NSR Query Results


Output year order : Descending
Format : Normal

NSR database version of April 29, 2024.

Search: Author = M.Shi

Found 12 matches.

Back to query form



2021SH22      Chin.Phys.C 45, 044103 (2021)

M.Shi, J.Y.Fang, Z.M.Niu

Exploring the uncertainties in theoretical predictions of nuclear β-decay half-lives

NUCLEAR STRUCTURE N=50, 82, 126; calculated β-decay T1/2 and uncertainties.

doi: 10.1088/1674-1137/abdf42
Citations: PlumX Metrics


2020CA22      Phys.Rev. C 102, 044313 (2020)

X.-N.Cao, K.-M.Ding, M.Shi, Q.Liu, J.-Y.Guo

Exploration of the exotic structure in Ce isotopes by the relativistic point-coupling model combined with complex momentum representation

NUCLEAR STRUCTURE 178,180,182,184,186,188,190,192,194,196,198Ce; calculated neutron single-particle levels, energies of single-particle levels near the Fermi surface, occupation probabilities for even-even A=184-198 Ce isotopes, neutron density distributions, wave functions of single-particle states in 198Ce. Relativistic point-coupling model combined with complex momentum representation by considering resonances through BCS approximation (RMFPCCMR-BCS) theory.

doi: 10.1103/PhysRevC.102.044313
Citations: PlumX Metrics


2019SH24      Chin.Phys.C 43, 074104 (2019)

M.Shi, Z.-M.Niu, H.-Z.Liang

Mass predictions of the relativistic continuum Hartree-Bogoliubov model with radial basis function approach

ATOMIC MASSES N=0-160; analyzed available data; calculated nuclear masses using radial basis function (RBF) approach.

doi: 10.1088/1674-1137/43/7/074104
Citations: PlumX Metrics


2018DI08      Phys.Rev. C 98, 014316 (2018)

K.-M.Ding, M.Shi, J.-Y.Guo, Z.-M.Niu, H.Liang

Resonant-continuum relativistic mean-field plus BCS in complex momentum representation

NUCLEAR STRUCTURE 120,122,124,126,128,130,132,134,136,138,140Zr; calculated neutron single particle energies and widths, occupation probabilities of neutron single particle levels, and neutron single particle spectra and density distributions in 124Zr. 80,82,84,86,88,90,92,94,96,98,100,102,104,106,108,110,112,114,116,118,120,122,124,126,128,130,132,134,136,138,140Zr; calculated S(2n), rms neutron radii. Resonant-continuum relativistic mean-field plus BCS in complex momentum representation with the BCS approximation for pairing correlations. Comparison with available experimental values.

doi: 10.1103/PhysRevC.98.014316
Citations: PlumX Metrics


2018SH21      Phys.Rev. C 97, 064301 (2018)

M.Shi, Z.-M.Niu, H.Liang

Combination of complex momentum representation and Green's function methods in relativistic mean-field theory

NUCLEAR STRUCTURE 74Ca; calculated single particle resonance for g7/2 orbital, level density distribution, and density of continuum states for the 1g7/2 orbital, continuum level density (CLD) for all the resonance states, density distributions for the 1g7/2, 2d3/2, 3s1/2, 2d5/2 and 1g9/2 orbitals, single-particle levels, and wave function of the 2d3/2 resonant state. Combined complex momentum representation method with Green's function method in the relativistic mean-field framework (RMF-CMR-GF); discussed single-particle wave functions and densities for halo structure in 74Ca.

doi: 10.1103/PhysRevC.97.064301
Citations: PlumX Metrics


2017FA02      Phys.Rev. C 95, 024311 (2017)

Z.Fang, M.Shi, J.-Y.Guo, Z.-M.Niu, H.Liang, S.-S.Zhang

Probing resonances in the Dirac equation with quadrupole-deformed potentials with the complex momentum representation method

NUCLEAR STRUCTURE 37Mg; calculated levels, resonances, single-particle resonances, J, π, single-particle energies for deformation (Nilsson orbitals) for the bound and resonant states concerned, radial-momentum probability distributions for the bound and resonant deformed states by solving the Dirac equation in complex momentum representation, and a set of coupled differential equations by the coupled-channel method.

doi: 10.1103/PhysRevC.95.024311
Citations: PlumX Metrics


2017SH09      Eur.Phys.J. A 53, 40 (2017)

M.Shi, X.-X.Shi, Z.-M.Niu, T.-T.Sun, J.-Y.Guo

Relativistic extension of the complex scaled Green's function method for resonances in deformed nuclei

NUCLEAR STRUCTURE A=31; calculated continuum level density for the 9/2[404] state, density of continuum states with quadrupole deformation and selected rotation angles; deduced influence of potential and its parameters.

doi: 10.1140/epja/i2017-12241-6
Citations: PlumX Metrics


2016LI35      Phys.Rev.Lett. 117, 062502 (2016)

N.Li, M.Shi, J.-Y.Guo, Z.-M.Niu, H.Liang

Probing Resonances of the Dirac Equation with Complex Momentum Representation

NUCLEAR STRUCTURE 120Sn; calculated energies and widths of single neutron state resonances. Relativistic mean-field (RMF) theory.

doi: 10.1103/PhysRevLett.117.062502
Citations: PlumX Metrics


2016SH25      Phys.Rev. C 94, 024302 (2016)

X.-X.Shi, M.Shi, Z.-M.Niu, T.-H.Heng, J.-Y.Guo

Probing resonances in deformed nuclei by using the complex-scaled Green's function method

NUCLEAR STRUCTURE 45S; calculated level densities as a function of quadrupole deformation β2, widths of resonant states, neutron single-particle levels using complex-scaled Green's function (CGF) method with theory of deformed nuclei. Comparison with calculations using complex scaling, and coupled-channel methods.

doi: 10.1103/PhysRevC.94.024302
Citations: PlumX Metrics


2015SH34      Phys.Rev. C 92, 054313 (2015)

M.Shi, J.-Y.Guo, Q.Liu, Z.-M.Niu, T.-H.Heng

Relativistic extension of the complex scaled Green function method

NUCLEAR STRUCTURE 120Sn; calculated energies and widths of single-neutron resonant states using RMF-CGF method, complex scaled Green function method extended to relativistic framework. Comparison with other theoretical calculations.

doi: 10.1103/PhysRevC.92.054313
Citations: PlumX Metrics


2014SH27      Phys.Rev. C 90, 034318 (2014)

M.Shi, D.-P.Li, S.-W.Chen, J.-Y.Guo

Examination of the pseudospin symmetry for the relativistic harmonic oscillator with the similarity renormalization group

doi: 10.1103/PhysRevC.90.034318
Citations: PlumX Metrics


2014SH28      Phys.Rev. C 90, 034319 (2014)

M.Shi, Q.Liu, Z.-M.Niu, J.-Y.Guo

Relativistic extension of the complex scaling method for resonant states in deformed nuclei

NUCLEAR STRUCTURE A=31; calculated single-particle levels and resonance parameters for all the concerned resonant states in nuclei with A=31. Complex scaling method extended to relativistic framework for resonances in deformed nuclei.

doi: 10.1103/PhysRevC.90.034319
Citations: PlumX Metrics


Back to query form