling approximations; deduced sensitivity of fusion cross sections and barrier distribution to the magnetic substate of the target nucleus, in particular for positive β4 deformation parameter.

doi: 10.1103/PhysRevC.100.064614
Citations: PlumX Metrics


2019OG01      Phys.Rev. C 99, 065808 (2019)

R.Ogura, K.Hagino, C.A.Bertulani

Potential model for nuclear astrophysical fusion reactions with a square-well potential

NUCLEAR REACTIONS 16O(16O, X), E(cm)=6-13 MeV; calculated astrophysical S factor using potential model with various square-well and Woods-Saxon potentials. Comparison with experimental data.

doi: 10.1103/PhysRevC.99.065808
Citations: PlumX Metrics


2019PI10      Phys.Rev. C 100, 014616 (2019)

E.Piasecki, M.Kowalczyk, S.Yusa, A.Trzcinska, K.Hagino

Dissipation and tunneling in heavy-ion reactions near the Coulomb barrier

NUCLEAR REACTIONS 58,60,61Ni(20Ne, 20Ne), E(effective)=32-44 MeV; 90,92Zr(20Ne, 20Ne), E(effective)=40-62 MeV; 118Sn(20Ne, 20Ne), E(effective)=52-74 MeV; 208Pb(20Ne, 20Ne), E(effective)=82-110 MeV; calculated σ(E), barrier distributions, and barrier penetrabilities. 92Zr(20Ne, X), E(cm)=42-66 MeV; calculated fusion σ(E). Coupled channel (CC) calculations plus random matrix theory (RMT), including dissipation effects. Comparison with experimental data.

doi: 10.1103/PhysRevC.100.014616
Citations: PlumX Metrics


2019SE08      Phys.Rev. C 99, 051602 (2019)

K.Sekizawa, K.Hagino

Time-dependent Hartree-Fock plus Langevin approach for hot fusion reactions to synthesize the Z = 120 superheavy element

NUCLEAR REACTIONS 254Fm(48Ca, X)302120*, E(cm)=212.8, 255.4 MeV; 248Cm(54Cr, X)302120*, E(cm)=243.2, 291.8 MeV; 249Bk(51V, X)300120*, E(cm)=237.0, 284.4 MeV; 257Fm(48Ca, X)305120*, E(cm)=212.4, 254.9 MeV; calculated distance of closest approaches, and dissipated energies using time-dependent Hartree-Fock (TDHF) method with Skyrme interactions; calculated evaporation residue formation probabilities using Langevin with statistical (fusion by diffusion) models.

doi: 10.1103/PhysRevC.99.051602
Citations: PlumX Metrics


2018CH19      Phys.Lett. B 780, 455 (2018)

K.-S.Choi, M.-K.Cheoun, W.Y.So, K.Hagino, K.S.Kim

Coupled-channels analyses for 9, 11Li + 208Pb fusion reactions with multi-neutron transfer couplings

NUCLEAR REACTIONS 208Pb(9Li, X), (11Li, X), E(cm)<45 MeV; analyzed available data; deduced fusion σ, nuclear potential.

doi: 10.1016/j.physletb.2018.03.049
Citations: PlumX Metrics


2018HA15      Phys.Rev. C 97, 034623 (2018)

K.Hagino, A.B.Balantekin, N.W.Lwin, E.Shwe Zin Thein

Origin of a maximum of the astrophysical S factor in heavy-ion fusion reactions at deep subbarrier energies

NUCLEAR REACTIONS 64Ni(64Ni, X), E(cm)=83-97 MeV; 64Ni(28Si, X), E(cm)=43-53 MeV; calculated fusion σ(E), astrophysical S factor, first derivative of astrophysical S factor using method of two-potential fit to fusion cross sections at deep subbarrier energies. Comparison with experimental data.

doi: 10.1103/PhysRevC.97.034623
Citations: PlumX Metrics


2018HA26      Phys.Rev. C 98, 014607 (2018)

K.Hagino

Hot fusion reactions with deformed nuclei for synthesis of superheavy nuclei: An extension of the fusion-by-diffusion model

NUCLEAR REACTIONS 248Cm(48Ca, 2n), (48Ca, 3n), (48Ca, 4n), E(cm)=190-220 MeV; calculated evaporation residue σ(E), capture barrier height, injection distance, diffusion barrier height, capture probability, and diffusion probability at different orientation angles of the target nucleus using fusion-by-diffusion model by including effects of deformation of the target nucleus. Comparison with experimental data.

doi: 10.1103/PhysRevC.98.014607
Citations: PlumX Metrics


2018HA32      J.Phys.(London) G45, 105105 (2018)

K.Hagino, M.Nirkko

Branching ratios for de-excitation processes of daughter nuclei following invisible dinucleon decays in 16O

RADIOACTIVITY 16O(2n), (d); calculated energy levels, J, π. 14O, 12C, 8,9,11B, 6Li; deduced branching ratios.

doi: 10.1088/1361-6471/aadeb1
Citations: PlumX Metrics


2018KA26      Phys.Rev. C 97, 064606 (2018)

G.Kaur, K.Hagino, N.Rowley

Role of hexadecapole deformation of projectile 28Si in heavy-ion fusion reactions near the Coulomb barrier

NUCLEAR REACTIONS 92Zr(28Si, X), E(cm)=60-90 MeV; calculated fusion barrier distributions for different levels and different quadrupole and hexadecapole deformation parameters of 28Si using coupled-channel calculations with CCFULL code. Comparison with experimental values.

doi: 10.1103/PhysRevC.97.064606
Citations: PlumX Metrics


2018ME04      Phys.Rev. C 97, 064318 (2018)

H.Mei, K.Hagino, J.M.Yao, T.Motoba

Disappearance of nuclear deformation in hypernuclei: A perspective from a beyond-mean-field study

NUCLEAR STRUCTURE 30,31Si; calculated projected energy curves, J, π, potential energy curves, low-lying positive-parity states, and B(E2) for 31S hypernucleus and 30Si core nucleus. Microscopic particle-rotor model. Discussed role of beyond-mean-field effects on deformation of 31Si hypernucleus. Comparison with experimental data for 30Si.

doi: 10.1103/PhysRevC.97.064318
Citations: PlumX Metrics


2018MO05      Phys.Rev. C 97, 024610 (2018)

G.Montagnoli, A.M.Stefanini, C.L.Jiang, K.Hagino, F.Galtarossa, G.Colucci, S.Bottoni, C.Broggini, A.Caciolli, P.Colovic, L.Corradi, S.Courtin, R.Depalo, E.Fioretto, G.Fruet, A.Gal, A.Goasduff, M.Heine, S.P.Hu, M.Kaur, T.Mijatovic, M.Mazzocco, D.Montanari, F.Scarlassara, E.Strano, S.Szilner, G.X.Zhang

Fusion hindrance for the positive Q-value system 12C+30Si

NUCLEAR REACTIONS 12C(30Si, X), E=34-80 MeV; measured reaction products, fusion σ(E) at the XTU Tandem accelerator of INFN-LN, Legnaro. Comparison with coupled-channel calculations using Woods Saxon (WS) and Yukawa-plus-exponential (YPE) potentials.

doi: 10.1103/PhysRevC.97.024610
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 datasetD0899.


2017HA05      Phys.Rev. C 95, 024304 (2017)

K.Hagino, H.Sagawa

New concept for the pairing anti-halo effect as a localized wave packet of quasiparticles

doi: 10.1103/PhysRevC.95.024304
Citations: PlumX Metrics


2017HA16      Phys.Rev. C 95, 054620 (2017)

K.Hagino, T.Ichikawa

New and efficient method for solving the eigenvalue problem for the two-center shell model with finite-depth potentials

NUCLEAR STRUCTURE 16O; calculated neutron single-particle energies for 16O+16O system as function of separation distance between the two nuclei, single-particle energy for the second positive-parity state with 1/2+ as function of the number of one-center and two-center harmonic oscillator bases states. Proposed method to solve the eigenvalue problem for a single-particle motion in a two-center potential, combining separable representation for single-particle potential with matrix diagonalization.

doi: 10.1103/PhysRevC.95.054620
Citations: PlumX Metrics


2017LW01      Phys.Rev. C 95, 064601 (2017)

N.W.Lwin, N.N.Htike, K.Hagino

Applicability of the Wong formula for fusion cross sections from light to heavy systems

NUCLEAR REACTIONS 16O(12C, X), E(cm)=4-17 MeV; 40Ca(12C, X), E(cm)=10-35 MeV; 154Sm(12C, X), E(cm)=25-70 MeV; 238U(12C, X), E(cm)=45-80 MeV; 238U, 152Sm, 74Ge, 40Ar, 28Si, 20Ne, 16O(6Li, X), E-VB<14 MeV; calculated fusion σ(E) for these reactions, and for A=12-240 targets and 4He, 6Li, 12C, 16O and 20Ne beams using Wong formula for single-channel fusion cross sections; deduced comparisons between the exact and approximate fusion cross sections.

doi: 10.1103/PhysRevC.95.064601
Citations: PlumX Metrics


2017ME07      Phys.Rev. C 96, 014308 (2017)

H.Mei, K.Hagino, J.M.Yao, T.Motoba

Transition from vibrational to rotational character in low-lying states of hypernuclei

NUCLEAR STRUCTURE 144,146,148,150,152,154Sm; calculated total energy in the mean-field approximation as a function of quadrupole deformation, yrast levels, E(first 4+)/E(first 2+) using multireference covariant density functional theory (MR-CDFT), and compared with experimental data. 145,147,149,151,153,155Sm; calculated levels, J, π, B(E2) of hypernuclei, probability of the dominant components of configurations using microscopic particle-core coupling scheme based on the covariant density functional theory.

doi: 10.1103/PhysRevC.96.014308
Citations: PlumX Metrics


2017TO08      Phys.Rev. C 95, 054604 (2017)

M.Tokieda, K.Hagino

Quantum tunneling with friction

doi: 10.1103/PhysRevC.95.054604
Citations: PlumX Metrics


2017UR04      Phys.Rev. C 96, 064311 (2017)

Y.Urata, K.Hagino, H.Sagawa

Role of deformation in odd-even staggering in reaction cross sections for 30, 31, 32Ne and 36, 37, 38Mg isotopes

NUCLEAR REACTIONS 12C(30Ne, X), (31Ne, X), (32Ne, X), (36Mg, X), (37Mg, X), (38Mg, X), E=240 MeV/nucleon; analyzed odd-even staggering in experimental cross sections by including ground-state deformation of these nuclei, and with ground-state density from deformed Woods-Saxon potential, and pairing correlation from Hartree-Fock-Bogoliubov method; discussed role of pairing antihalo effect.

doi: 10.1103/PhysRevC.96.064311
Citations: PlumX Metrics


2016HA07      Phys.Rev. C 93, 034330 (2016)

K.Hagino, H.Sagawa

Decay dynamics of the unbound 25O and 26O nuclei

doi: 10.1103/PhysRevC.93.034330
Citations: PlumX Metrics


2016HA08      Few-Body Systems 57, 185 (2016)

K.Hagino, H.Sagawa

Are There Good Probes for the Di-Neutron Correlation in Light Neutron-Rich Nuclei?

NUCLEAR STRUCTURE 11Li; calculated two-particle densities. Comparison with available data.

RADIOACTIVITY 26O(2n); calculated the decay energy spectrum for two-neutron emission decay, En, In, angular correlation for two emitted neutrons. Comparison with available data.

doi: 10.1007/s00601-015-1027-3
Citations: PlumX Metrics


2016HA18      Phys.Rev. C 93, 061601 (2016)

K.Hagino

Investigating multichannel quantum tunneling in heavy-ion fusion reactions with Bayesian spectral deconvolution

NUCLEAR REACTIONS 144,154Sm(16O, X), E(cm)=50-70 MeV; calculated free energy as a function of the number of effective barriers; analyzed experimental fusion σ(E) data using Bayesian spectral deconvolution approach; deduced fusion barrier distributions.

doi: 10.1103/PhysRevC.93.061601
Citations: PlumX Metrics


2016ME01      Phys.Rev. C 93, 011301 (2016)

H.Mei, K.Hagino, J.M.Yao

Generator coordinate method for hypernuclear spectroscopy with a covariant density functional

NUCLEAR STRUCTURE 21Ne; calculated levels, J, π for hypernucleus using generator coordinate method (GCM) based on beyond-mean-field method with the particle number and angular momentum projections. Hypernuclear collective and single-particle excitations. Comparison to experimental levels spectrum for the 20Ne core nucleus.

doi: 10.1103/PhysRevC.93.011301
Citations: PlumX Metrics


2016ME09      Phys.Rev. C 93, 044307 (2016)

H.Mei, K.Hagino, J.M.Yao, T.Motoba

Low-energy hypernuclear spectra within a microscopic particle-rotor model with a relativistic point-coupling hyperon-nucleon interaction

NUCLEAR STRUCTURE 13C; calculated levels, J, π, B(E2), Λ binding energy, energy splittings of hypernucleus with and without the scaled NΛ interaction using microscopic particle-rotor model with relativistic point-coupling hyperon-nucleon interactions PCY-S1, PCY-S2, PCY-S3, PCY-S4 and LO. Contour plots for the difference between the theoretical and the experimental hyperon binding energies as function of coupling strength parameters. Analyzed effect of tensor coupling strength. Comparison of level spectrum with experimental data.

doi: 10.1103/PhysRevC.93.044307
Citations: PlumX Metrics


2016SH09      Phys.Lett. B 755, 332 (2016)

A.Shrivastava, K.Mahata, S.K.Pandit, V.Nanal, T.Ichikawa, K.Hagino, A.Navin, C.S.Palshetkar, V.V.Parkar, K.Ramachandran, P.C.Rout, A.Kumar, A.Chatterjee, S.Kailas

Evolution of fusion hindrance for asymmetric systems at deep sub-barrier energies

NUCLEAR REACTIONS 198Pt(7Li, X), E=20-35 MeV;198Pt(12C, X), E=50-64 MeV; measured reaction products, Eγ, Iγ, X-rays; deduced fusion σ. Comparison with coupled-channels calculations using the code CCFULL.

doi: 10.1016/j.physletb.2016.02.029
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 datasetD6266.


2016YA07      Phys.Rev. C 94, 011303 (2016)

J.M.Yao, K.Hagino

Anharmonicity of multichar-octupole-phonon excitations in 208Pb: Analysis with multireference covariant density functional theory and subbarrier fusion of 16O + 208Pb

NUCLEAR STRUCTURE 208Pb; calculated total energy, normalized to the ground state energy from generator coordinate method (GCM), as a function of octupole-deformation parameter β3, low-lying levels, J, π by octupole-quadrupole (β3, β2) deformed configurations and by mixing only the octupole deformed configurations, distribution of the collective wave functions. Multidimensional GCM calculations based on a covariant energy density functional theory. Comparison with experimental data taken from databases at NNDC.

NUCLEAR REACTIONS 208Pb(16O, X), E(cm)=65-90 MeV; calculated fusion σ(E) and fusion barrier distribution as function of incident energy. Semimicroscopic coupled-channels calculation with the coupling strengths from multireference (MR) covariant density functional theory (DFT) calculations. Comparison with experimental data.

doi: 10.1103/PhysRevC.94.011303
Citations: PlumX Metrics


2015HA18      Phys.Rev. C 91, 064606 (2015)

K.Hagino, J.M.Yao

Semimicroscopic modeling of heavy-ion fusion reactions with multireference covariant density functional theory

NUCLEAR REACTIONS 58Ni(58Ni, X), (60Ni, X), E(cm)=90-110 MeV; 40Ca(58Ni, X), E(cm)=65-85 MeV; calculated fusion σ(E), fusion barrier distributions using various coupling schemes, and compared with experimental data. Multireference covariant density functional theory (MR-CDFT) combined with coupled-channels calculations and PC-PK1 and PC-F1 interactions.

NUCLEAR STRUCTURE 58,60Ni; calculated levels, J, π, B(E2) using Multireference covariant density functional theory (MR-CDFT) with PC-PK1 force. Comparison with experimental data.

doi: 10.1103/PhysRevC.91.064606
Citations: PlumX Metrics


2015HA28      Phys.Rev. C 92, 064602 (2015)

K.Hagino, G.Scamps

Enhancement factor for two-neutron transfer reactions with a schematic coupled-channels model

NUCLEAR REACTIONS 96Zr(40Ca, n), (40Ca, 2n), E not given; calculated one-neutron (Pn) and two-neutron (P2n) transfer probabilities in the no-correlation limit. Schematic coupled-channels model, with the transfer channels treated as effective inelastic excitations. Comparison to experimental data.

doi: 10.1103/PhysRevC.92.064602
Citations: PlumX Metrics


2015KA47      Phys.Rev. C 92, 044609 (2015)

G.Kaur, B.R.Behera, A.Jhingan, P.Sugathan, K.Hagino

Influence of vibrational excitation on surface diffuseness of the internuclear potential: Study through heavy-ion quasielastic scattering at deep sub-barrier energies

NUCLEAR REACTIONS 105,106Pd(12C, 12C'), (13C, 13C'), E=30-52 MeV; analyzed experimental data for quasielastic scattering σ(E, θ) at a backward angle; deduced surface diffuseness parameter in the internuclear potential. Single-channel and coupled-channels calculations including the quadrupole vibrational excitations in the target nuclei.

doi: 10.1103/PhysRevC.92.044609
Citations: PlumX Metrics


2015ME04      Phys.Rev. C 91, 064305 (2015)

H.Mei, K.Hagino, J.M.Yao, T.Motoba

Microscopic study of low-lying spectra of Λ hypernuclei based on a beyond-mean-field approach with a covariant energy density functional

NUCLEAR STRUCTURE 12,13C, 20,21Ne, 154,155Sm; calculated levels, J, π, B(E2), potential energy surfaces as function of deformation parameter β, wave function amplitudes, configuration of 13C, 21Ne, 155Sm hypernuclei, and 12C, 20Ne, 154Sm core nuclei. Spin-orbit splitting. Microscopic particle-rotor model (MPRM) based on a covariant energy density functional theory, and coupled-channel equations. Comparison with experimental data, and with other theoretical calculations.

doi: 10.1103/PhysRevC.91.064305
Citations: PlumX Metrics


2015RO08      Phys.Rev. C 91, 044617 (2015)

N.Rowley, K.Hagino

Examination of fusion cross sections and fusion oscillations with a generalized Wong formula

NUCLEAR REACTIONS 12C(12C, X), (13C, X), E=5-40 MeV; 28Si(28Si, X), E=28-42 MeV; analyzed fusion σ(E) data using Wong formula with the inclusion of barrier height, position and curvature. Discussed 144Sm(16O, X) system.

doi: 10.1103/PhysRevC.91.044617
Citations: PlumX Metrics


2015SA32      Eur.Phys.J. A 51, 102 (2015)

H.Sagawa, K.Hagino

Theoretical models for exotic nuclei

doi: 10.1140/epja/i2015-15102-4
Citations: PlumX Metrics


2015SC08      Phys.Rev. C 91, 044606 (2015)

G.Scamps, K.Hagino

Multidimensional fission model with a complex absorbing potential

doi: 10.1103/PhysRevC.91.044606
Citations: PlumX Metrics


2015SC19      Phys.Rev. C 92, 054614 (2015)

G.Scamps, K.Hagino

Coupled-channels description of multinucleon transfer and fusion reactions at energies near and far below the Coulomb barrier

NUCLEAR REACTIONS 96Zr(40Ca, X), E(cm)=82-102 MeV; 116Sn(60Ni, X), E(cm)=150-175 MeV; calculated 1n- and 2n-transfer probabilities, s-wave survival probability for each channel, fusion σ(E). Adjustment of parameters for transfer couplings using the experimental data at energies far below the Coulomb barrier. Simultaneously description for fusion and transfer cross sections, role of absorption and sequential and direct two-neutron transfer process. Semiclassical time-dependent coupled-channels method using a modified version of CCFULL computer code. Comparison with experimental data.

doi: 10.1103/PhysRevC.92.054614
Citations: PlumX Metrics


2015TA16      Prog.Theor.Exp.Phys. 2015, 073D01 (2015)

Y.Tanimura, K.Hagino, H.Z.Liang

3D mesh calculations for covariant density functional theory

NUCLEAR STRUCTURE 16O, 24Mg, 28Si; calculated binding and single-particle energies, hexadecapole deformation parameters, potential energy surfaces.

doi: 10.1093/ptep/ptv083
Citations: PlumX Metrics


2015TR06      Phys.Rev. C 92, 034619 (2015)

A.Trzcinska, E.Piasecki, K.Hagino, W.Czarnacki, P.Decowski, N.Keeley, M.Kisielinski, P.Koczon, A.Kordyasz, E.Koshchiy, M.Kowalczyk, B.Lommel, A.Stolarz, I.Strojek, K.Zerva

Quasielastic barrier distributions for the 20Ne + 58, 60, 61Ni systems: Influence of weak channels

NUCLEAR REACTIONS 58,60,62Ni(20Ne, 20Ne'), E=43-62 MeV; measured excitation function for back-scattered ions, σ(E) at Heavy Ion Laboratory, University of Warsaw; deduced barrier height distributions. Comparisons with predictions by coupled-channel (CC) calculations.

doi: 10.1103/PhysRevC.92.034619
Citations: PlumX Metrics


2015XU05      Phys.Rev. C 91, 024327 (2015)

W.X.Xue, J.M.Yao, K.Hagino, Z.P.Li, H.Mei, Y.Tanimura

Triaxially deformed relativistic point-coupling model for Λ hypernuclei: A quantitative analysis of the hyperon impurity effect on nuclear collective properties

NUCLEAR STRUCTURE 17O, 31Si, 33S, 41Ca; calculated total energy, kinetic energy, rms radii of neutrons, protons, hyperon, energy of the lowest three single-particle states of hypernuclei. 9Be, 16O, 28Si, 32S, 40Ca, 51V, 89Y, 139La, 208Pb; calculated binding energies in single-Λ hypernuclei. 51V; calculated total energy for hypernucleus as a function of deformation parameter β. 25,27Mg, 31Si; calculated levels, J, π, potential-energy surfaces (PESs) of hypernuclei in (β, γ) plane. 24,26Mg, 30Si; calculated levels, J, π, potential energy surfaces (PES) in (β, γ) plane; deduced impurity effect of Λs and Λp hyperon on the energies and B(E2) for first 2+ states. Microscopic particle rotor model (PRM) with relativistic EDF, and triaxially deformed relativistic mean-field (RMF) approach. Comparison with experimental data.

doi: 10.1103/PhysRevC.91.024327
Citations: PlumX Metrics


2015YA06      Phys.Rev. C 91, 024316 (2015)

J.M.Yao, L.S.Song, K.Hagino, P.Ring, J.Meng

Systematic study of nuclear matrix elements in neutrinoless double-β decay with a beyond-mean-field covariant density functional theory

NUCLEAR STRUCTURE 48Ca, 48Ti, 76Ge, 76,82Se, 82Kr, 96Zr, 96,100Mo, 100Ru, 116Cd, 116,124Sn, 124,130Te, 130,136Xe, 136Ba, 150Nd, 150Sm; calculated binding energy, charge radius of correlated ground state, energies and B(E2) of first 2+ states. Generator coordinate method for both the initial and final nuclei in double β decay. Comparison with experimental data.

RADIOACTIVITY 48Ca, 76Ge, 82Se, 96Zr, 100Mo, 116Cd, 124Sn, 130Te, 136Xe, 150Nd(2β-); calculated nuclear matrix elements (NMEs)for 0νββ decay, distribution of collective wave functions as a function of deformation parameter β, decomposition of the total NMEs from the final GCM+PNAMP (PC-PK1) calculation. Comparison with different model calculations; deduced upper limits of the effective neutrino mass.

doi: 10.1103/PhysRevC.91.024316
Citations: PlumX Metrics


2014HA02      Phys.Rev. C 89, 014331 (2014)

K.Hagino, H.Sagawa

Correlated two-neutron emission in the decay of the unbound nucleus 26O

RADIOACTIVITY 26O(2n); calculated decay energy spectrum, angular distribution of two correlated and uncorrelated neutrons, decay probability distribution, two-particle density for the resonance state of 26O. Dineutron correlations. Three-body model with a contact neutron-neutron interaction and Green's function. Comparison with experimental data.

doi: 10.1103/PhysRevC.89.014331
Citations: PlumX Metrics


2014HA29      Phys.Rev. C 90, 027303 (2014)

K.Hagino, H.Sagawa

Three-body model calculation of the 2+ state in 26O

NUCLEAR STRUCTURE 26O; calculated energies of ground state and first 2+ state by three-body 24O+n+n model approach, taking into account continuum effects, and dineutron correlation of the valence neutrons. Comparison with experimental data.

doi: 10.1103/PhysRevC.90.027303
Citations: PlumX Metrics


2014MA11      Eur.Phys.J. A 50, 18 (2014)

J.Margueron, E.Khan, G.Colo, K.Hagino, H.Sagawa

Effect of pairing on the symmetry energy and the incompressibility

NUCLEAR STRUCTURE 120Sn; calculated mass excess, pairing correlations, incompressibility, symmetry energy using HFB modeling with different pairing interactions.

doi: 10.1140/epja/i2014-14018-9
Citations: PlumX Metrics


2014ME16      Phys.Rev. C 90, 064302 (2014)

H.Mei, K.Hagino, J.M.Yao, T.Motoba

Microscopic particle-rotor model for the low-lying spectrum of Λ hypernuclei

NUCLEAR STRUCTURE 9Be; calculated levels, J, π, B(E2) for the 9Be hypernucleus by coupling the hyperon to low-lying states of the core nucleus 8Be. Particle-rotor model with a meanfield approach and generator coordinate method (GCM). Comparison with experimental results.

doi: 10.1103/PhysRevC.90.064302
Citations: PlumX Metrics


2014OI02      Phys.Rev. C 90, 034303 (2014)

T.Oishi, K.Hagino, H.Sagawa

Role of diproton correlation in two-proton-emission decay of the 6Be nucleus

RADIOACTIVITY 6Be(2p); calculated decay width and probabilities, contributions from the spin-singlet and the spin-triplet configurations to the total decay width, trajectories of different 2p-emission modes, 2p-density distribution and time evolution of the decay state with and without pairing; deduced dominance of diproton emission process in the early stage; discussed role of pairing correlations in decay width. Time-dependent method using three-body model consisting of an α particle and two valence protons.

NUCLEAR STRUCTURE 6Be, 6He; calculated properties of the initial state of 6Be and the bound ground state of 6He for all configurations, proton and neutron densities using confining potential method.

doi: 10.1103/PhysRevC.90.034303
Citations: PlumX Metrics


2014TA12      Prog.Theor.Exp.Phys. 2014, 053D02 (2014)

Y.Tanimura, H.Sagawa, K.Hagino

Three-body model calculations for N = Z odd-odd nuclei with T = 0 and T = 1 pairing correlations

NUCLEAR STRUCTURE 14N, 18F, 30P, 34Cl, 42Sc, 58Cu; calculated energy levels, J, π, nuclear magnetic moments, B(M1), Gamow-Teller transition probabilities. Comparison with available data.

doi: 10.1093/ptep/ptu056
Citations: PlumX Metrics


2014YA11      Phys.Rev. C 89, 054306 (2014)

J.M.Yao, K.Hagino, Z.P.Li, J.Meng, P.Ring

Microscopic benchmark study of triaxiality in low-lying states of 76Kr

NUCLEAR STRUCTURE 76Kr; calculated levels, J, π, B(E2), Spectroscopic quadrupole moments, potential-energy surfaces (PES) in (β, γ) plane, PES for quasi-γ band, staggering of γ band. Generator coordinate method (GCM) and covariant density functional theory with 5D collective Hamiltonian. Discussed triaxiality in low-lying states in 76Kr. Comparison with experimental data, and with other theoretical calculations.

doi: 10.1103/PhysRevC.89.054306
Citations: PlumX Metrics


2013AK04      Phys.Rev. C 88, 047603 (2013)

T.Akaishi, K.Hagino

Reaction cross sections of hypernuclei and the shrinkage effect

NUCLEAR REACTIONS 12C(6Li, X), (7Li, X), E=100 MeV/nucleon; calculated reaction cross section for 6Li and 7Li hypernucleus. Glauber theory with few-body (FB) treatment and the optical limit approximation (OLA). Two-body cluster structure for 6Li and 7Li hypernucleus.

doi: 10.1103/PhysRevC.88.047603
Citations: PlumX Metrics


2013HA27      Nucl.Phys. A914, 151c (2013)

K.Hagino, J.M.Yao, F.Minato, Z.P.Li, M.T.Win

Collective excitations of Λ hypernuclei

NUCLEAR STRUCTURE 20,22,24,26,28,30,32,34,36,38Ne, 22,24,26,28,30,32,34,36,38,40,42Si; calculated deformation, deformation of (A+Λ) hypernuclei, binding energy, Q vs deformation using relativistic mean field. 24Mg, 25Mg; calculated 25ΛMg hypernucleus deformation, low-spin levels, J, π, rotational bands, B(E2) using relativistic mean field. 16O, 18O; calculated 18ΛΛO hypernucleus dipole strength distribution vs energy, B(E2), B(E3) using RPA. Compared with data.

doi: 10.1016/j.nuclphysa.2012.12.077
Citations: PlumX Metrics


2013MI26      Phys.Rev. C 88, 064303 (2013)

F.Minato, K.Hagino

Sum rule approach to a soft dipole mode in Λ hypernuclei

NUCLEAR STRUCTURE 16O, 32S, 40Ca, 51V, 64Ni, 89Y, 120Sn, 139La, 208Pb; calculated hypernucleus ground-state wave function, root-mean-square radii, excitation energy and energy-weighted sum rule for soft dipole mode. 18O, 210Pb; calculated strength distributions for dipole mode for the double-hypernucleus. Hartree-Fock method with several Skyrme-type ΛN interactions.

doi: 10.1103/PhysRevC.88.064303
Citations: PlumX Metrics


2013SA04      Phys.Rev. C 87, 034310 (2013)

H.Sagawa, Y.Tanimura, K.Hagino

Competition between T=1 and T=0 pairing in pf -shell nuclei with N=Z

NUCLEAR STRUCTURE 56Ni; calculated single particle energies, magnetic moments. 48Cr, 56Ni, 64Ge; calculated overlap integrals of proton and neutron orbitals. 58Cu; discussed g factor of ground state. Shell-model calculations for N=Z nuclei with isospin T=1 and T=0 pairing interactions, and Skyrme-Hartree-Fock wave functions.

doi: 10.1103/PhysRevC.87.034310
Citations: PlumX Metrics


2013TA21      Phys.Rev. C 88, 017301 (2013)

Y.Tanimura, K.Hagino, P.Ring

Application of the inverse Hamiltonian method to Hartree-Fock-Bogoliubov calculations

doi: 10.1103/PhysRevC.88.017301
Citations: PlumX Metrics


2013YU04      Phys.Rev. C 88, 044620 (2013)

S.Yusa, K.Hagino, N.Rowley

Noncollective excitations in low-energy heavy-ion reactions: Applicability of the random-matrix model

NUCLEAR REACTIONS 208Pb(16O, X), E=70-90 MeV; calculated fusion σ(E), fusion barrier distributions as function of incident energy using random-matrix model. Comparison with experimental data, and calculations using noncollective deformation parameters. Role of noncollective excitations in heavy-ion reactions.

doi: 10.1103/PhysRevC.88.044620
Citations: PlumX Metrics


2013YU06      Phys.Rev. C 88, 054621 (2013)

S.Yusa, K.Hagino, N.Rowley

Quasi-elastic scattering in the 20Ne+90, 92Zr reactions: Role of noncollective excitations

NUCLEAR REACTIONS 90,92Zr(20Ne, 20Ne), E=44-60 MeV; calculated quasi-elastic σ(E, θ) and quasi-elastic barrier distributions, Q value distributions, energy dependence of the Q-value distribution for collective and non-collective excitations. Coupled-channels calculations, with inclusion of effects of non-collective excitations in a random-matrix model. Comparison with experimental data.

doi: 10.1103/PhysRevC.88.054621
Citations: PlumX Metrics


2012AR02      Phys.Rev. C 85, 044614 (2012)

Y.Aritomo, K.Hagino, K.Nishio, S.Chiba

Dynamical approach to heavy-ion induced fission using actinide target nuclei at energies around the Coulomb barrier

NUCLEAR REACTIONS 238U(34S, X), (36S, X), (30Si, X), E(cm)=130-180 MeV; analyzed experimental data for σ(E) and fission fragment mass distribution in heavy-ion induced fission. 238U(36S, X)274Hs*, E*=39.5 MeV; 238U(30Si, X)268Sg*, E*=35.5 MeV; calculated potential energy surfaces and nuclear shapes near scission point, probability distribution contour maps, time evolution of the probability distribution, Langevin trajectories. Coupled Channel calculations and a fluctuation-dissipation model for fusion-fission, quasifission and deep quasifission processes.

doi: 10.1103/PhysRevC.85.044614
Citations: PlumX Metrics


2012CH40      Phys.Rev. C 86, 041307 (2012)

R.J.Charity, L.G.Sobotka, K.Hagino, D.Bazin, M.A.Famiano, A.Gade, S.Hudan, S.A.Komarov, Jenny Lee, S.P.Lobastov, S.M.Lukyanov, W.G.Lynch, C.Metelko, M.Mocko, A.M.Rogers, H.Sagawa, A.Sanetullaev, M.B.Tsang, M.S.Wallace, M.J.van Goethem, A.H.Wuosmaa

Double isobaric analog of 11Li in 11B

NUCLEAR REACTIONS 1H(12Be, 11B), E=50 MeV/nucleon; analyzed decay products, excitation energy via 2p+9Li events, mass excess. 11B; deduced level, J, π, width, double isobaric analog state of the two-neutron-halo system 11Lig.s.. Discussed T=5/2 isospin sextet using the isobaric multiplet mass equation.

doi: 10.1103/PhysRevC.86.041307
Citations: PlumX Metrics

Data from this article have been entered in the XUNDL database. For more information, click here.


2012HA03      Phys.Rev. C 85, 014303 (2012)

K.Hagino, H.Sagawa

Pairing correlations and odd-even staggering in reaction cross sections of weakly bound nuclei

NUCLEAR STRUCTURE 74,75,76Cr; calculated mean square radii, the pairing gap. Woods-Saxon potential, Hartree-Fock-Bogoliubov method.

NUCLEAR REACTIONS 12C(22O, X), (23O, X), (24O, X), (30Ne, X), (31Ne, X), (32Ne, X), (74Cr, X), (75Cr, X), (76Cr, X), E=240 MeV/nucleon; calculated cross sections, odd-even staggering (OES) parameter. Glauber theory with pairing correlation by the Hartree-Fock-Bogoliubov (HFB) method. Comparison with experimental data.

doi: 10.1103/PhysRevC.85.014303
Citations: PlumX Metrics


2012HA11      Phys.Rev. C 85, 037604 (2012)

K.Hagino, H.Sagawa

Odd-even staggering of reaction cross sections for 22, 23, 24O isotopes

NUCLEAR REACTIONS 12C(22O, X), (23O, X), (24O, X), E=240, 1000 MeV/nucleon; calculated odd-even staggering (OES) parameter as a function of incident energy. Optical limit approximation of the Glauber theory. Density distribution from Hartree-Fock-Bogoliubov method by using a Woods-Saxon mean-field potential. Comparison with theoretical systematics and experimental data. Absence of halo structure in 23O.

doi: 10.1103/PhysRevC.85.037604
Citations: PlumX Metrics


2012IC03      Prog.Theor.Phys.(Kyoto), Suppl. 196, 269 (2012)

T.Ichikawa, K.Hagino, A.Iwamoto

Smooth Transition from Sudden to Adiabatic States in Deep-Subbarrier Fusion Reactions

NUCLEAR REACTIONS 64Ni(64Ni, X), 208Pb(16O, X), E(cm)<90 MeV; calculated fusion σ, average angular momenta of the compound nuclei; deduced adiabatic potential. Coupled-channel model calculations.

doi: 10.1143/PTPS.196.269
Citations: PlumX Metrics


2012LO02      Phys.Rev. C 85, 025806 (2012)

W.H.Long, B.Y.Sun, K.Hagino, H.Sagawa

Hyperon effects in covariant density functional theory and recent astrophysical observations

doi: 10.1103/PhysRevC.85.025806
Citations: PlumX Metrics


2012ME10      Int.J.Mod.Phys. E21, 1250024 (2012)

H.Mei, Z.P.Li, J.M.Yao, K.Hagino

Impurity effect of Λ hyperon on shape-coexistence nucleus 44S in the energy functional based colletive Hamiltonian

NUCLEAR STRUCTURE 44,45S; calculated excitation energies, J, π, effect of Λ hyperon. Nonrelativistic Skyrme energy density functional, comparison with available data.

doi: 10.1142/S0218301312500243
Citations: PlumX Metrics


2012MI04      Phys.Rev. C 85, 024316 (2012)

F.Minato, K.Hagino

Application of random-phase approximation to vibrational excitations of double-Λ hypernuclei

NUCLEAR STRUCTURE 18O; calculated single-particle neutron and proton levels, energies of first 2+ and 3- states, B(E2), B(E3), centroid energies and strength distributions for E1, E2 and E3 excitations, transition densities for GDR, GQR and high-lying octupole states for double-Λ hypernuclei. 18O, 208Pb; calculated isoscalar monopole (E0) and GMR strength distributions of double-Λ hypernuclei. Collective vibrational excitations of double-Λ hypernuclei. Hartree-Fock plus random phase approximation (HF+RPA). Comparison with properties of 16O and 208Pb nuclei.

doi: 10.1103/PhysRevC.85.024316
Citations: PlumX Metrics


2012SA45      Prog.Theor.Phys.(Kyoto), Suppl. 196, 244 (2012)

H.Sagawa, K.Hagino

Pairing Correlations and Anti-Halo Effect in Weakly Bound Nuclei

NUCLEAR STRUCTURE 74,75,76Cr; calculated rms radii. HF and HFB calculations.

NUCLEAR REACTIONS 12C(22O, n), (23O, n), (24O, n), (74Cr, n), (75Cr, n), (76Cr, n), E=240 MeV/nucleon; 12C(30Ne, n), (31Ne, n), (32Ne, n), E=240 MeV/nucleon; calculated staggering parameter γ3 of reaction σ. Comparison with available data.

doi: 10.1143/PTPS.196.244
Citations: PlumX Metrics


2012SH15      Phys.Rev. C 85, 057602 (2012)

E.Shwe Zin Thein, N.W.Lwin, K.Hagino

Transition from subbarrier to deep-subbarrier regimes in heavy-ion fusion reactions

NUCLEAR REACTIONS 64Ni(64Ni, X), E(cm)=80-110 MeV; 208Pb(16O, X), E(cm)=60-100 MeV; 64Ni(28Si, X), 89Y(60Ni, X), 89Y, 90,92Zr(90Zr, X), E not given; analyzed σ(E), fusion cross section, threshold energy for deep-subbarrier fusion hindrance, asymptotic energy shift. One-dimensional potential model with a Woods-Saxon internuclear potential. Comparison with empirical systematics and calculations using Krappe-Nix-Sierk (KNS) potential.

doi: 10.1103/PhysRevC.85.057602
Citations: PlumX Metrics


2012TA03      Phys.Rev. C 85, 014306 (2012)

Y.Tanimura, K.Hagino

Description of single-Λ hypernuclei with a relativistic point-coupling model

NUCLEAR STRUCTURE 16O, 28Si, 32S, 40Ca, 51V, 89Y, 139La, 208Pb; calculated binding energies, spin-orbit splitting of single-particle energies for hypernuclei using four parameter sets, PCY-S1, PCY-S2, PCY-S3, and PCY-S4. Relativistic point-coupling model in the mean-field approximation. Comparison with experimental data. Discussed consistency of interaction with the quark model predictions.

doi: 10.1103/PhysRevC.85.014306
Citations: PlumX Metrics


2012TA19      Phys.Rev. C 86, 044331 (2012)

Y.Tanimura, K.Hagino, H.Sagawa

Impurity effect of the Λ particle on the structure of 18F and Λ19F

NUCLEAR STRUCTURE 18,19F; calculated levels, J, π, core-pn and p-n rms distances, B(E2), two-particle density distributions, configurations for 19F hypernucleus and 18F using a three-body shell model calculations with density-dependent contact interaction.

doi: 10.1103/PhysRevC.86.044331
Citations: PlumX Metrics


2012UR06      Phys.Rev. C 86, 044613 (2012)

Y.Urata, K.Hagino, H.Sagawa

Reaction cross sections of the deformed halo nucleus 31Ne

NUCLEAR REACTIONS C(30Ne, 29Ne), (31Ne, 30Ne), E=240 MeV/nucleon; calculated reactions cross section, and one neutron removal cross section as function of deformation. Particle-rotor model (PRM). Glauber theory. Comparison with experimental data.

NUCLEAR STRUCTURE 30,31Ne; calculated rms radii as function of S(n), matter density distribution. Particle-rotor model and Nilsson model.

doi: 10.1103/PhysRevC.86.044613
Citations: PlumX Metrics


2012YA12      Phys.Rev. C 86, 034333 (2012)

M.Yamagami, J.Margueron, H.Sagawa, K.Hagino

Isoscalar and isovector density dependence of the pairing functional determined from global fitting

NUCLEAR STRUCTURE N>8, Z>8; calculated pair-density functional (pair-DF) with isoscalar and isovector density dependences using experimental neutron and proton pairing gaps for even-even nuclides of N, Z>8.

doi: 10.1103/PhysRevC.86.034333
Citations: PlumX Metrics


2012YU05      Phys.Rev. C 85, 054601 (2012)

S.Yusa, K.Hagino, N.Rowley

Role of noncollective excitations in heavy-ion fusion reactions and quasi-elastic scattering around the Coulomb barrier

NUCLEAR REACTIONS 208Pb(16O, X), E=63-90 MeV; 208Pb(32S, X), E=130-160 MeV; 208Pb(40Ca, X), E=170-200 MeV; calculated fusion σ(E), fusion barrier distributions, Q-value distributions, double-phonon excitations, quasi-elastic scattering cross sections. Coupled-channel equations. Discussed mass-number dependence of noncollective excitations. Comparison with experimental data.

doi: 10.1103/PhysRevC.85.054601
Citations: PlumX Metrics


2011BE19      Int.J.Mod.Phys. E20, 943 (2011)

C.Beck, N.Rowley, P.Papka, S.Courtin, M.Rousseau, F.A.Souza, N.Carlin, F.Liguori Neto, M.M.De Moura, M.G.Del Santo, A.A.I.Suade, M.G.Munhoz, E.M.Szanto, A.Szanto de Toledo, N.Keeley, A.Diaz-Torres, K.Hagino

Cluster model for reactions induced by weakly bound and/or exotic halo nuclei with medium-mass targets

doi: 10.1142/S0218301311019027
Citations: PlumX Metrics


2011HA01      J.Phys.(London) G38, 015105 (2011)

K.Hagino, A.Vitturi, F.Perez-Bernal, H.Sagawa

Two-neutron halo nuclei in one dimension: dineutron correlation and breakup reaction

doi: 10.1088/0954-3899/38/1/015105
Citations: PlumX Metrics


2011HA33      Phys.Rev. C 84, 011303 (2011)

K.Hagino, H.Sagawa

Evidence for a pairing anti-halo effect in the odd-even staggering in reaction cross sections of weakly bound nuclei

NUCLEAR REACTIONS 12C(30Ne, X), (31Ne, X), (32Ne, X), E=240 MeV/nucleon; 12C(14C, X), (15C, X), (16C, X), E=83 MeV/nucleon; calculated reaction cross sections. Glauber theory with HF, HFB, and three-body model densities. Pairing anti-halo effect in odd-even staggering of reaction cross sections. Comparison with experimental data.

NUCLEAR STRUCTURE 22,23,24O, 30,31,32Ne; calculated root-mean-square radii, and average pairing gap as functions of the single-particle energy in a Woods-Saxon mean-field potential. Hartree-Fock and Hartree-Fock-Bogoliubov calculations.

doi: 10.1103/PhysRevC.84.011303
Citations: PlumX Metrics


2011HA58      Phys.Rev. C 84, 064325 (2011)

K.Hagino, T.Koike

Relation between shrinkage effect and compression of the rotational spectrum in the Λ7Li hypernucleus

NUCLEAR STRUCTURE 7Li, 9Be; calculated levels, radial wave functions, intercluster potential for hypernuclei. Two-body d+Λ5He and α+Λ5He cluster model. Comparison with experimental data, and with levels in 6Li and 8Be. 6,7Li, 8,9Be, 12,13C; systematics of levels, J, π for hypernuclei.

doi: 10.1103/PhysRevC.84.064325
Citations: PlumX Metrics


2011OI01      Phys.Rev. C 84, 057301 (2011)

T.Oishi, K.Hagino, H.Sagawa

Effect of proton-proton Coulomb repulsion on soft dipole excitations of light proton-rich nuclei

NUCLEAR STRUCTURE 17Ne; calculated E1 strength distributions. Three-body (15O+p+p) model calculations for soft dipole excitations of the proton-rich Borromean nucleus.

doi: 10.1103/PhysRevC.84.057301
Citations: PlumX Metrics


Back to query form    [Next]