NSR Query Results


Output year order : Descending
Format : Normal

NSR database version of April 27, 2024.

Search: Author = B.K.Agrawal

Found 96 matches.

Back to query form



2024GA05      Nucl.Phys. A1043, 122832 (2024)

S.Gautam, A.Venneti, S.Banik, B.K.Agrawal

Estimation of the slope of nuclear symmetry energy via charge radii of mirror nuclei

NUCLEAR STRUCTURE 14C, 14O, 18O, 18Ne, 44Ca, 44Cr, 58Ni, 58Zn, 60Ni, 60Ge; calculated charge radii of mirror nuclei by implementing pairing effects with the Hartree-Fock Bogoliubov approximation.

doi: 10.1016/j.nuclphysa.2024.122832
Citations: PlumX Metrics


2024GH03      J.Phys.(London) G51, 045105 (2024)

T.Ghosh, Sangeeta, B.Maheshwari, G.Saxena, B.K.Agrawal

Indispensability of cross-shell contributions in neutron resonance spacing

NUCLEAR STRUCTURE 24Na, 25,26,27Mg; calculated J and π dependent nuclear level densities (NLDs) for a configuration interaction shell model using a numerically efficient spectral distribution method; deduced the s-wave neutron resonance spacing (D0).

doi: 10.1088/1361-6471/ad29e9
Citations: PlumX Metrics


2024HI02      Chin.Phys.C 48, 024001 (2024)

A.Hingu, S.Mukherjee, S.Parashari, A.Sangeeta, A.Gandhi, M.Upadhyay, M.Choudhary, S.Bamal, N.Singh, G.Mishra, S.De, S.Sood, S.Prasad, G.Saxena, A.Kumar, R.G.Thomas, B.K.Agrawal, K.Katovsky, A.Kumar

Investigation of 58Ni(n, p)58Co reaction cross-section with covariance analysis

NUCLEAR REACTIONS 58Ni(n, p), 115In(n, n'), E=1.7-2.7 MeV; measured reaction products, Eγ, Iγ; deduced σ and correlation matrix. Comparison with EXFOR, ENDF/B-VIII.0, JEFF-3.3, JENDL-4.0, and CENDL-3.2 libraries, TALYS calculations. The Folded Tendem Ion Accelerator (FOTIA) facility at the Bhabha Atomic Research Centre (BARC), Mumbai, India.

doi: 10.1088/1674-1137/ad0e5a
Citations: PlumX Metrics


2024IM01      Phys.Rev. C 109, 025804 (2024)

S.M.A.Imam, A.Mukherjee, B.K.Agrawal, G.Banerjee

Direct mapping of tidal deformability to the isoscalar and isovector nuclear matter parameters

doi: 10.1103/PhysRevC.109.025804
Citations: PlumX Metrics


2023DA19      Phys.Rev. C 108, 064304 (2023)

P.Das, U.Datta, S.Chakraborty, A.Rahaman, O.Tengblad, B.K.Agrawal, A.Becerril, J.Cederkall, J.Dey, A.Gottberg, S.M.Adil Imam, M.Kowalska, J.Kurcewicz, M.Lund, S.Mandal, M.Madurga, N.Marginean, R.Marginean, C.Mihai, I.Marroquin, E.Nacher, A.Negret, S.Pascu, A.Perea, E.Rapisarda, F.Rotaru, J.Ray, P.Sharma, T.Stora, C.Sotty, V.Vedia, N.Warr, R.Wadsworth

Exotic decay of 115Cs

doi: 10.1103/PhysRevC.108.064304
Citations: PlumX Metrics

Data from this article have been entered in the XUNDL database. For more information, click here.


2023GH04      Eur.Phys.J. A 59, 266 (2023)

T.Ghosh, Sangeeta, G.Saxena, B.K.Agrawal, U.Datta

Impact of density dependence of symmetry energy on astrophysical S-factor for heavy-ion fusion reactions

NUCLEAR STRUCTURE 16,24O, 40,48,54,60Ca, 78Ni, 124,132Sn; analyzed available data; deduced Radial density distributions for neutrons and protons from SLy4 and SkO Skyrme effective interactions.

NUCLEAR REACTIONS 40Ca(40Ca, X), 16O(16O, X), 24O(24O, X), 54Ca(54Ca, X), 60Ca(60Ca, X), 78Ni(78Ni, X), 124Sn(124Sn, X), 132Sn(132Sn, X), E(cm)=45-50 MeV; analyzed available data; deduced σ, the maximum barrier height and width obtained by DFM potentials M3Y-Paris without density dependence (PDD0), sub-barrier fusion σ and astrophysical S-factor. Comparison with available data.

doi: 10.1140/epja/s10050-023-01173-7
Citations: PlumX Metrics


2023KU10      Phys.Rev. C 107, 055801 (2023)

M.Kumar, S.Kumar, V.Thakur, R.Kumar, B.K.Agrawal, S.K.Dhiman

CREX- and PREX-II-motivated relativistic interactions and their implications for the bulk properties of nuclear matter and neutron stars

NUCLEAR STRUCTURE 16,24O, 40,48Ca, 56,68,78Ni, 88Sr, 90Zr, 100,116,132Sn, 144Sm, 208Pb; calculated binding energy, charge radii, neutron skin thickness. Calculations using relativistic interactions BSRV-CREX, BSRV-PREX, and BSRV-CPREX for the relativistic mean-field model tuned in accordance with skin thickness experimental results from CREX and PREX-II. Obtained symmetry energy parameters, bulk nuclear matter properties, maximum gravitational mass and radius of neutron star.

doi: 10.1103/PhysRevC.107.055801
Citations: PlumX Metrics


2023KU11      Phys.Rev. C 107, 055805 (2023)

R.Kumar, M.Kumar, V.Thakur, S.Kumar, P.Kumar, A.Sharma, B.K.Agrawal, S.K.Dhiman

Observational constraint from the heaviest pulsar PSR J0952-0607 on the equation of state of dense matter in relativistic mean field model

NUCLEAR STRUCTURE 48Ca, 208Pb; calculated neutron skin thickness. Calculations based on HPU1, HPU2, and HPU3 parametrizations for the relativistic mean field (RMF) model, which were generated in the light of the heaviest observed neutron star for the black widow pulsar PSR J092-0607. Obtained bulk nuclear matter properties, symmetry energy parameters, neutron star properties. Comparison to CREX and PREX-II results and other calculations.

doi: 10.1103/PhysRevC.107.055805
Citations: PlumX Metrics


2023PA12      Phys.Rev. C 107, 055804 (2023)

N.K.Patra, A.Venneti, S.M.Adil Imam, A.Mukherjee, B.K.Agrawal

Systematic analysis of the impacts of symmetry energy parameters on neutron star properties

doi: 10.1103/PhysRevC.107.055804
Citations: PlumX Metrics


2023TH01      Phys.Rev. C 107, 015803 (2023)

V.Thakur, R.Kumar, P.Kumar, M.Kumar, C.Mondal, K.Huang, J.Hu, B.K.Agrawal, S.K.Dhiman

Relativistic approach for the determination of nuclear and neutron star properties in consideration of PREX-II results

NUCLEAR STRUCTURE A=20-220; calculated charge rms radii, binding energy. 48Ca, 208Pb; calculated neutron skin thickness. Obtained properties of nonrotating neutron star. New parametrization of the relativistic mean-field (RMF) model obtained by fit to the available experimental data on binding energy, charge rms radii and taking into account recent PREX-II results on neutron skin thickness. Comparison to results obtained with different parametrizations - NL3, IOPB-I, FSUGarnet, Big Apple.

doi: 10.1103/PhysRevC.107.015803
Citations: PlumX Metrics


2022AD03      Phys.Rev. C 105, 015806 (2022)

S.M.Adil Imam, N.K.Patra, C.Mondal, T.Malik, B.K.Agrawal

Bayesian reconstruction of nuclear matter parameters from the equation of state of neutron star matter

doi: 10.1103/PhysRevC.105.015806
Citations: PlumX Metrics


2022GH01      J.Phys.(London) G49, 25103 (2022)

T.Ghosh, B.Maheshwari, Sangeeta, G.Saxena, B.K.Agrawal

Nuclear level densities away from line of β-stability

NUCLEAR STRUCTURE Z=10-80; analyzed available data; deduced nuclear level densities, ground-shell corrections, parameters.

doi: 10.1088/1361-6471/ac44ac
Citations: PlumX Metrics


2022MA50      Phys.Rev. C 106, L042801 (2022)

T.Malik, B.K.Agrawal, C.Providencia

Inferring the nuclear symmetry energy at suprasaturation density from neutrino cooling

doi: 10.1103/PhysRevC.106.L042801
Citations: PlumX Metrics


2022SA17      Phys.Rev. C 105, 044320 (2022)

Sangeeta, T.Ghosh, B.Maheshwari, G.Saxena, B.K.Agrawal

Astrophysical reaction rates with realistic nuclear level densities

NUCLEAR STRUCTURE 51V, 55Fe, 59Ni; calculated ground-state energies, nuclear level densities. 49,50Ti, 51V, 53Cr, 55,57Fe, 59Ni; calculated S-wave neutron resonances. Ground state properties calculated by using shell-model with the GXPF1A residual interaction. Nuclear level densities obtained within the spectral distribution method (SDM). Comparison to available experimental data and other theoretical calculations.

NUCLEAR REACTIONS 50V, 54Fe, 58Ni(n, γ), E(cm)<8 MeV; calculated σ(E), astrophysical reaction rates. TALYS 1.95 calculations using nuclear level densities obtained within the spectral distribution method (SDM). Comparison to experimental data and recommended values from ENDF and KADONIS V0.3.

doi: 10.1103/PhysRevC.105.044320
Citations: PlumX Metrics


2022TH05      Phys.Rev. C 106, 025803 (2022)

V.Thakur, R.Kumar, P.Kumar, V.Kumar, B.K.Agrawal, S.K.Dhiman

Relativistic mean field model parametrizations in the light of GW170817, GW190814, and PSR J0740+6620

NUCLEAR STRUCTURE 16O, 40,48Ca, 56Ni, 88Sr, 90Zr, 116,132Sn, 208Pb; calculated binding energy per nucleon, charge root mean square radii. Relativistic mean field (RMF) model with three new parametrizations DOPS1, DOPS2, and DOPS3 (named after the Department of Physics Shimla).

doi: 10.1103/PhysRevC.106.025803
Citations: PlumX Metrics


2022TH07      Phys.Rev. C 106, 045806 (2022)

V.Thakur, R.Kumar, P.Kumar, V.Kumar, M.Kumar, C.Mondal, B.K.Agrawal, S.K.Dhiman

Effects of an isovector scalar meson on the equation of state of dense matter within a relativistic mean field model

NUCLEAR STRUCTURE 16,24O, 40,48Ca, 56,78Ni, 88Sr, 90Zr , 100,116,132Sn, 208Pb; analyzed experimental values of binding energy, charge radii, neutron skin thickness; deduced mass-radius relation of a neutron star, variation of dimensionless tidal deformability with respect to gravitational mass. Calculations within relativistic mean field (RMF) framework withadded freedom in the isospin channel through the δ meson.

doi: 10.1103/PhysRevC.106.045806
Citations: PlumX Metrics


2021AG09      Eur.Phys.J. Special Topics 230, 517 (2021)

B.K.Agrawal, T.Malik, J.N.De, S.K.Samaddar

Constraining nuclear matter parameters from correlation systematics: a mean-field perspective

doi: 10.1140/epjs/s11734-021-00001-7
Citations: PlumX Metrics


2020AG04      Eur.Phys.J. Special Topics 229, 2459 (2020)

B.K.Agrawal, B.Maheshwari

Pairing, quasi-spin and seniority

doi: 10.1140/epjst/e2020-000047-2
Citations: PlumX Metrics


2020MA58      Phys.Rev. C 102, 052801(R) (2020)

T.Malik, B.K.Agrawal, C.Providencia, J.N.De

Unveiling the correlations of tidal deformability with the nuclear symmetry energy parameters

doi: 10.1103/PhysRevC.102.052801
Citations: PlumX Metrics


2019MA35      Phys.Rev. C 99, 052801 (2019)

T.Malik, B.K.Agrawal, J.N.De, S.K.Samaddar, C.Providencia, C.Mondal, T.K.Jha

Tides in merging neutron stars: Consistency of the GW170817 event with experimental data on finite nuclei

doi: 10.1103/PhysRevC.99.052801
Citations: PlumX Metrics


2019SA08      Phys.Lett. B 789, 323 (2019)

G.Saxena, M.Kumawat, B.K.Agrawal, M.Aggarwal

Anti-bubble effect of temperature and deformation: A systematic study for nuclei across all mass regions between A=20-300

NUCLEAR STRUCTURE 22,34Si, 46,58Ar, 56S, 184Ce, 294,302Og, 292120, 22O, 34Ca, 24Ne, 40Mg, 44S, 32Ar; calculated charge and neutron densities as function of temperatures, proton single-particle energies, nuclear charge form factors, depletion fractions, quadrupole deformation parameters, occupation probabilities.

doi: 10.1016/j.physletb.2018.10.062
Citations: PlumX Metrics


2019SA45      J.Phys.(London) G46, 065105 (2019)

G.Saxena, M.Kumawat, B.K.Agrawal, M.Aggarwal

A systematic study of the factors affecting central depletion in nuclei

NUCLEAR STRUCTURE 30Ne, 32Mg, 34Si, 46Ar, 56S, 58Ar; calculated bubble parameters, proton single-particle energies, binding energies.

doi: 10.1088/1361-6471/ab0853
Citations: PlumX Metrics


2019SA49      Hyperfine Interactions 240, 106 (2019)

Authors: G.Saxena, M.Kumawat, B.K.Agrawal, M.Aggarwal

Correction to: Effect of quadrupole deformation and temperature on bubble structure in N = 14 nuclei

doi: 10.1007/s10751-019-1647-y
Citations: PlumX Metrics


2019SA50      Hyperfine Interactions 240, 74 (2019)

G.Saxena, M.Kumawat, B.K.Agrawal, M.Aggarwal

Effect of quadrupole deformation and temperature on bubble structure in N=14 nuclei

NUCLEAR STRUCTURE 24Ne, 32Ar; calculated quadrupole deformation parameters, proton occupation probability using the relativistic mean-field plus BCS approach using NL3* and PK1 parameters.

doi: 10.1007/s10751-019-1620-9
Citations: PlumX Metrics


2018KU05      Phys.Rev. C 97, 045806 (2018)

B.Kumar, S.K.Patra, B.K.Agrawal

New relativistic effective interaction for finite nuclei, infinite nuclear matter, and neutron stars

NUCLEAR STRUCTURE 16O, 40,48Ca, 68Ni, 90Zr, 100,132Sn, 208Pb; calculated binding energy per particle, charge radius, and neutron-skin thicknesses. 40,48Ca, 58,60,64Ni, 59Co, 54,56,57Fe, 90,96Zr, 112,116,120,124Sn, 106,116Cd, 122,124,126,128,130Te, 209Bi, 208Pb, 232Th, 238U; calculated neutron skin thicknesses. 36,38,40,42,44,46,48,50,52,54,56,58Ca, 50,52,54,56,58,60,62,64,66,68,70,72,74,76,78,80Ni, 80,82,84,86,88,90,92,94,96,98,100,102,104,106,108,110,112Zr, 102,104,106,108,110,112,114,116,118,120,122,124,126,128,130,132,134,136,138,140Sn, 188,190,192,194,196,198,200,202,204,206,208,210,212,214,216,218,220Pb, 290,292,294,296,298,300,302,304,306,308,310,312,314,316,318,320,322,324,326,328,330,332,334,336,338120; calculated S(2n). Effective-field-theory relativistic mean-field (E-RMF) model using Institute of Physics Bhubaneswar-I (IOPB-I) interaction. Comparison with results from NL3, FSUGarnet, and G3 models, and with experimental values. Applied IOPB-I to evaluate properties of infinite nuclear matter and neutron stars.

doi: 10.1103/PhysRevC.97.045806
Citations: PlumX Metrics


2018MA58      Phys.Rev. C 98, 035804 (2018)

T.Malik, N.Alam, M.Fortin, C.Providencia, B.K.Agrawal, T.K.Jha, B.Kumar, S.K.Patra

GW170817: Constraining the nuclear matter equation of state from the neutron star tidal deformability

doi: 10.1103/PhysRevC.98.035804
Citations: PlumX Metrics


2018MA70      Phys.Rev. C 98, 064316 (2018)

T.Malik, C.Mondal, B.K.Agrawal, J.N.De, S.K.Samaddar

Nucleon effective mass and its isovector splitting

NUCLEAR STRUCTURE 48Ca, 68Ni, 120Sn, 208Pb; calculated dipole enhancement factor, correlation of the isovector parameter, and energy weighted sum rule using energy density functional (EDF) based on the thermodynamic Gibbs-Duhem relation. Nucleon effective mass and its isovector splitting. Comparison with other theoretical predictions.

doi: 10.1103/PhysRevC.98.064316
Citations: PlumX Metrics


2018MO26      Int.J.Mod.Phys. E27, 1850078 (2018)

C.Mondal, B.K.Agrawal, J.N.De, S.K.Samaddar

Correlations among symmetry energy elements in Skyrme models

doi: 10.1142/S0218301318500787
Citations: PlumX Metrics


2018SE14      Phys.Rev. C 98, 021601 (2018)

M.T.Senthil Kannan, J.Sadhukhan, B.K.Agrawal, M.Balasubramaniam, S.Pal

Dynamical model calculation to reconcile the nuclear fission lifetime from different measurement techniques

NUCLEAR REACTIONS 208Pb(16O, F)224Th*, E*=37, 97, 187 MeV; 238U(p, F)239Np*, E*=0-200 MeV; 232Th(α, F)236U*, E*=0-200 MeV; 181Ta(19F, F)200Pb*, E*=0-200 MeV; calculated average fission lifetime, average neutron-evaporation time, last neutron-evaporation time, prescission neutron multiplicity of excited compound nucleus. 238U(64Ni, F)302120*, E*=10-80 MeV; calculated average fission lifetime as a function of excitation energy. State-of-the-art model based on the stochastic Langevin equation to investigate full dynamical evolution of an excited compound system from the ground-state configuration up to scission. Comparison with available experimental data.

doi: 10.1103/PhysRevC.98.021601
Citations: PlumX Metrics


2017AL21      Phys.Rev. C 95, 055808 (2017)

N.Alam, H.Pais, C.Providencia, B.K.Agrawal

Warm unstable asymmetric nuclear matter: Critical properties and the density dependence of the symmetry energy

NUCLEAR STRUCTURE 208Pb; calculated binding energy per particle, charge radii, neutron radii, and neutron skin thickness for 208Pb along with the maximum mass of a neutron star and corresponding radius using several relativistic mean-field models.

doi: 10.1103/PhysRevC.95.055808
Citations: PlumX Metrics


2017KU14      Nucl.Phys. A966, 197 (2017)

B.Kumar, S.K.Singh, B.K.Agrawal, S.K.Patra

New parameterization of the effective field theory motivated relativistic mean field model

NUCLEAR STRUCTURE 16O, 40,48Ca, 68Ni, 90Zr, 100,132Sn, 208Pb; calculated binding energy, Q, charge radius, neutron skin thickness using newly invented (by the authors) parameterization; deduced parameters. A=16-220; calculated binding energy, Q, neutron skin, symmetry energy. Results compared with NL3, FSUGold, FSUGarnet, G2 parameters sets, applied also to neutron star calculations.

doi: 10.1016/j.nuclphysa.2017.07.001
Citations: PlumX Metrics


2017KU21      Phys.Rev. C 96, 034623 (2017)

B.Kumar, M.T.Senthil Kannan, M.Balasubramaniam, B.K.Agrawal, S.K.Patra

Relative mass distributions of neutron-rich thermally fissile nuclei within a statistical model

RADIOACTIVITY 236,250U, 232,254Th(SF); calculated binary mass distributions and relative fragmentation yields of fission fragments from A=66 to 181 at temperatures T=1-3 MeV using the statistical model, with level density parameters from temperature-dependent relativistic mean field formalism (TRMF) and finite range droplet model (FRDM).

doi: 10.1103/PhysRevC.96.034623
Citations: PlumX Metrics


2017MA56      Phys.Rev. C 96, 035803 (2017)

T.Malik, K.Banerjee, T.K.Jha, B.K.Agrawal

Nuclear symmetry energy with mesonic cross-couplings in the effective chiral model

doi: 10.1103/PhysRevC.96.035803
Citations: PlumX Metrics


2017MO23      Phys.Rev. C 96, 021302 (2017)

C.Mondal, B.K.Agrawal, J.N.De, S.K.Samaddar, M.Centelles, X.Vinas

Interdependence of different symmetry energy elements

doi: 10.1103/PhysRevC.96.021302
Citations: PlumX Metrics


2017SE11      Phys.Rev. C 95, 064613 (2017)

M.T.Senthil Kannan, B.Kumar, M.Balasubramaniam, B.K.Agrawal, S.K.Patra

Relative fragmentation in ternary systems within the temperature-dependent relativistic mean-field approach

RADIOACTIVITY 252Cf, 242Pu, 236U(SF); calculated relative fragmentation probabilities in ternary fission, level density parameters. Temperature-dependent relativistic mean-field (TRMF) model for ternary fragmentation of heavy nuclei with the level density approach.

doi: 10.1103/PhysRevC.95.064613
Citations: PlumX Metrics


2016AL25      Phys.Rev. C 94, 052801 (2016)

N.Alam, B.K.Agrawal, M.Fortin, H.Pais, C.Providencia, Ad.R.Raduta, A.Sulaksono

Strong correlations of neutron star radii with the slopes of nuclear matter incompressibility and symmetry energy at saturation

doi: 10.1103/PhysRevC.94.052801
Citations: PlumX Metrics


2016MO10      Phys.Rev. C 93, 044328 (2016)

C.Mondal, B.K.Agrawal, J.N.De, S.K.Samaddar

Sensitivity of elements of the symmetry energy of nuclear matter to the properties of neutron-rich systems

NUCLEAR STRUCTURE 16,24O, 20,30Ne, 24,36Mg, 40,48,54,58Ca, 56,68,78Ni, 90Zr, 100,116,132,138Sn, 144Sm, 208Pb; analyzed best-fit parameters for binding energy and charge radius of a nucleus. Nuclear symmetry energy matter density for ultra-neutron-rich nuclei. Maximum mass of a neutron star. Relativistic mean field model.

doi: 10.1103/PhysRevC.93.044328
Citations: PlumX Metrics


2016MO20      Phys.Rev. C 93, 064303 (2016)

C.Mondal, B.K.Agrawal, M.Centelles, G.Colo, X.Roca-Maza, N.Paar, X.Vinas, S.K.Singh, S.K.Patra

Model dependence of the neutron-skin thickness on the symmetry energy

NUCLEAR STRUCTURE 132Sn, 208Pb; calculated symmetry-energy coefficient and symmetry-energy slope parameter as a function of neutron-skin thickness using several microscopic mean-field models.

doi: 10.1103/PhysRevC.93.064303
Citations: PlumX Metrics


2016PA15      Phys.Rev. C 93, 045802 (2016)

H.Pais, A.Sulaksono, B.K.Agrawal, C.Providencia

Correlation of the neutron star crust-core properties with the slope of the symmetry energy and the lead skin thickness

NUCLEAR STRUCTURE 48Ca, 132Sn, 208Pb; calculated total binding energies, charge and neutron radii for selected parametrizations, skin thickness for 208Pb; investigated correlations of crust-core transition density and pressure in neutron stars with the slope of the symmetry energy and neutron skin thickness using different families of mean-field parametrization in relativistic nonlinear Walecka model (NLWM). Asymmetric nuclear and stellar matter at zero temperature.

doi: 10.1103/PhysRevC.93.045802
Citations: PlumX Metrics


2015AL17      Phys.Rev. C 92, 015804 (2015)

N.Alam, A.Sulaksono, B.K.Agrawal

Diversity of neutron star properties at the fixed neutron-skin thickness of 208Pb

NUCLEAR STRUCTURE 48Ca, 132Sn, 208Pb; calculated binding energy, charge and neutron radii, neutron-skin thickness. 208Pb; calculated density dependence of symmetry energy, variations of symmetry energy slope parameter, core-crust transition density and pressure with neutron-skin thickness, mass-radius relationship, plots for the radius of the neutron stars and red shift, tidal polarizability parameter as function of neutron-star mass. Extended relativistic mean-field (RMF) model using different sets of parameters.

doi: 10.1103/PhysRevC.92.015804
Citations: PlumX Metrics


2015DE19      Phys.Rev. C 92, 014304 (2015)

J.N.De, S.K.Samaddar, B.K.Agrawal

Reassessing nuclear matter incompressibility and its density dependence

doi: 10.1103/PhysRevC.92.014304
Citations: PlumX Metrics


2015MO16      Phys.Rev. C 92, 024302 (2015)

C.Mondal, B.K.Agrawal, J.N.De

Constraining the symmetry energy content of nuclear matter from nuclear masses: A covariance analysis

NUCLEAR STRUCTURE 16,24O, 18,30Ne, 40,48Ca, 56,68Ni, 90Zr, 100,116,132Sn, 144Sm, 208Pb; calculated binding energies and charge radii, binding energy/nucleon, incompressibility coefficient K, Dirac effective mass of nucleon, symmetry energy coefficient, density slope parameter of symmetry energy, and neutron skins using two different models and constrained by experimental masses. Covariance analysis. Relativistic mean-field (RMF) approach using 16 different models.

doi: 10.1103/PhysRevC.92.024302
Citations: PlumX Metrics


2015RO26      Phys.Rev. C 92, 064304 (2015)

X.Roca-Maza, X.Vinas, M.Centelles, B.K.Agrawal, G.Colo, N.Paar, J.Piekarewicz, D.Vretenar

Neutron skin thickness from the measured electric dipole polarizability in 68Ni, 120Sn, and 208Pb

NUCLEAR STRUCTURE 68Ni, 120Sn, 208Pb; calculated dipole polarizability, and dipole polarizability times the symmetry energy as a function of the neutron skin thickness using self-consistent random-phase approximation (QRPA) with a large set of energy density functionals (EDFs), and comparison to experimental data; deduced symmetry energy αD and its density dependence. 48Ca, 90Zr; deduced neutron skin thickness and electric dipole polarizability.

doi: 10.1103/PhysRevC.92.064304
Citations: PlumX Metrics


2014AG02      Eur.Phys.J. A 50, 19 (2014)

B. K. Agrawal, J. N. De, S. K. Samaddar, M. Centelles, X.Vinas

Symmetry energy of warm nuclear systems

NUCLEAR STRUCTURE A=56, 112, 150, 208; calculated symmetry energy coefficients vs temperature using energy functional with Skyrme interaction and subtracted finite-temperature Thomas-Fermi.

doi: 10.1140/epja/i2014-14019-8
Citations: PlumX Metrics


2014AG05      Phys.Rev. C 89, 044320 (2014)

B.K.Agrawal, D.Bandyopadhyay, J.N.De, S.K.Samaddar

Thermal properties of the nuclear surface

doi: 10.1103/PhysRevC.89.044320
Citations: PlumX Metrics


2014AL31      Phys.Rev. C 90, 054317 (2014)

N.Alam, B.K.Agrawal, J.N.De, S.K.Samaddar, G.Colo

Equation of state of nuclear matter from empirical constraints

doi: 10.1103/PhysRevC.90.054317
Citations: PlumX Metrics


2013AG06      Phys.Rev. C 87, 051306 (2013)

B.K.Agrawal, J.N.De, S.K.Samaddar, G.Colo, A.Sulaksono

Constraining the density dependence of the symmetry energy from nuclear masses

NUCLEAR STRUCTURE 208Pb, 238U; calculated symmetry slope parameter L, neutron skin thickness for spherical and deformed nuclei, symmetry energy using a microscopic framework with different energy density functionals.

doi: 10.1103/PhysRevC.87.051306
Citations: PlumX Metrics


2013RE12      Phys.Rev. C 88, 034325 (2013)

P.-G.Reinhard, J.Piekarewicz, W.Nazarewicz, B.K.Agrawal, N.Paar, X.Roca-Maza

Information content of the weak-charge form factor

NUCLEAR STRUCTURE 48Ca, 132Sn, 208Pb; calculated neutron rms radius, neutron skin, weak charge form factor, electric dipole polarizability. Statistical covariance analysis. Impact of proposed PREX-II and CREX measurements on constraining the isovector sector of the nuclear EDF. Nuclear density functional theory with nonrelativistic Skyrme-Hartree-Fock (SHF), relativistic mean-field (RMF), and relativistic density dependent meson-nucleon couplings (DDME) models.

doi: 10.1103/PhysRevC.88.034325
Citations: PlumX Metrics


2013RO08      Phys.Rev. C 87, 034301 (2013)

X.Roca-Maza, M.Brenna, B.K.Agrawal, P.F.Bortignon, G.Colo, L.-G.Cao, N.Paar, D.Vretenar

Giant quadrupole resonances in 208Pb, the nuclear symmetry energy, and the neutron skin thickness

NUCLEAR STRUCTURE 208Pb; calculated strength functions, neutron and proton transition densities, excitation energies of isoscalar and isovector giant quadrupole resonance (ISGQR and IVGQR), neutron skin thickness, symmetry energy. Macroscopic approach based on quantal harmonic oscillator model, and microscopic approach based on nonrelativistic and covariant energy density functionals (EDF) within the RPA. Comparison with experimental data.

doi: 10.1103/PhysRevC.87.034301
Citations: PlumX Metrics


2013RO20      Phys.Rev. C 88, 024316 (2013)

X.Roca-Maza, M.Brenna, G.Colo, M.Centelles, X.Vinas, B.K.Agrawal, N.Paar, D.Vretenar, J.Piekarewicz

Electric dipole polarizability in 208Pb: Insights from the droplet model

NUCLEAR STRUCTURE 208Pb; calculated electric dipole polarizability αD as function of neutron skin thickness, correlation between αD and symmetry energy, parity-violating asymmetry as function of αD. Droplet model. Large set of relativistic and nonrelativistic nuclear mean-field models with modern nuclear energy density functionals (EDF). Comparison with experimental data.

doi: 10.1103/PhysRevC.88.024316
Citations: PlumX Metrics


2012AG13      Nucl.Phys. A882, 1 (2012)

B.K.Agrawal, A.Sulaksono, P.-G.Reinhard

Optimization of relativistic mean field model for finite nuclei to neutron star matter

doi: 10.1016/j.nuclphysa.2012.03.004
Citations: PlumX Metrics


2012AG22      Phys.Rev.Lett. 109, 262501 (2012)

B.K.Agrawal, J.N.De, S.K.Samaddar

Determining the Density Content of Symmetry Energy and Neutron Skin: An Empirical Approach

NUCLEAR STRUCTURE 208Pb; calculated energy density functionals, symmetry energy slope parameter, neutron skin thickness.

doi: 10.1103/PhysRevLett.109.262501
Citations: PlumX Metrics


2012PI06      Phys.Rev. C 85, 041302 (2012)

J.Piekarewicz, B.K.Agrawal, G.Colo, W.Nazarewicz, N.Paar, P.-G.Reinhard, X.Roca-Maza, D.Vretenar

Electric dipole polarizability and the neutron skin

NUCLEAR STRUCTURE 208Pb, 132Sn, 48Ca; analyzed correlation between neutron-skin thickness and electric dipole polarizability using ensemble of 48 nuclear energy density functionals. NL3/FSU, DD-ME, and Skyrme-SV models. Comparison with experimental data.

doi: 10.1103/PhysRevC.85.041302
Citations: PlumX Metrics


2012SU23      Nucl.Phys. A895, 44 (2012)

A.Sulaksono, B.K.Agrawal

Existence of hyperons in the pulsar PSRJ1614-2230

doi: 10.1016/j.nuclphysa.2012.09.006
Citations: PlumX Metrics


2011RE10      Int.J.Mod.Phys. E20, 1379 (2011)

P.G.Reinhard, B.K.Agrawal

Energy systematics of heavy nuclei-mean field models in comparison

NUCLEAR STRUCTURE 16O, 40,48Ca, 58Ni, 90Zr, 116,124,132Sn, 208,214Pb, 232Th, 248Cf, 264Hs; calculated binding energies. Relativistic mean-field and Skyrme-Hartree-Fock models.

doi: 10.1142/S0218301311018472
Citations: PlumX Metrics


2010AG02      Phys.Rev. C 81, 034323 (2010)

B.K.Agrawal

Asymmetric nuclear matter and neutron skin in an extended relativistic mean-field model

NUCLEAR STRUCTURE 208Pb; calculated binding energy per nucleon, incompressibility coefficient for symmetric nuclear matter, symmetry energy, coupling strengths, and other parameters using extended relativistic mean-field (ERMF) model.

doi: 10.1103/PhysRevC.81.034323
Citations: PlumX Metrics


2010DE36      Phys.Rev. C 82, 045201 (2010)

J.N.De, S.K.Samaddar, B.K.Agrawal

Anatomy of the symmetry energy of dilute nuclear matter

doi: 10.1103/PhysRevC.82.045201
Citations: PlumX Metrics


2010DH01      Nucl.Phys. A836, 183 (2010)

S.K.Dhiman, G.Mahajan, B.K.Agrawal

Properties of static limit and rotating equilibrium sequences of compact stars: Systematic correlations and constraints

doi: 10.1016/j.nuclphysa.2009.12.063
Citations: PlumX Metrics


2007DH05      Phys.Rev. C 76, 045801 (2007)

S.K.Dhiman, R.Kumar, B.K.Agrawal

Nonrotating and rotating neutron stars in the extended field theoretical model

doi: 10.1103/PhysRevC.76.045801
Citations: PlumX Metrics


2006AG07      Phys.Rev. C 73, 034319 (2006)

B.K.Agrawal, S.K.Dhiman, R.Kumar

Exploring the extended density-dependent Skyrme effective forces for normal and isospin-rich nuclei to neutron stars

NUCLEAR STRUCTURE 16,24O, 40,48Ca, 48,56,68,78Ni, 88Sr, 90Zr, 100,132Sn, 208Pb; binding energies, analyzed radii, single-particle energies; deduced parameters. Generalized Skyrme effective force.

doi: 10.1103/PhysRevC.73.034319
Citations: PlumX Metrics


2006KU18      Phys.Rev. C 74, 034323 (2006)

R.Kumar, B.K.Agrawal, S.K.Dhiman

Effects of ω meson self-coupling on the properties of finite nuclei and neutron stars

doi: 10.1103/PhysRevC.74.034323
Citations: PlumX Metrics


2006SI10      Phys.Rev. C 73, 034316 (2006)

T.Sil, S.Shlomo, B.K.Agrawal, P.-G.Reinhard

Effects of self-consistency violation in Hartree-Fock RPA calculations for nuclear giant resonances revisited

NUCLEAR STRUCTURE 16O, 40,60Ca, 56Ni, 80,90,110Zr, 100,116Sn, 144Sm, 208Pb; calculated isoscalar and isovector giant resonance energies, consequences of self-consistency violation. 208Pb; calculated giant resonance strength functions.

doi: 10.1103/PhysRevC.73.034316
Citations: PlumX Metrics


2005AG10      Phys.Rev. C 72, 014310 (2005)

B.K.Agrawal, S.Shlomo, V.K.Au

Determination of the parameters of a Skyrme type effective interaction using the simulated annealing approach

NUCLEAR STRUCTURE 16,24O, 34Si, 40,48Ca, 48,56,68,78Ni, 88Sr, 90Zr, 100,132Sn, 208Pb; analyzed binding energies, radii, breathing-mode energies, related data; deduced Skyrme parameters. 40Ca, 208Pb; calculated single-particle energies. Simulated annealing approach.

doi: 10.1103/PhysRevC.72.014310
Citations: PlumX Metrics


2005AG16      Eur.Phys.J. A 25, Supplement 1, 525 (2005)

B.K.Agrawal, S.Shlomo, V.K.Au

Breathing mode energy and nuclear matter incompressibility coefficient within relativistic and non-relativistic models

NUCLEAR STRUCTURE 16O, 40,48Ca, 90Zr, 116,132Sn, 208Pb; calculated binding energies, radii. 90Zr, 116Sn, 144Sm, 208Pb; calculated breathing mode energies.

doi: 10.1140/epjad/i2005-06-003-7
Citations: PlumX Metrics


2004AG04      Phys.Rev. C 70, 014308 (2004)

B.K.Agrawal, S.Shlomo

Consequences of self-consistency violations in Hartree-Fock random-phase approximation calculations of the nuclear breathing mode energy

NUCLEAR STRUCTURE 40,60Ca, 56Ni, 80,90,110Zr, 100Sn, 208Pb; calculated giant monopole resonance energies, effect of self-consistency violations. Hartree-Fock RPA.

doi: 10.1103/PhysRevC.70.014308
Citations: PlumX Metrics


2004AG06      Phys.Rev. C 70, 057302 (2004)

B.K.Agrawal, S.Shlomo, V.K.Au

Critical densities for the Skyrme type effective interactions

doi: 10.1103/PhysRevC.70.057302
Citations: PlumX Metrics


2004SH13      Nucl.Phys. A734, 589 (2004)

S.Shlomo, B.K.Agrawal, V.K.Au

Status of the nuclear matter equation of state as determined from compression modes

NUCLEAR STRUCTURE 90Zr, 116Sn, 144Sm, 208Pb; calculated giant monopole resonance energies, incompressibility coefficient. 208Pb; calculated GDR strength distribution. Several models compared with data.

doi: 10.1016/j.nuclphysa.2004.01.108
Citations: PlumX Metrics


2003AG04      Phys.Rev. C 67, 034314 (2003)

B.K.Agrawal, S.Shlomo, A.I.Sanzhur

Self-consistent Hartree-Fock based random phase approximation and the spurious state mixing

NUCLEAR STRUCTURE 80Zr; calculated isoscalar giant resonance strength functions, transition densities, spurious state mixing effects. Self-consistent Hartree-Fock, continuum RPA.

doi: 10.1103/PhysRevC.67.034314
Citations: PlumX Metrics


2003AG10      Phys.Rev. C 68, 031304 (2003)

B.K.Agrawal, S.Shlomo, V.K.Au

Nuclear matter incompressibility coefficient in relativistic and nonrelativistic microscopic models

NUCLEAR STRUCTURE 16O, 40,48Ca, 90Zr, 116,132Sn, 208Pb; analyzed binding energies, radii; deduced parameters. 90Zr, 116Sn, 144Sm, 208Pb; analyzed giant monopole resonance parameters; deduced nuclear matter incompressibility coefficient. Comparison of relativistic and nonrelativistic approaches.

doi: 10.1103/PhysRevC.68.031304
Citations: PlumX Metrics


2003SH30      Nucl.Phys. A719, 225c (2003)

S.Shlomo, A.I.Sanzhur, B.K.Agrawal

Isoscalar giant monopole and dipole resonances and the nuclear matter incompressibility coefficient

NUCLEAR REACTIONS 116Sn(α, α'), E=240 MeV; calculated isoscalar GDR strength distribution, excitation σ(E). RPA approach, comparison with data.

doi: 10.1016/S0375-9474(03)00923-0
Citations: PlumX Metrics


2003SH34      Nucl.Phys. A722, 98c (2003)

S.Shlomo, B.K.Agrawal

Current status of the nuclear matter incompressibility coefficient as deduced from data on compression modes

NUCLEAR REACTIONS 116Sn(α, α'), E=240 MeV; analyzed giant resonance excitation σ, energy weighted sum rule, nuclear matter incompressibility coefficient.

doi: 10.1016/S0375-9474(03)01343-5
Citations: PlumX Metrics


2003SH39      Phys.Rev. C 68, 064301 (2003)

S.Shlomo, V.M.Kolomietz, B.K.Agrawal

Isoscalar giant monopole resonance and its overtone in microscopic and macroscopic models

NUCLEAR STRUCTURE 90Zr, 116Sn, 144Sm, 208Pb; calculated isoscalar giant monopole resonance centroid energies. 208Pb; calculated giant resonance transition densities.

doi: 10.1103/PhysRevC.68.064301
Citations: PlumX Metrics


2002SI25      Phys.Rev. C66, 045803 (2002)

T.Sil, J.N.De, S.K.Samaddar, X.Vinas, M.Centelles, B.K.Agrawal, S.K.Patra

Isospin-rich nuclei in neutron star matter

NUCLEAR STRUCTURE 140,330Pb, 80Ca, 170Sn; calculated nuclear properties in neutron-star environment.

doi: 10.1103/PhysRevC.66.045803
Citations: PlumX Metrics


2001AG02      Phys.Rev. C63, 024002 (2001)

B.K.Agrawal, T.Sil, S.K.Samaddar, J.N.De

Shape Transition in Some Rare-Earth Nuclei in Relativistic Mean Field Theory

NUCLEAR STRUCTURE 148,150Sm, 150,152Gd, 152,154Dy; calculated β2 deformation, pairing gaps vs nuclear temperature, shape transitions. Relativistic mean-field approach.

doi: 10.1103/PhysRevC.63.024002
Citations: PlumX Metrics


2001AG08      Phys.Rev. C64, 017304 (2001)

B.K.Agrawal, T.Sil, S.K.Samaddar, J.N.De

Temperature Induced Shell Effects in Deformed Nuclei

NUCLEAR STRUCTURE 64,66Zn, 148,150Sm, 152,154Dy; calculated deformation, shell-correction energy vs temperature.

doi: 10.1103/PhysRevC.64.017304
Citations: PlumX Metrics


2001AG09      Phys.Rev. C64, 024305 (2001)

B.K.Agrawal, T.Sil, S.K.Samaddar, J.N.De, S.Shlomo

Coulomb Energy Differences in Mirror Nuclei Revisited

NUCLEAR STRUCTURE 15,16,17O, 32S, 39,40,41,48Ca, 56Ni, 90Zr, 208Pb; calculated radii. 15,17O, 15N, 17F, 39,41Ca, 39K, 41Sc, 55,57Ni, 55Co, 57Cu; calculated Coulomb displacement energies. Relativistic mean-field model, comparison with other models and data.

doi: 10.1103/PhysRevC.64.024305
Citations: PlumX Metrics


2001SI20      Phys.Rev. C63, 054604 (2001)

T.Sil, B.K.Agrawal, J.N.De, S.K.Samaddar

Liquid-Gas Phase Transition in Nuclei in the Relativistic Thomas-Fermi Theory

NUCLEAR STRUCTURE 40Ca, 109Ag, 150Sm; calculated equations of state, caloric curves, other thermodynamic properties. Relativistic Thomas-Fermi theory.

doi: 10.1103/PhysRevC.63.054604
Citations: PlumX Metrics


2001SI22      Phys.Rev. C63, 064302 (2001)

T.Sil, B.K.Agrawal, J.N.De, S.K.Samaddar

Anatomy of Nuclear Shape Transition in the Relativistic Mean Field Theory

NUCLEAR STRUCTURE 148,150Sm, 64Zn; calculated single-particle levels, deformation vs temperature. Relativistic mean-field theory.

doi: 10.1103/PhysRevC.63.064302
Citations: PlumX Metrics


2000AG07      Phys.Rev. C62, 044307 (2000)

B.K.Agrawal, T.Sil, J.N.De, S.K.Samaddar

Nuclear Shape Transition at Finite Temperature in a Relativistic Mean Field Approach

NUCLEAR STRUCTURE 168,170Er; calculated deformation, pairing strength vs temperature, related features. Relativistic mean-field approach.

doi: 10.1103/PhysRevC.62.044307
Citations: PlumX Metrics


1999AG01      Phys.Rev. C59, 832 (1999)

B.K.Agrawal, S.K.Samaddar, T.Sil, J.N.De

Isotope Thermometry in Nuclear Multifragmentation

NUCLEAR STRUCTURE 150Sm; calculated fragmenting system temperature vs excitation energy, time. Comparison of several double-ratio thermometers.

doi: 10.1103/PhysRevC.59.832
Citations: PlumX Metrics


1999AG03      Phys.Rev. C59, 3109 (1999)

B.K.Agrawal, S.K.Samaddar, A.Ansari, J.N.De

Influence of Pairing Correlations on the Excitation Energy, Angular Momentum, and Parity Dependence of Nuclear Level Densities

NUCLEAR STRUCTURE 152Sm, 160Yb; calculated level density, related parameters vs excitation energy; deduced pair correlation effects. Static path approximation.

doi: 10.1103/PhysRevC.59.3109
Citations: PlumX Metrics


1999DE01      Phys.Rev. C59, R1 (1999)

J.N.De, B.K.Agrawal, S.K.Samaddar

Equation of State of Finite Nuclei and Liquid-Gas Phase Transition

NUCLEAR STRUCTURE 85Kr, 150Sm; calculated equation of state; deduced critical temperatures, finite size effects. Thomas-Fermi framework.

doi: 10.1103/PhysRevC.59.R1
Citations: PlumX Metrics


1999SA29      Phys.Lett. 459B, 8 (1999)

S.K.Samaddar, S.Das Gupta, J.N.De, B.K.Agrawal, T.Sil

The One Body Density in a Finite Size Lattice Gas Model

doi: 10.1016/S0370-2693(99)00665-6
Citations: PlumX Metrics


1998AG03      Phys.Lett. 421B, 13 (1998)

B.K.Agrawal, A.Ansari

Level Density and Level Density Parameter in Medium Heavy Nuclei Including Thermal and Quantal Fluctuation Effects

NUCLEAR STRUCTURE 104Pd, 114Sn; calculated level density vs excitation energy; deduced thermal, quantal fluctuation effects. Static path approximation plus RPA.

doi: 10.1016/S0370-2693(97)01604-3
Citations: PlumX Metrics


1998AG13      Phys.Rev. C58, 3004 (1998)

B.K.Agrawal, S.K.Samaddar, J.N.De, S.Shlomo

Large-Model-Space Calculation of the Nuclear Level Density Parameter at Finite Temperature

NUCLEAR STRUCTURE 40Ca, 56Fe; calculated level density parameter vs temperature; deduced shell effects, continuum corrections, other contributions. Microscopic model.

doi: 10.1103/PhysRevC.58.3004
Citations: PlumX Metrics


1998AG15      Nucl.Phys. A640, 362 (1998)

B.K.Agrawal, A.Ansari

Excitation Energy and Angular Momentum Dependence of Nuclear Level Densities and Spin Cut-Off Factor in SPA and SPA + RPA Approaches

NUCLEAR STRUCTURE 110Sn; calculated level density; deduced energy and angular momentum dependence of spin cut-off factor. RPA, static path approximation.

doi: 10.1016/S0375-9474(98)00462-X
Citations: PlumX Metrics


1997AG01      Z.Phys. A356, 369 (1997)

B.K.Agrawal, S.K.Kataria

Fixed-J Level Densities Beyond Spin Cut-Off Approximation

NUCLEAR STRUCTURE 48Cr, 52Fe, 56Ni, 60Zn; calculated conditional density moments vs excitation energy, spin cut-off factors, higher order reduced central moments variations in some cases. Fixed-J level densities, extension beyond spin cut-off approximation.

doi: 10.1007/s002180050192
Citations: PlumX Metrics


1997AG04      Nucl.Phys. A615, 183 (1997)

B.K.Agrawal, A.Ansari, P.RIng

A Microscopic Study of the Giant Dipole Resonance γ-Absorption Cross Section in Hot Rotating Nuclei

NUCLEAR STRUCTURE A=140; analyzed GDR properties for N=70, Z=70 nucleus. Hot rotating nuclei, linear response theory.

doi: 10.1016/S0375-9474(97)00012-2
Citations: PlumX Metrics


1996MA05      Nucl.Phys. A597, 212 (1996)

D.Majumdar, B.K.Agrawal, S.K.Kataria

On Angular Momentum and Parity Dependence of Nuclear Level Densities in a Simple Random Sampling Approach

NUCLEAR STRUCTURE 48Cr; calculated state densities, spin-cutoff factors, parity asymmetries. Monte Carlo approach, simple random sampling.

doi: 10.1016/0375-9474(95)00452-1
Citations: PlumX Metrics


1995AG01      Nucl.Phys. A584, 1 (1995)

B.K.Agrawal, A.Ansari

Equation of State for a Hot Rotating Nucleus in the Static Path Approximation

NUCLEAR STRUCTURE 65Zn; calculated entropy vs spin, equation of state. Hot rotating nucleus, static path approximation.

doi: 10.1016/0375-9474(94)00499-D
Citations: PlumX Metrics


1995AG02      Phys.Lett. 351B, 1 (1995)

B.K.Agrawal, P.K.Sahu

SPA + RPA Approach to Canonical and Grandcanonical Treatments of Nuclear Level Densities

doi: 10.1016/0370-2693(95)00406-B
Citations: PlumX Metrics


1994AG01      Nucl.Phys. A567, 1 (1994)

B.K.Agrawal, A.Ansari

Thermal Properties of a Rotating Nucleus in a Fluctuating Mean-Field Approach

NUCLEAR STRUCTURE 64Zn; calculated energy, level density, moment of inertia vs temperature, spin. Fluctuating mean-field approach.

doi: 10.1016/0375-9474(94)90723-4
Citations: PlumX Metrics


1994AG04      Phys.Rev. C50, 509 (1994)

B.K.Agrawal, A.Ansari

Temperature Induced Alignment in Hot Rotating Nuclei

NUCLEAR STRUCTURE 64Zn; calculated moment of inertia vs rotational frequency, temperature; deduced high temperature spectroscopy implications. Cranking Hamiltonian.

doi: 10.1103/PhysRevC.50.509
Citations: PlumX Metrics


1994AG05      Nucl.Phys. A576, 189 (1994)

B.K.Agrawal, A.Ansari

On the Angular-Momentum Dependence of Nuclear-Level Densities

NUCLEAR STRUCTURE 24Mg, 64Zn; calculated spin dependence of level density, level density parameter. Static path approximation to partition function, cranked quadrupole interaction hamiltonian.

doi: 10.1016/0375-9474(94)90256-9
Citations: PlumX Metrics


1994AG09      Phys.Lett. 339B, 7 (1994)

B.K.Agrawal, A.Ansari

Calculation of Realistic Level Densities with Bethe's Formula

NUCLEAR STRUCTURE 44Ti; calculated spin, temperature dependent level density, level density parameter.

doi: 10.1016/0370-2693(94)91124-X
Citations: PlumX Metrics


1992AG05      Phys.Rev. C46, 2319 (1992)

B.K.Agrawal, A.Ansari

Thermal Properties of Zinc Isotopes in the Static Path Approximation

NUCLEAR STRUCTURE 64,70,76Zn; calculated level energy vs T2, inverse level density vs temperature T, moment of inertia vs rotational frequency, temperature; deduced rigid body behavior. Static path approximation, quadrupole-quadrupole interaction Hamiltonian.

doi: 10.1103/PhysRevC.46.2319
Citations: PlumX Metrics


Back to query form