NSR Query Results


Output year order : Descending
Format : Normal

NSR database version of April 11, 2024.

Search: Author = P.W.Zhao

Found 69 matches.

Back to query form



2024JI01      Phys.Lett. B 849, 138448 (2024)

X.F.Jiang, X.H.Wu, P.W.Zhao, J.Meng

Nuclear level density from relativistic density functional theory and combinatorial method

NUCLEAR STRUCTURE 112Cd; calculated total state densities, nuclear level densities based on different formulas of moments of inertia using combinatorial method based on RHB with PC-PK1 and DD-PC1. Comparison with available data.

doi: 10.1016/j.physletb.2024.138448
Citations: PlumX Metrics


2024XU01      Phys.Rev. C 109, 014311 (2024)

F.F.Xu, B.Li, Z.X.Ren, P.W.Zhao

Tetrahedral shape of 110Zr from covariant density functional theory in 3D lattice space

doi: 10.1103/PhysRevC.109.014311
Citations: PlumX Metrics


2024ZH07      Phys.Rev. C 109, 024316 (2024)

D.D.Zhang, B.Li, D.Vretenar, T.Niksic, Z.X.Ren, P.W.Zhao, J.Meng

Ternary quasifission in collisions of actinide nuclei

doi: 10.1103/PhysRevC.109.024316
Citations: PlumX Metrics


2024ZH09      Phys.Rev. C 109, 024614 (2024)

D.D.Zhang, D.Vretenar, T.Niksic, P.W.Zhao, J.Meng

Multinucleon transfer with time-dependent covariant density functional theory

doi: 10.1103/PhysRevC.109.024614
Citations: PlumX Metrics


2023LI04      Phys.Rev. C 107, 014303 (2023)

B.Li, D.Vretenar, Z.X.Ren, T.Niksic, J.Zhao, P.W.Zhao, J.Meng

Fission dynamics, dissipation, and clustering at finite temperature

NUCLEAR STRUCTURE 240Pu, 234U, 244Cm, 250Cf; calculated self-consistent deformation energy surface for the process of induced fission, induced fission trajectories evolution, proton localization functions, density profile immediately prior to the scission event. Microscopic finite-temperature model based on time dependent nuclear density functional theory (TDDFT).

doi: 10.1103/PhysRevC.107.014303
Citations: PlumX Metrics


2023LI35      Phys.Rev. C 108, 014321 (2023)

B.Li, D.Vretenar, T.Niksic, P.W.Zhao, J.Meng

Generalized time-dependent generator coordinate method for small- and large-amplitude collective motion

NUCLEAR STRUCTURE 208Pb; calculated monopole response, isocalar giant monopole resonance strength function, quadrupole response, octupole response, hexadecapole response. 240Pu; calculated fission trajectories, time evolution of the quadrupole and octupole deformations on the way to scission and beyond.Generalized time-dependent generator coordinated method (TD-GCM) and time-dependent density functional theory (TD-DFT) calculations. Comparison with available experimental data.

doi: 10.1103/PhysRevC.108.014321
Citations: PlumX Metrics


2023YA06      Phys.Rev. C 107, 024308 (2023)

Y.L.Yang, P.W.Zhao, Z.P.Li

Shape and multiple shape coexistence of nuclei within covariant density functional theory

NUCLEAR STRUCTURE 112Cd; calculated levels, J, π, B(E2), bands structure, potential energy surfaces, probability density distributions of the collective 0+ states, quadrupole deformation parameters of the three lowest 0+ states, quadrupole shape invariants of the four lowest 0+ states. Z=10-104; calculated quadrupole shape invariants, low-lying spectra. 18Ne, 160Dy, 208Pb; calculated excitation energy of the third 0+ level. 18Ne, 30,32Mg, 36,44Ar, 60Zn, 98Sr, 182,184Hg, 236Pu; calculated excitation energy of the second 0+ level. 40,50Ca, 98,96Zr, 140Nd, 188Pb, 210Po; calculated B(E2) strengths for transitions between first 2+ and first 0+. 32,34,36,44S, 40,42,44,48Ca, 58,60,62,68Ni, 64,66,68,70Zn, 72,74,76,78,80,82Kr, 90,92,94,96,98,100Zr, 102,104,106,108,110Pd, 112,114,116,118,120Sn, 144,150,152,154Sm, 146,152,154,156Gd, 190,192,194,202,204,206,208Pb; calculated E0 transition strengths. Five-dimensional collective Hamiltonian (5DCH) based on the covariant density functional PC-PK1. Confirmed multiple shape coexistence in 112Cd. Defined mass regions with possible shape or multiple shape coexistence. Comparison to experimental data and results obtained with 5DCH with Gogny-D1S density functional calculations.

doi: 10.1103/PhysRevC.107.024308
Citations: PlumX Metrics


2023YA08      Phys.Rev. C 107, 034320 (2023)

Y.L.Yang, P.W.Zhao

Deep-neural-network approach to solving the ab initio nuclear structure problem

NUCLEAR STRUCTURE 4He, 6Li, 16O; calculated ground-state energies, point-nucleon densities. Deep-learning variational quantum Monte Carlo approach for ab initio nuclear structure problems. Comparison to conventional diffusion Monte Carlo approaches results and experimental values.

doi: 10.1103/PhysRevC.107.034320
Citations: PlumX Metrics


2022GR05      Phys.Rev. C 106, 014318 (2022)

E.Grodner, M.Kowalczyk, M.Kisielinski, J.Srebrny, L.Prochniak, Ch.Droste, S.G.Rohozinski, Q.B.Chen, M.Ionescu-Bujor, C.A.Ur, F.Recchia, J.Meng, S.Q.Zhang, P.W.Zhao, G.Georgiev, R.Lozeva, E.Fiori, S.Aydin, A.Nalecz-Jawecki

Examination of nuclear chirality with a magnetic moment measurement of the I=9 isomeric state in 128Cs

NUCLEAR MOMENTS 128mCs; measured Eγ, γ-intensity oscillation spectra, oscillating ratios, Larmor frequency of precession with a magnetic field of about 0.7 T, time differential perturbed angular distribution (TDPAD) of γ rays from the isomer using 122Sn(10B, 4n)128Cs, E=55 MeV reaction at the Tandem accelerator of IPN Orsay; deduced g-factor and configuration of the isomeric 9+ bandhead of the yrast states. Comparison with theoretical predictions for shell-model configurations, and chiral interpretation of 128Cs nucleus as a composition of the odd proton, odd neutron, and even-even core with their angular momentum vectors.

NUCLEAR STRUCTURE 128Cs; calculated levels, J, π, bands, B(E2), B(M1), g factors using quantum angular momentum algebra and semiclassical calculations, in the framework of many-particle-many-hole Particle Triaxial Rotor Model. Evidence for the existence of chiral critical frequency, and absence of chiral doublet members for J<13 states.

doi: 10.1103/PhysRevC.106.014318
Citations: PlumX Metrics

Data from this article have been entered in the XUNDL database. For more information, click here.


2022RE01      Phys.Rev. C 105, L011301 (2022)

Z.X.Ren, P.W.Zhao, J.Meng

Dynamics of rotation in chiral nuclei

NUCLEAR STRUCTURE 135Nd; calculated total energy and Routhian surfaces, trajectories of the tilted angles for the total angular momenta in the body-fixed frame, excitation energies of the two pairs of chiral doublet bands, and compared with experimental data; deduced a new mechanism of chiral precession from the microscopic dynamics of the total angular momentum in the body-fixed frame (illustrations as movies given in the Supplemental Material of the paper). Self-consistent microscopic calculations based on time-dependent and tilted axis cranking covariant density functional theory (TAC-CDFT).

doi: 10.1103/PhysRevC.105.L011301
Citations: PlumX Metrics


2022RE04      Phys.Rev. C 105, 044313 (2022)

Z.X.Ren, J.Zhao, D.Vretenar, T.Niksic, P.W.Zhao, J.Meng

Microscopic analysis of induced nuclear fission dynamics

NUCLEAR STRUCTURE 240Pu; calculated deformation energy surface in the plane of quadrupole-octupole axially symmetric deformation parameters, induced fission charge yields and fragments distributions, fission trajectories on the the self-consistent deformation energy surface, total kinetic energies of the fragments from induced fission. Framework that combines the time-dependent generator coordinate method (TDGCM) and time-dependent nuclear density functional theory (TDDFT). Comparison to available experimental data.

doi: 10.1103/PhysRevC.105.044313
Citations: PlumX Metrics


2022RE05      Phys.Rev.Lett. 128, 172501 (2022)

Z.X.Ren, D.Vretenar, T.Niksic, P.W.Zhao, J.Zhao, J.Meng

Dynamical Synthesis of 4He in the Scission Phase of Nuclear Fission

RADIOACTIVITY 240Pu(SF); analyzed available data. 4,6He, 3H; deduced light cluster emission. Time-dependent density functional theory, based on a relativistic energy density functional including pairing correlations.

doi: 10.1103/PhysRevLett.128.172501
Citations: PlumX Metrics


2022WA15      Phys.Rev. C 105, 054311 (2022)

Y.K.Wang, P.W.Zhao, J.Meng

Configuration-interaction projected density functional theory: Effects of four-quasiparticle configurations and time-odd interactions

NUCLEAR STRUCTURE 60Fe; calculated levels, J, π, B(E2), kinematic moment of inertia, yrast band structure, neutron and proton quasiparticle energy levels. Four-quasiparticle configurations and time-odd interactions investigated in the framework of configuration-interaction projected density functional theory (CI-PDFT). Comparison to experimental data.

doi: 10.1103/PhysRevC.105.054311
Citations: PlumX Metrics


2022WU07      Phys.Rev. C 105, L031303 (2022)

X.H.Wu, Z.X.Ren, P.W.Zhao

Nuclear energy density functionals from machine learning

NUCLEAR STRUCTURE 4He, 16O, 40Ca; calculated rms radii, total energies, kinetic energies, ground-state densities. Self-consistent Kohn-Sham and machine-learning approaches. Comparison to available experimental data.

doi: 10.1103/PhysRevC.105.L031303
Citations: PlumX Metrics


2022ZH06      Phys.Rev. C 105, 024322 (2022)

D.D.Zhang, Z.X.Ren, P.W.Zhao, D.Vretenar, T.Niksic, J.Meng

Effects of rotation and valence nucleons in molecular α-chain nuclei

NUCLEAR STRUCTURE 12,16C, 16Ne; calculated Routhians, proton and neutron density distributions, location of the peak and the width of α-like cluster in the nuclei. 16C, 16Ne, 20O, 20Mg; calculated angular momentaand quadrupole deformation as functions of rotational frequency. 3D lattice Cranking covariant density functional theory (CDFT) calculations.

doi: 10.1103/PhysRevC.105.024322
Citations: PlumX Metrics


2021JI08      Astrophys.J. 915, 29 (2021)

X.F.Jiang, X.H.Wu, P.W.Zhao

Sensitivity Study of r-process Abundances to Nuclear Masses

ATOMIC MASSES A=120-210; analyzed available data; deduced impact of nuclear mass uncertainties on the r-process abundances.

doi: 10.3847/1538-4357/ac042f
Citations: PlumX Metrics


2021WA36      Phys.Rev. C 104, 014320 (2021)

Y.K.Wang, P.W.Zhao, J.Meng

Nuclear matrix elements of neutrinoless double-β decay in the triaxial projected shell model

NUCLEAR STRUCTURE 76Ge, 76Se; 82Se, 82Kr; 100Mo, 100Ru; 130Te, 130Xe; 150Nd, 150Sm; calculated levels, J for the low-lying positive-parity states, B(E2) for the first 2+ states, occupancies of single-particle orbits for neutrons and protons using triaxial projected shell model, potential-energy curves of 0+ states as functions of the triaxial deformation parameters for 76Ge, 82Se, 100Mo, 130Te, 150Nd. Comparison with experimental data.

RADIOACTIVITY 76Ge, 82Se, 100Mo, 130Te, 150Nd(2β-); calculated nuclear matrix elements (NMEs) for 0νββ decay mode, NME contours as functions of triaxial deformation parameters using triaxial projected shell model (TPSM) and triaxial projected Hartree-Fock-Bogoliubov model (TPHFB). Comparison with calculations using relativistic and nonrelativistic density functional theory (DFT), interacting boson model (IBM), PHFB, quasiparticle random-phase approximation (QRPA), and shell-model (SM).

doi: 10.1103/PhysRevC.104.014320
Citations: PlumX Metrics


2021YA31      Phys.Rev. C 104, 054312 (2021)

Y.L.Yang, Y.K.Wang, P.W.Zhao, Z.P.Li

Nuclear landscape in a mapped collective Hamiltonian from covariant density functional theory

NUCLEAR STRUCTURE Z=8-104 (even Z), N=6-258 (even N); calculated binding energies with and without dynamical correlation energies, Dynamical correlation energies, quadrupole deformations β, triaxial deformation γ, S(2n), S(2p), neutron and proton Fermi surfaces, charge radii, neutron, proton and matter root-mean-square radii for even-even nuclei. Relativistic Hartree-Bogoliubov theory with the PCPK1 energy density functional, and the beyond-mean-field dynamical correlation energies from microscopically mapped five-dimensional collective Hamiltonian (5DCH). 112Ru; calculated pairing energies and the zero-point energies in two calculations. The detailed results for a large number of nuclides are given in the Supplemental Material. Comparison of S(2n) and S(2p) with AME2016 values.

doi: 10.1103/PhysRevC.104.054312
Citations: PlumX Metrics


2021ZH54      Phys.Lett. B 822, 136645 (2021)

K.K.Zheng, C.M.Petrache, Z.H.Zhang, P.W.Zhao, Y.K.Wang, A.Astier, B.F.Lv, P.T.Greenlees, T.Grahn, R.Julin, S.Juutinen, M.Luoma, J.Ojala, J.Pakarinen, J.Partanen, P.Rahkila, P.Ruotsalainen, M.Sandzelius, J.Saren, H.Tann, J.Uusitalo, G.Zimba, B.Cederwall, O.Aktas, A.Ertoprak, W.Zhang, S.Guo, M.L.Liu, I.Kuti, B.M.Nyako, D.Sohler, J.Timar, C.Andreoiu, M.Doncel, D.T.Joss, R.D.Page

Evidence of oblate-prolate shape coexistence in the strongly-deformed nucleus 119Cs

NUCLEAR REACTIONS 58Ni(64Zn, 3p), E=255 MeV; measured reaction products, Eγ, Iγ, γ-γ-γ-coin.; deduced γ-ray energies, J, π, partial level scheme, bands, oblate-prolate shape coexistence, level T1/2. Comparison with the particle-number conserving cranked shell model and two dimensional tilted axis cranking covariant density functional theory. JUROGAM 3+MARA setup at the Accelerator Laboratory of the University of Jyvaskyla, Finland.

doi: 10.1016/j.physletb.2021.136645
Citations: PlumX Metrics


2020GU16      Phys.Lett. B 807, 135572 (2020)

S.Guo, C.M.Petrache, D.Mengoni, Y.H.Qiang, Y.P.Wang, Y.Y.Wang, J.Meng, Y.K.Wang, S.Q.Zhang, P.W.Zhao, A.Astier, J.G.Wang, H.L.Fan, E.Dupont, B.F.Lv, D.Bazzacco, A.Boso, A.Goasduff, F.Recchia, D.Testov, F.Galtarossa, G.Jaworski, D.R.Napoli, S.Riccetto, M.Siciliano, J.J.Valiente-Dobon, M.L.Liu, G.S.Li, X.H.Zhou, Y.H.Zhang, C.Andreoiu, F.H.Garcia, K.Ortner, K.Whitmore, A.Atac Nyberg, T.Back, B.Cederwall, E.A.Lawrie, I.Kuti, D.Sohler, T.Marchlewski, J.Srebrny, A.Tucholski

Evidence for pseudospin-chiral quartet bands in the presence of octupole correlations

NUCLEAR STRUCTURE 131Ba; analyzed available data; calculated B(E1), three pairs of nearly degenerate doublet bands using the reflection-asymmetric triaxial particle rotor model.

doi: 10.1016/j.physletb.2020.135572
Citations: PlumX Metrics


2020LI41      Phys.Rev. C 102, 044307 (2020)

B.Li, Z.X.Ren, P.W.Zhao

Efficient solution for the Dirac equation in 3D lattice space with the conjugate gradient method

NUCLEAR STRUCTURE 48Ca; calculated total density of the lowest 28 levels in the spherical Woods-Saxon potential as a function of the radial coordinate using the conjugate gradient method with a filtering function (PCG-F) for solving iteratively the Dirac equation in three-dimensional (3D) lattice space for nuclear systems.

doi: 10.1103/PhysRevC.102.044307
Citations: PlumX Metrics


2020RE02      Nucl.Phys. A996, 121696 (2020)

Z.X.Ren, P.W.Zhao, S.Q.Zhang, J.Meng

Toroidal states in 28Si with covariant density functional theory in 3D lattice space

doi: 10.1016/j.nuclphysa.2020.121696
Citations: PlumX Metrics


2020RE10      Phys.Rev. C 102, 021301 (2020)

Z.X.Ren, P.W.Zhao

Toward a bridge between relativistic and nonrelativistic density functional theories for nuclei

NUCLEAR STRUCTURE 208Pb; calculated total energy, total vector and scalar densities, rms radius, single-particle spectrum for neutrons. 16O, 40,48Ca, 100,120,132Sn, 208Pb; calculated total energies per particle, traces of scalar densities per particle, and rms radii. Nonrelativistic reduction of the self-consistent covariant density functional theory (CDFT), with the similarity renormalization group (SRG) method.

doi: 10.1103/PhysRevC.102.021301
Citations: PlumX Metrics


2020RE13      Phys.Rev. C 102, 044603 (2020)

Z.X.Ren, P.W.Zhao, J.Meng

Time-dependent covariant density functional theory in three-dimensional lattice space: Benchmark calculation for the 16O + 16O reaction

NUCLEAR REACTIONS 16O(16O, X), E(cm)=50, 5-200 MeV; calculated collective kinetic energy of a boosted 16O, relative momentum, energy and particle number deviations for E(cm)=50 MeV, time evolution of total energy and quadrupole deformation β20 for E(cm)=50 MeV, energy dissipation as a function of beam energy for E(cm)=80-200 MeV, density distribution contours of the separating ions at E(cm)=90, 130, 170 MeV, total density evolutions for E(cm)=26.7, 26.8 MeV, above-barrier fusion σ(E) for E(cm)=5-40 MeV. Time-dependent covariant density functional theory (CDFT) with density functional PC-PK1. Comparison with experimental data.

doi: 10.1103/PhysRevC.102.044603
Citations: PlumX Metrics


2020WA03      Phys.Lett. B 802, 135246 (2020)

Y.K.Wang, F.Q.Chen, P.W.Zhao

Two quasiparticle wobbling in the even-even nucleus 130Ba

NUCLEAR STRUCTURE 130Ba; calculated energy spectra, transition probability ratios B(M1)/B(E2), K and azimuthal plots.

doi: 10.1016/j.physletb.2020.135246
Citations: PlumX Metrics


2020WU06      Phys.Rev. C 101, 051301 (2020)

X.H.Wu, P.W.Zhao

Predicting nuclear masses with the kernel ridge regression

ATOMIC MASSES Z=8-120; N=8-160; calculated mass excesses using WS4 mass model with kernel ridge regression (KRR) approach. Comparison with evaluated data in AME2012 and AME2016.

doi: 10.1103/PhysRevC.101.051301
Citations: PlumX Metrics


2019RE09      Phys.Rev. C 100, 044322 (2019)

Z.X.Ren, P.W.Zhao

Hamiltonian flow equations for a Dirac particle in large scalar and vector potentials

NUCLEAR STRUCTURE 208Pb; calculated total density of the lowest 126 levels as a function of the radial coordinate using SRG method through a novel expansion with the inverse of the Dirac effective mass, and compared with exact results.

doi: 10.1103/PhysRevC.100.044322
Citations: PlumX Metrics


2019WA17      Phys.Rev. C 99, 054303 (2019)

Y.K.Wang, F.Q.Chen, P.W.Zhao, S.Q.Zhang, J.Meng

Multichiral facets in symmetry restored states: Five chiral doublet candidates in the even-even nucleus 136Nd

NUCLEAR STRUCTURE 136Nd; calculated levels, J, π, B(M1)/B(E2) ratios, compositions of configurations for bands, K distributions for angular momenta, and probability distribution contours (azimuthal plots) of orientation of the angular momentum for five chiral doublets bands using triaxial projected shell model (PSM). Comparison with experimental data.

doi: 10.1103/PhysRevC.99.054303
Citations: PlumX Metrics


2019ZH25      Phys.Rev. C 99, 054319 (2019)

P.W.Zhao, Y.K.Wang, Q.B.Chen

Microscopic resolution of the nuclear chiral conundrum with crossing twin bands in 106Ag

NUCLEAR STRUCTURE 106Ag; calculated levels, J, π, rotational frequencies, potential energy surface in (β, γ) plane, total Routhian curves, B(M1), and B(E2) for the two- and four-quasiparticle configurations and chiral vibration bands using three-dimensional tilted axis cranking covariant density functional theory (3DTAC-DFT). Comparison with experimental data.

doi: 10.1103/PhysRevC.99.054319
Citations: PlumX Metrics


2018GR01      Phys.Rev.Lett. 120, 022502 (2018)

E.Grodner, J.Srebrny, Ch.Droste, L.Prochniak, S.G.Rohozinski, M.Kowalczyk, M.Ionescu-Bujor, C.A.Ur, K.Starosta, T.Ahn, M.Kisielinski, T.Marchlewski, S.Aydin, F.Recchia, G.Georgiev, R.Lozeva, E.Fiori, M.Zielinska, Q.B.Chen, S.Q.Zhang, L.F.Yu, P.W.Zhao, J.Meng

First Measurement of the g Factor in the Chiral Band: The Case of the Cs128 Isomeric State

RADIOACTIVITY 128Cs(IT); measured decay products, Eγ, Iγ; deduced g factor, γ-ray energies, Larmor frequency of precession.

doi: 10.1103/PhysRevLett.120.022502
Citations: PlumX Metrics

Data from this article have been entered in the XUNDL database. For more information, click here.


2018PE07      Phys.Rev. C 97, 041304 (2018)

C.M.Petrache, B.F.Lv, A.Astier, E.Dupont, Y.K.Wang, S.Q.Zhang, P.W.Zhao, Z.X.Ren, J.Meng, P.T.Greenlees, H.Badran, D.M.Cox, T.Grahn, R.Julin, S.Juutinen, J.Konki, J.Pakarinen, P.Papadakis, J.Partanen, P.Rahkila, M.Sandzelius, J.Saren, C.Scholey, J.Sorri, S.Stolze, J.Uusitalo, B.Cederwall, O.Aktas, A.Ertoprak, H.Liu, S.Matta, P.Subramaniam, S.Guo, M.L.Liu, X.H.Zhou, K.L.Wang, I.Kuti, J.Timar, A.Tucholski, J.Srebrny, C.Andreoiu

Evidence of chiral bands in even-even nuclei

NUCLEAR REACTIONS 100Mo(40Ar, 4n), E=152 MeV; measured Eγ, Iγ, γγ-coin, γγ(θ)(DCO) using JUROGAM II array at the K130 Cyclotron facility of the University of Jyvaskyla. 136Nd; deduced high-spin levels, J, π, bands, five pairs of nearly degenerate chiral doublet bands, B(M1)/B(E2), configurations, quasiparticle alignments. Comparison with theoretical calculations using three-dimensional tilted axis cranking covariant density functional theory (3D TAC-CDFT), TAC-CDFT, and multi-quasiparticle particle-rotor model (MQ-PRM). Complete level scheme and bands to appear in a forthcoming paper.

doi: 10.1103/PhysRevC.97.041304
Citations: PlumX Metrics

Data from this article have been entered in the XUNDL database. For more information, click here.


2018WU09      Phys.Rev. C 98, 064302 (2018)

X.H.Wu, Q.B.Chen, P.W.Zhao, S.Q.Zhang, J.Meng

Two-dimensional collective Hamiltonian for chiral and wobbling modes. II. Electromagnetic transitions

doi: 10.1103/PhysRevC.98.064302
Citations: PlumX Metrics


2018XI02      At.Data Nucl.Data Tables 121-122, 1 (2018)

X.W.Xia, Y.Lim, P.W.Zhao, H.Z.Liang, X.Y.Qu, Y.Chen, H.Liu, L.F.Zhang, S.Q.Zhang, Y.Kim, J.Meng

The limits of the nuclear landscape explored by the relativistic continuum Hartree-Bogoliubov theory

NUCLEAR STRUCTURE Z=8-120; calculated ground-state properties using the spherical relativistic continuum Hartree-Bogoliubov (RCHB) theory with the relativistic density functional PC-PK1.

doi: 10.1016/j.adt.2017.09.001
Citations: PlumX Metrics


2017HA15      Europhys.Lett. 117, 62001 (2017)

H.Haas, S.P.A.Sauer, L.Hemmingsen, V.Kello, P.W.Zhao

Quadrupole moments of Cd and Zn nuclei: When solid-state, molecular, atomic, and nuclear theory meet

NUCLEAR MOMENTS 111Cd, 67Zn; analyzed available data; calculated nuclear covariant density functionals; deduced quadrupole moments.

doi: 10.1209/0295-5075/117/62001
Citations: PlumX Metrics


2017ZH43      Phys.Lett. B 773, 1 (2017)

P.W.Zhao

Multiple chirality in nuclear rotation: A microscopic view

NUCLEAR STRUCTURE 106Rh; calculated single-neutron levels near the Fermi surface, total Routhian curves, rotational excitation energies, B(M1), B(E2), B(M1)/B(E2) ratios.

doi: 10.1016/j.physletb.2017.08.001
Citations: PlumX Metrics


2016AY04      Phys.Rev. C 93, 054317 (2016)

A.D.Ayangeakaa, U.Garg, C.M.Petrache, S.Guo, P.W.Zhao, J.T.Matta, B.K.Nayak, D.Patel, R.V.F.Janssens, M.P.Carpenter, C.J.Chiara, F.G.Kondev, T.Lauritsen, D.Seweryniak, S.Zhu, S.S.Ghugre, R.Palit

In-beam spectroscopy of medium- and high-spin states in 133Ce

NUCLEAR REACTIONS 116Cd(22Ne, 5n), E=112 MeV; measured Eγ, Iγ, γγ-coin, γ(θ), γγ(θ) using Gammasphere array at ATLAS-ANL facility, enriched target. 133Ce; deduced high-spin levels, J, π, multipolarity, dipole and quadrupole bands, alignments, configurations, rich diversity of collective phenomena. Comparisons with calculations based on cranked Nilsson-Strutinsky (CNS) model and tilted axis cranking covariant density functional theory (TAC-CDFT).

doi: 10.1103/PhysRevC.93.054317
Citations: PlumX Metrics

Data from this article have been entered in the XUNDL database. For more information, click here.


2016CH44      Phys.Rev. C 94, 044301 (2016)

Q.B.Chen, S.Q.Zhang, P.W.Zhao, R.V.Jolos, J.Meng

Two-dimensional collective Hamiltonian for chiral and wobbling modes

doi: 10.1103/PhysRevC.94.044301
Citations: PlumX Metrics


2016LI13      Phys.Rev. C 93, 034309 (2016)

H.J.Li, B.Cederwall, M.Doncel, J.Peng, Q.B.Chen, S.Q.Zhang, P.W.Zhao, J.Meng, T.Back, U.Jakobsson, K.Auranen, S.Bonig, M.Drummond, T.Grahn, P.Greenlees, A.Herzan, D.T.Joss, R.Julin, S.Juutinen, J.Konki, T.Kroll, M.Leino, C.McPeake, D.O'Donnell, R.D.Page, J.Pakarinen, J.Partanen, P.Peura, P.Rahkila, P.Ruotsalainen, M.Sandzelius, J.Saren, B.Saygi, C.Scholey, J.Sorri, S.Stolze, M.J.Taylor, A.Thornthwaite, J.Uusitalo, Z.G.Xiao

Lifetime measurements in 166Re: Collective versus magnetic rotation

NUCLEAR REACTIONS 92Mo(78Kr, n3p), E=380 MeV; measured Eγ, Iγ, recoil-gated γγ-coin, level half-lives by recoil distance Doppler-shift (RDDS) method and differential decay-curve analysis using JUROGAM-II array for γ detection, RITU separator, and GREAT spectrometer at Jyvaskyla accelerator facility. 166Re; deduced high-spin levels, J, π, B(M1), B(E2), B(E1), B(M1)/B(E2) configurations, alignments; discussed collective versus magnetic rotation; calculated total Routhian surface plot. Tilted-axis cranking calculations based on a relativistic mean-field approach (TAC-RMF).

doi: 10.1103/PhysRevC.93.034309
Citations: PlumX Metrics

Data from this article have been entered in the XUNDL database. For more information, click here.


2016LI41      Phys.Rev. C 94, 024337 (2016)

X.Q.Li, C.Xu, S.Q.Zhang, H.Hua, J.Meng, R.A.Bark, Q.B.Chen, C.Y.Niu, R.Han, S.M.Wyngaardt, S.Y.Wang, S.Wang, B.Qi, L.Liu, L.H.Zhu, Z.Shi, G.L.Zhang, B.H.Sun, X.Y.Le, C.Y.Song, Y.L.Ye, D.X.Jiang, F.R.Xu, Z.H.Li, J.J.Sun, Y.Shi, P.W.Zhao, W.Y.Liang, C.G.Li, C.G.Wang, X.C.Chen, Z.H.Li, D.P.Sun, C.Liu, Z.Q.Li, P.Jones, E.A.Lawrie, J.J.Lawrie, M.Wiedeking, T.D.Bucher, T.Dinoko, B.V.Kheswa, L.Makhathini, S.N.T.Majola, J.Ndayishimye, S.P.Noncolela, O.Shirinda, J.Gal, G.Kalinka, J.Molnar, B.M.Nyako, J.Timar, K.Juhasz, M.Arogunjo

Spectroscopy of 155Yb: Structure evolution in the N=85 isotones

NUCLEAR REACTIONS 144Sm(16O, 5n), E=118 MeV; measured Eγ, Iγ, γγ-coin, γγ(θ)(ADO ratios) at cyclotron facility of iThemba LABS. 155Yb; deduced high-spin levels, J, π, multipolarity, bands, configurations; calculated potential energy contour in (β, γ) plane. Comparison with semiempirical shell-model (SESM) calculations. Predicted coexistence of prolate and oblate shapes from adiabatic and configuration-fixed constrained triaxial covariant density functional theory (CDFT) calculations. Systematics of low-lying levels in N=84-87 isotones: 148,149,150,151Gd, 150,151,152,153Dy, 152,153,154,155Er, 154,155,156,157Yb, 156,157,158,159Hf.

doi: 10.1103/PhysRevC.94.024337
Citations: PlumX Metrics

Data from this article have been entered in the XUNDL database. For more information, click here.


2016YO01      Phys.Rev.Lett. 116, 032501 (2016)

D.T.Yordanov, D.L.Balabanski, M.L.Bissell, K.Blaum, I.Budincevic, B.Cheal, K.Flanagan, N.Frommgen, G.Georgiev, Ch.Geppert, M.Hammen, M.Kowalska, K.Kreim, A.Krieger, J.Meng, R.Neugart, G.Neyens, W.Nortershauser, M.M.Rajabali, J.Papuga, S.Schmidt, P.W.Zhao

Simple Nuclear Structure in 111-129Cd from Atomic Isomer Shifts

NUCLEAR MOMENTS 111,113,115,117,119,121,123,125,127,129Cd; measured spectral lines; deduced isomer shifts and differential mean square charge radii, quadrupole moments. Comparison with covariant density functional theory.

doi: 10.1103/PhysRevLett.116.032501
Citations: PlumX Metrics

Data from this article have been entered in the XUNDL database. For more information, click here.


2016ZH41      Phys.Rev. C 94, 041301 (2016)

P.W.Zhao, P.Ring, J.Meng

Configuration interaction in symmetry-conserving covariant density functional theory

NUCLEAR STRUCTURE 54Cr; calculated neutron and proton single-particle levels, yrast band and the angular momentum projected states, configurations and their quasiparticle excitation energies and the amplitudes in the yrast states. New method of configuration interaction on top of projected density functional theory (CI-PDFT). Comparison with experimental data.

doi: 10.1103/PhysRevC.94.041301
Citations: PlumX Metrics


2016ZH42      Phys.Rev. C 94, 041302 (2016)

P.W.Zhao, S.Gandolfi

Radii of neutron drops probed via the neutron skin thickness of nuclei

NUCLEAR STRUCTURE 48Ca, 208Pb; calculated neutron skin thickness as function of rms radius, rms radii for three neutron drops, slope of the symmetry energy versus rms radii. Nonrelativistic and relativistic density functional theories (DFT) and with ab initio calculations. Relevance to understanding of multineutron interactions, neutron-rich nuclei, neutron stars, etc.

doi: 10.1103/PhysRevC.94.041302
Citations: PlumX Metrics


2015LI39      Phys.Rev. C 92, 044304 (2015)

L.Liu, Z.-H.Zhang, P.-W.Zhao

Thermodynamics of pairing transition in hot nuclei

NUCLEAR STRUCTURE 162Dy; calculated neutron, proton, and total heat capacities, average excitation energies, pairing gap energies, seniority components, level densities and entropies as function of temperature. Covariant density functional theory (CDFT) and paring correlations by a shell-model like approach (SLAP).

doi: 10.1103/PhysRevC.92.044304
Citations: PlumX Metrics


2015PE06      Phys.Rev. C 91, 044329 (2015)

J.Peng, P.W.Zhao

Magnetic and antimagnetic rotation in 110Cd within tilted axis cranking relativistic mean-field theory

NUCLEAR STRUCTURE 110Cd; calculated levels, J, π, B(M1), B(E2), alignments, configurations of the antimagnetic rotational and magnetic rotational (shears) bands. Self-consistent tilted axis cranking relativistic mean-field (TAC-RMF) theory based on a point-coupling interaction.

doi: 10.1103/PhysRevC.91.044329
Citations: PlumX Metrics


2015XU09      Phys.Rev. C 91, 061303 (2015)

C.Xu, X.Q.Li, J.Meng, S.Q.Zhang, H.Hua, S.Y.Wang, B.Qi, C.Liu, Z.G.Xiao, H.J.Li, L.H.Zhu, Z.Shi, Z.H.Li, Y.L.Ye, D.X.Jiang, J.J.Sun, Z.H.Zhang, Y.Shi, P.W.Zhao, Q.B.Chen, W.Y.Liang, R.Han, C.Y.Niu, C.G.Li, C.G.Wang, Z.H.Li, S.M.Wyngaardt, R.A.Bark, P.Papka, T.D.Bucher, A.Kamblawe, E.Khaleel, N.Khumalo, E.A.Lawrie, J.J.Lawrie, P.Jones, S.M.Mullins, S.Murray, M.Wiedeking, J.F.Sharpey-Schafer, S.N.T.Majola, J.Ndayishimye, D.Negi, S.P.Noncolela, S.S.Ntshangase, O.Shirinda, P.Sithole, M.A.Stankiewicz, J.N.Orce, T.Dinoko, J.Easton, B.M.Nyako, K.Juhasz

Spectroscopy of 76Se: Prolate-to-oblate shape transition

NUCLEAR REACTIONS 70Zn(12C, 2nα), E=60, 65 MeV; measured Eγ, Iγ, γγ-, (particle)γγ-coin using AFRODITE array for γ rays and DIAMANT array for charged particles at iThemba LABS. 76Se; deduced high-spin levels, J, π, bands, configuration, kinematic and dynamic moments of inertia, band crossing frequency, shape transition. Comparison with cranked shell-model calculations. systematics of band crossings in 70,72,74,76,78,80Se, 72,74,76,78,80,82Kr.

doi: 10.1103/PhysRevC.91.061303
Citations: PlumX Metrics

Data from this article have been entered in the XUNDL database. For more information, click here.


2015ZH19      Phys.Rev.Lett. 115, 022501 (2015)

P.W.Zhao, N.Itagaki, J.Meng

Rod-shaped Nuclei at Extreme Spin and Isospin

NUCLEAR STRUCTURE 12,15,20C; calculated proton and neutron single-particle energies, J, π. Comparison with available data.

doi: 10.1103/PhysRevLett.115.022501
Citations: PlumX Metrics


2015ZH34      Phys.Rev. C 92, 034319 (2015)

P.W.Zhao, S.Q.Zhang, J.Meng

Impact of pairing correlations on the orientation of the nuclear spin

NUCLEAR STRUCTURE 135Nd; calculated total Routhians for the 1-qp and 3-qp configurations as function of tilt angle, rotational energy and rotational frequency as function of the angular momentum, neutron and proton angular momentum vectors and angular momentum alignments for 1-qp and 3-qp bands, B(M1), B(E2). Tilted axis cranking covariant density functional theory with pairing correlations treated in a fully self-consistent and microscopic way. Evolution of the spin axis and pairing effects in rotating triaxial nuclei. Comparison with experimental data.

doi: 10.1103/PhysRevC.92.034319
Citations: PlumX Metrics


2014BA29      Int.J.Mod.Phys. E23, 1461001 (2014)

R.A.Bark, E.O.Lieder, R.M.Lieder, E.A.Lawrie, J.J.Lawrie, S.P.Bvumbi, N.Y.Kheswa, S.S.Ntshangase, T.E.Madiba, P.L.Masiteng, S.M.Mullins, S.Murray, P.Papka, O.Shirinda, Q.B.Chen, S.Q.Zhang, Z.H.Zhang, P.W.Zhao, C.Xu, J.Meng, D.G.Roux, Z.P.Li, J.Peng, B.Qi, S.Y.Wang, Z.G.Xiao

Studies of chirality in the mass 80, 100 and 190 regions

NUCLEAR REACTIONS 96Zr(14N, 4n)106Ag, E not given; measured reaction products, Eγ, Iγ; deduced levels, J, π, T1/2, chiral bands, B(M1), B(E2). Comparison with particle-rotor calculations.

doi: 10.1142/S0218301314610011
Citations: PlumX Metrics


2014CH22      Phys.Rev. C 89, 054309 (2014), Erratum Phys.Rev. C 108, 029901 (2023)

Y.Y.Cheng, S.Q.Zhang, X.Q.Li, H.Hua, C.Xu, Z.H.Li, P.W.Zhao, J.Meng, J.J.Sun, Z.J.Bai, F.R.Xu, Y.L.Ye, D.X.Jiang, E.H.Wang, C.He, R.Han, X.G.Wu, G.S.Li, C.Y.He, Y.Zheng, C.B.Li, S.P.Hu, S.H.Yao, B.B.Yu, X.P.Cao, J.L.Wang

High-spin spectroscopy of 144Tb: Systematic investigation of dipole bands in N=79 isotones

NUCLEAR REACTIONS 116Sn(32S, 3np), E=156 MeV; measured Eγ, Iγ, γγ-coin, γγ(θ)(DCO) at HI-13 accelerator facility of CIAE. 144Tb; deduced high-spin levels, J, π, multipolarity, bands, configurations. Systematics of dipole bands in N=79 isotones 141Sm, 142Eu, 143Gd, 144Tb, 145Dy, 146Ho; Comparison with self-consistent tilted-axis-cranking covariant density functional theory (TAC-CDFT).

doi: 10.1103/PhysRevC.89.054309
Citations: PlumX Metrics

Data from this article have been entered in the XUNDL database. For more information, click here.


2014CH49      Phys.Rev. C 90, 044306 (2014)

Q.B.Chen, S.Q.Zhang, P.W.Zhao, J.Meng

Collective Hamiltonian for wobbling modes

doi: 10.1103/PhysRevC.90.044306
Citations: PlumX Metrics


2014KU15      Phys.Rev.Lett. 113, 032501 (2014)

I.Kuti, Q.B.Chen, J.Timar, D.Sohler, S.Q.Zhang, Z.H.Zhang, P.W.Zhao, J.Meng, K.Starosta, T.Koike, E.S.Paul, D.B.Fossan, C.Vaman

Multiple Chiral Doublet Bands of Identical Configuration in 103Rh

NUCLEAR REACTIONS 96Zr(11B, 4n), E=40 MeV; measured reaction products, Eγ, Iγ, γ-γ-γ-coin.; deduced energy levels, J, π, quasiparticle alignments of bands, B(M1)/B(E2) ratios, negative-parity chiral doublet band structures. Covariant density functional theory and particle rotor model calculations.

doi: 10.1103/PhysRevLett.113.032501
Citations: PlumX Metrics

Data from this article have been entered in the XUNDL database. For more information, click here.


2014LI19      Phys.Rev.Lett. 112, 202502 (2014)

E.O.Lieder, R.M.Lieder, R.A.Bark, Q.B.Chen, S.Q.Zhang, J.Meng, E.A.Lawrie, J.J.Lawrie, S.P.Bvumbi, N.Y.Kheswa, S.S.Ntshangase, T.E.Madiba, P.L.Masiteng, S.M.Mullins, S.Murray, P.Papka, D.G.Roux, O.Shirinda, Z.H.Zhang, P.W.Zhao, Z.P.Li, J.Peng, B.Qi, S.Y.Wang, Z.G.Xiao, C.Xu

Resolution of Chiral Conundrum in 106Ag: Doppler-Shift Lifetime Investigation

NUCLEAR REACTIONS 96Zr(14N, 4n), E=71 MeV; measured reaction products, Eγ, Iγ, γ-γ-coin.; deduced level scheme, J, π, high spin negative parity bands, B(M1), B(E2). Particle-rotor model calculations.

doi: 10.1103/PhysRevLett.112.202502
Citations: PlumX Metrics

Data from this article have been entered in the XUNDL database. For more information, click here.


2014LI29      Chin.Phys.C 38, 074103 (2014)

L.Liu, P.-W.Zhao

Exact treatment of pairing correlations in Yb isotopes with covariant density functional theory

NUCLEAR STRUCTURE 148,166,180Yb; calculated neutron and proton single-particle occupation probabilities, one- and two-neutron separation and pairing energies. BCS and SLAP approaches.

doi: 10.1088/1674-1137/38/7/074103
Citations: PlumX Metrics


2014ME18      Phys.Scr. 89, 054029 (2014)

J.Meng, P.W.Zhao, S.Q.Zhang, J.N.Hu, J.Li

Nuclear moments in covariant density functional theory

doi: 10.1088/0031-8949/89/5/054029
Citations: PlumX Metrics


2014ZH02      Phys.Rev. C 89, 011301 (2014)

P.W.Zhao, S.Q.Zhang, J.Meng

Explanation of the simplicity of the quadrupole moments recently observed in Cd isotopes from covariant density functional theory

NUCLEAR MOMENTS 107,109,111,113,115,117,119,121,123,125,127,129Cd; calculated quadrupole moments, and particle occupation numbers in h11/2 neutron and g9/2 proton shells, composition of the total quadrupole moments as a function of the neutron number. Covariant density functional theory (CDFT) using functional PC-PK1, with and without pairing. Importance of core polarization. Comparison with experimental data.

doi: 10.1103/PhysRevC.89.011301
Citations: PlumX Metrics


2013AY04      Phys.Rev.Lett. 110, 172504 (2013)

A.D.Ayangeakaa, U.Garg, M.D.Anthony, S.Frauendorf, J.T.Matta, B.K.Nayak, D.Patel, Q.B.Chen, S.Q.Zhang, P.W.Zhao, B.Qi, J.Meng, R.V.F.Janssens, M.P.Carpenter, C.J.Chiara, F.G.Kondev, T.Lauritsen, D.Seweryniak, S.Zhu, S.S.Ghugre, R.Palit

Evidence for Multiple Chiral Doublet Bands in 133Ce

NUCLEAR REACTIONS 116Cd(22Ne, 5n)133Ce, E=112 MeV; measured reaction products, Eγ, Iγ, γ-γ-coin.; deduced high-spin states energies, J, π, two distinct sets of criral-partner bands. Comparison with available data, relativistic mean field calculations.

doi: 10.1103/PhysRevLett.110.172504
Citations: PlumX Metrics

Data from this article have been entered in the XUNDL database. For more information, click here.


2013CH07      Phys.Rev. C 87, 024314 (2013)

Q.B.Chen, S.Q.Zhang, P.W.Zhao, R.V.Jolos, J.Meng

Collective Hamiltonian for chiral modes

doi: 10.1103/PhysRevC.87.024314
Citations: PlumX Metrics


2013ME09      J.Phys.:Conf.Ser. 445, 012016 (2013)

J.Meng, Y.Chen, Z.M.Niu, B.Sun, P.W.Zhao

Impact on the r-process from the nuclear mass and lifetime in covariant density functional theory

doi: 10.1088/1742-6596/445/1/012016
Citations: PlumX Metrics


2013ME16      Front.Phys.(Beijing) 8, 55 (2013)

J.Meng, J.Peng, S.g-Q.Zhang, P.-W.Zhao

Progress on tilted axis cranking covariant density functional theory for nuclear magnetic and antimagnetic rotation

NUCLEAR STRUCTURE N<160; analyzed available data; deduced magnetic rotations and antimagnetic rotations within in the framework of tilted axis cranking based on the pairing plus quadrupole model.

doi: 10.1007/s11467-013-0287-y
Citations: PlumX Metrics


2013ZH16      Phys.Rev. C 87, 054314 (2013)

Z.-H.Zhang, P.-W.Zhao, J.Meng, J.-Y.Zeng, E.-G.Zhao, S.-G.Zhou

Nuclear superfluidity for antimagnetic rotation in 105Cd and 106Cd

NUCLEAR STRUCTURE 105,106Cd; calculated Nilsson levels for protons and neutrons, kinematic moments of inertia, B(E2), angular momentum vectors of neutrons with and without pairing, anti-magnetic rotational bands, shears angle. Cranked shell model with the pairing correlations and particle-number-conserving method. Comparison with experimental data.

doi: 10.1103/PhysRevC.87.054314
Citations: PlumX Metrics


2012LI40      Chin.Phys.C 36, 818 (2012)

L.Liu, P.-W.Zhao

α-cluster structure of 12C and 16O in the covariant density functional theory with a shell-model-like approach

NUCLEAR STRUCTURE 12C, 16O; calculated ground states; deduced 3α clustering in 12C and 4α clustering in 16O, the existence of linear nα chain structures. Covariant density functional theory.

doi: 10.1088/1674-1137/36/9/004
Citations: PlumX Metrics


2012ST06      Phys.Rev. C 85, 044316 (2012)

D.Steppenbeck, R.V.F.Janssens, S.J.Freeman, M.P.Carpenter, P.Chowdhury, A.N.Deacon, M.Honma, H.Jin, T.Lauritsen, C.J.Lister, J.Meng, J.Peng, D.Seweryniak, J.F.Smith, Y.Sun, S.L.Tabor, B.J.Varley, Y.-C.Yang, S.Q.Zhang, P.W.Zhao, S.Zhu

Magnetic rotation and quasicollective structures in 58Fe: Influence of the νγ9/2 orbital

NUCLEAR REACTIONS 48Ca(13C, 3n), (14C, 4n), E=130 MeV; measured Eγ, Iγ, γγ-coin, γ(θ), DCO ratios using Gammasphere array at ATLAS, ANL facility. 58Fe; deduced high-spin levels, J, π, multipolarity, bands, magnetic rotational bands, alignment plots, quasicollective structures, configurations. Comparison with shell model calculations, and with self-consistent tilted-axis-cranking calculations within relativistic mean-field theory.

NUCLEAR STRUCTURE 58Fe; calculated levels, J, π. Shell-model calculations in fp model space using GXPF1A, KB3G, and FPD6 interactions.

doi: 10.1103/PhysRevC.85.044316
Citations: PlumX Metrics

Data from this article have been entered in the XUNDL database. For more information, click here.


2012YU02      Phys.Rev. C 85, 024318 (2012)

L.F.Yu, P.W.Zhao, S.Q.Zhang, P.Ring, J.Meng

Magnetic rotations in 198Pb and 199Pb within covariant density functional theory

NUCLEAR STRUCTURE 198,199Pb; calculated neutron single-particle and total Routhians, levels, J, π, bands, angular momentum alignments, β and γ deformation parameters, B(E2), B(M1) for magnetic-dipole rotational (shears) bands. Tilted axis cranking relativistic mean-field theory. Comparison with experimental data.

doi: 10.1103/PhysRevC.85.024318
Citations: PlumX Metrics


2012ZH18      Phys.Rev. C 85, 054310 (2012)

P.W.Zhao, J.Peng, H.Z.Liang, P.Ring, J.Meng

Covariant density functional theory for antimagnetic rotation

NUCLEAR STRUCTURE 105Cd; calculated total Routhians, energy spectrum, total angular momenta, kinetic and dynamic moments of inertia, B(E2) values, alignments, Dirac currents, density distribution contours for antimagnetic rotational (AMR) band using tilted-axis cranking and relativistic mean field (TAC-RMF), and TAC with covariant density functional theory (CDFT). Comparison with experimental data.

doi: 10.1103/PhysRevC.85.054310
Citations: PlumX Metrics


2012ZH46      Phys.Rev. C 86, 064324 (2012)

P.W.Zhao, L.S.Song, B.Sun, H.Geissel, J.Meng

Crucial test for covariant density functional theory with new and accurate mass measurements from Sn to Pa

ATOMIC MASSES 128Sn, 133Sb, 136Te, 144La, 146Ce, 202Pt, 202Au, 207Hg, 213Tl, 217,218Bi, 219,220,221,222Po, 220,221,222,223,224At, 223,224,225,226,227,228Rn, 224,225,226,227,228,229,230,231Fr, 231,232,233,234Ra, 229,230,231,232,233,234,235,236Ac, 235,236,237Th, 235,236,237,238Pa; calculated binding energies, rotational correction energies, β2 using covariant density functional theory with the point-coupling interaction PC-PK1. Comparison with experimental data on mass measurements at GSI.

doi: 10.1103/PhysRevC.86.064324
Citations: PlumX Metrics


2011ZH28      Phys.Rev.Lett. 107, 122501 (2011)

P.W.Zhao, J.Peng, H.Z.Liang, P.Ring, J.Meng

Antimagnetic Rotation Band in Nuclei: A Microscopic Description

NUCLEAR STRUCTURE 105Cd; calculated angular momentum, energy and rotational frequency, B(E2). Covariant density functional theory.

doi: 10.1103/PhysRevLett.107.122501
Citations: PlumX Metrics


2011ZH57      Phys.Lett. B 699, 181 (2011)

P.W.Zhao, S.Q.Zhang, J.Peng, H.Z.Liang, P.Ring, J.Meng

Novel structure for magnetic rotation bands in 60Ni

NUCLEAR STRUCTURE 60Ni; calculated energy spectra, total angular momenta, evolution of deformation parameters, B(M1), B(E2), B(M1)/B(E2) ratios; deduced systematics of the newly observed shears bands. The self-consistent tilted axis cranking relativistic mean-field theory based on a point-coupling interaction.

doi: 10.1016/j.physletb.2011.03.068
Citations: PlumX Metrics


2010ZH45      Phys.Rev. C 82, 054319 (2010)

P.W.Zhao, Z.P.Li, J.M.Yao, J.Meng

New parametrization for the nuclear covariant energy density functional with a point-coupling interaction

NUCLEAR STRUCTURE 16,18,20,22O, 18Ne, 20Mg, 34Si, 36S, 38Ar, 36,38,40,42,44,46,48,50Ca, 42,50Ti, 56,58,72Ni, 84Se, 86Kr, 88Sr, 90Zr, 92Mo, 94Ru, 98Cd, 100,106,108,112,116,120,122,124,126,128,130,132,134Sn, 134Te, 136Xe, 138Ba, 140Ce, 142Nd, 144Sm, 146Gd, 148Dy, 150Er, 206Hg, 200,202,204,206,208,210,212,214Pb, 210Po, 212Rn, 214Ra, 216Th, 218U; calculated binding energies and charge radii for spherical nuclei by PC-PK1 parametrization of energy density functional. Z=20, N=16-32; Z=28, N=26-44; Z=50, N=52-84; Z=82, N=100-132; Z=12-22, N=20; Z=30-46, N=50; Z=50-66, N=82; Z=80-92, N=126; Z=70, N=88-108; Z=92, N=138-148; deduced deviations of calculated binding energies from those in AME-2003. Z=8, N=6-22; Z=20, N=18-40; Z=28, N=28-50; Z=50, N=52-90; calculated S(2n) values. 16O, 40Ca, 132Sn, 208Pb; calculated single-particle energies. Z=50, N=56-82; Z=82, N=114-132; calculated charge radii and neutron skin thickness. 240Pu; calculated potential energy curve. 150Nd; calculated yrast states and B(E2) values. 144,146,148,150,152,154Nd; calculated E(4+)/E(2+) and B(E2) for first 2+ states. Comparison with experimental data and AME-2003.

doi: 10.1103/PhysRevC.82.054319
Citations: PlumX Metrics


2009ZH29      Chin.Phys.Lett. 26, 112102 (2009)

P.-W.Zhao, B.-Y.Sun, J.Meng

Deformation Effect on the Center-of-Mass Correction Energy in Nuclei Ranging from Oxygen to Calcium

doi: 10.1088/0256-307X/26/11/112102
Citations: PlumX Metrics


Back to query form