NSR Query Results


Output year order : Descending
Format : Normal

NSR database version of April 27, 2024.

Search: Author = G.Saxena

Found 45 matches.

Back to query form



2024AG02      Nucl.Phys. A1044, 122843 (2024)

M.Aggarwal, G.Saxena, P.Parab

Correlation between the shape coexistence and stability in Mo and Ru isotopes

NUCLEAR STRUCTURE 78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144Mo, 83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152Ru; calculated deformation parameters, shell corrections, ground state shape and deformation within the microscopic theoretical framework using Nilsson Strutinsky Method and Relativistic Mean Field Model; deduced energy minima. Comparison with available data.

doi: 10.1016/j.nuclphysa.2024.122843
Citations: PlumX Metrics


2024GH03      J.Phys.(London) G51, 045105 (2024)

T.Ghosh, Sangeeta, B.Maheshwari, G.Saxena, B.K.Agrawal

Indispensability of cross-shell contributions in neutron resonance spacing

NUCLEAR STRUCTURE 24Na, 25,26,27Mg; calculated J and π dependent nuclear level densities (NLDs) for a configuration interaction shell model using a numerically efficient spectral distribution method; deduced the s-wave neutron resonance spacing (D0).

doi: 10.1088/1361-6471/ad29e9
Citations: PlumX Metrics


2024HI02      Chin.Phys.C 48, 024001 (2024)

A.Hingu, S.Mukherjee, S.Parashari, A.Sangeeta, A.Gandhi, M.Upadhyay, M.Choudhary, S.Bamal, N.Singh, G.Mishra, S.De, S.Sood, S.Prasad, G.Saxena, A.Kumar, R.G.Thomas, B.K.Agrawal, K.Katovsky, A.Kumar

Investigation of 58Ni(n, p)58Co reaction cross-section with covariance analysis

NUCLEAR REACTIONS 58Ni(n, p), 115In(n, n'), E=1.7-2.7 MeV; measured reaction products, Eγ, Iγ; deduced σ and correlation matrix. Comparison with EXFOR, ENDF/B-VIII.0, JEFF-3.3, JENDL-4.0, and CENDL-3.2 libraries, TALYS calculations. The Folded Tendem Ion Accelerator (FOTIA) facility at the Bhabha Atomic Research Centre (BARC), Mumbai, India.

doi: 10.1088/1674-1137/ad0e5a
Citations: PlumX Metrics


2024SA15      Eur.Phys.J. A 60, (2024)

G.Saxena, P.K.Sharma, P.Saxena

A global study of α-clusters decay in heavy and superheavy nuclei with half-life and preformation factor

NUCLEAR STRUCTURE N=100-180; calculated T1/2, preformation factor with microscopic structural information and cast in the form of quite precise empirical formulas.

doi: 10.1140/epja/s10050-024-01259-w
Citations: PlumX Metrics


2023AK06      Int.J.Mod.Phys. E32, 2350026 (2023)

D.T.Akrawy, H.C.Manjunatha, G.Saxena, Ali H.Ahmed, N.Sowmya

Systematic study of α-decay half-lives for Pa isotopes using MGLDM model

RADIOACTIVITY 211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241Pa(α); calculated T1/2 using MYQZR, RoyerA, YQZR, MRenB, Akrawy, SemFIS and AKRE formulas, MGLDM macroscopic model.

doi: 10.1142/S021830132350026X
Citations: PlumX Metrics


2023GH04      Eur.Phys.J. A 59, 266 (2023)

T.Ghosh, Sangeeta, G.Saxena, B.K.Agrawal, U.Datta

Impact of density dependence of symmetry energy on astrophysical S-factor for heavy-ion fusion reactions

NUCLEAR STRUCTURE 16,24O, 40,48,54,60Ca, 78Ni, 124,132Sn; analyzed available data; deduced Radial density distributions for neutrons and protons from SLy4 and SkO Skyrme effective interactions.

NUCLEAR REACTIONS 40Ca(40Ca, X), 16O(16O, X), 24O(24O, X), 54Ca(54Ca, X), 60Ca(60Ca, X), 78Ni(78Ni, X), 124Sn(124Sn, X), 132Sn(132Sn, X), E(cm)=45-50 MeV; analyzed available data; deduced σ, the maximum barrier height and width obtained by DFM potentials M3Y-Paris without density dependence (PDD0), sub-barrier fusion σ and astrophysical S-factor. Comparison with available data.

doi: 10.1140/epja/s10050-023-01173-7
Citations: PlumX Metrics


2023JA02      Nucl.Phys. A1031, 122597 (2023)

A.Jain, P.K.Sharma, S.K.Jain, J.K.Deegwal, G.Saxena

Cluster radioactivity in trans-lead region: A systematic study with modified empirical formulas

RADIOACTIVITY 221Fr, 221,222,223Ra, 223Ac(14C), 223Ac(15N), 224Ra, 225Ac, 226Ra, 226Th(14C), 228Th(20O), 230Th(24Ne), 230U(22Ne), 231Pa(24Ne), 232Th(24Ne), (26Ne), 232U(24Ne), (28Mg), 233U(24Ne), (25Ne), (28Mg), 234U(24Ne), (26Ne), (28Mg), 235U(24Ne), (25Ne), (28Mg), (29Mg), 236U(24Ne), (26Ne), (28Mg), (30Mg), 236Pu(28Mg), 237Np(30Mg), 238Pu(28Mg), (30Mg), (32Si), 240Pu, 241Am, 242Cm(34Si), 216Rn(8Be), 222Fr(14B), 221Ra(13C), 223Ra(15C), 222Ac(14N), (15N), (16N), (17N), 224Th(16O), 225Th(17O), 226Th(18O), 227Th(19O), 228Th(20O), 229Th(21O), 230Th(22O), 231Th(23O), 228Pa(20F), 229Pa(21F), 231Pa(23F), 231U(23Ne), (25Ne); calculated T1/2. Comparison with available data.

doi: 10.1016/j.nuclphysa.2022.122597
Citations: PlumX Metrics


2023SA02      J.Phys.(London) G50, 015102 (2023)

G.Saxena, M.Aggarwal, D.Singh, A.Jain, P.K.Sharma, H.L.Yadav

Deformation dependence of 2p-radioactivity half-lives: probe with a new formula across the mass region with Z < 82

RADIOACTIVITY 6Be, 12O, 16Ne, 19Mg, 45Fe, 48Ni, 54Zn, 67Kr, 10N, 28Cl, 32K, 52Cu, 57Ga, 60,62As(2p); analyzed available data; deduced T1/2 by employing our newly proposed semi-empirical formula wherein the nuclear deformation has been incorporated in a phenomenological way.

doi: 10.1088/1361-6471/ac991d
Citations: PlumX Metrics


2023SA35      Eur.Phys.J. A 59, 189 (2023)

G.Saxena, A.Jain

Cluster radioactivity from trans-tin to superheavy region using an improved empirical formula

RADIOACTIVITY 221Fr, 221,222,223Ra, 223Ac(14C), 223Ac(15N), 224Ra, 225Ac, 226Ra(14C), 226Th(18O), 228Th(20O), 230Th(24Ne), 230U(22Ne), 231Pa, 231Pa, 232Th(24Ne), 232Th(26Ne), 232,233U(24Ne), 233U(25Ne), (28Mg), 234U(24Ne), 234U(26Ne), (28Mg), 235U(24Ne), (25Ne), (28Mg), (29Mg), 236U(28Mg), (30Mg), 236Pu(28Mg), 238Pu(30Mg), (32Si), 240Pu, 241Am, 242Cm(34Si), 114Ba(12C), 111,112,113La(13N), 112,113,114,115Ce(17O), 116,117,118Ce(16O), 114,115Pr(15F), 116,117Pr(17F), 116,117,118Nd(18Ne), 121Sm(22Mg), 285Mc, 289Mc(81As), 275,276,277,278,279,280,281,282Lv(80Se), 283,284,285,286,287,288,289Lv(82Se), 290,291Lv(84Se), 279,280,281,282,283,284,285Ts(83Br), 286,287,288,289,290,291,292,293Ts(85Br), 295Ts(87Br), 280Og(84Kr), 281Og(86Kr), 282,283,284Og(84Kr), 285,286,287Og(86Kr), 288Og(84Kr), 289,290,291,292Og(86Kr), 293Og(87Kr), 294Og(86Kr), 295Og(87Kr), 296Og(88Kr), 299Og(91Kr), 287,288120(88Sr), 289120(89Sr), 290,291,292120(88Sr), 293120(90Sr), 294120(88Sr), 295120(89Sr), 296120(90Sr), 297120(89Sr), 298120(90Sr), 299120(91Sr), 300120(92Sr), 301120(93Sr), 302120(94Sr), 303120(95Sr), 304120(96Sr), 305120(94Sr); calculated T1/2. Comparison with available data.

doi: 10.1140/epja/s10050-023-01102-8
Citations: PlumX Metrics


2022AK06      Eur.Phys.J. A 58, 145 (2022)

D.T.Akrawy, A.I.Budaca, G.Saxena, A.H.Ahmed

Generalization of the screened universal α-decay law by asymmetry and angular momentum

RADIOACTIVITY 106,108Te, 112Xe, 114Ba, 146,148Sm, 148,150,152Gd, 150,152,154Dy, 152,154Er, 154,156Yb, 156,158,160Hf, 158,160,162W, 166W, 162Os, 166Os, 170Os, 174Os, 178,180,182,184Pt, 188,190Pt, 174,176Hg, 180,182,184Hg, 188Hg, 188,190Pb, 210Pb, 190,192,194,196,198,200,202,204,206,208,210,212,214,216,218Po, 194,196,198,200,202Rn, 206,208,210,212Rn, 218,220,222Rn, 206,208,210,212,214Ra, 220,222,224,226Ra, 210Th, 216,218Th, 222,224,226,228,230,232Th, 224,226,228,230,232,234,236,238U, 230,232,234,236,238,240,242,244Pu, 238,240,242,244,246,248Cm, 240Cf, 244,246,248,250,252,254Cf, 248,250,252,254,256Fm, 252No, 256No, 256,258Rf, 260,262Sg, 264,266Hs, 270Hs, 270Ds, 286,288Fl, 290,292Lv, 294Og, 105,107Te, 109Xe, 147Sm, 151Gd, 151,153Dy, 153,155Er, 155,157Yb, 157Hf, 159W, 165W, 161Os, 167Os, 173Os, 167,169,171,173,175,177Pt, 183Pt, 173,175,177,179Hg, 183,185Hg, 191Pb, 187,189,191Po, 195,197,199,201Po, 205,207,209,211,213Po, 195,197,199,201,203Rn, 207,209,211,213,215Rn, 219,221Rn, 203,205Ra, 209,211,213,215,217,219,221Ra, 211,213,215,217,219,221,223,225,227Th, 217,219U, 223,225U, 235U, 239,241Pu, 241,243,245,247Cm, 249,251Cf, 251,253,255,257Fm, 263Rf, 259,261Sg, 269,271Sg, 265,267Hs, 273Hs, 267Ds, 269,271,273Ds, 277Ds, 281Ds, 281Cn, 285Cn, 287,288,289Fl, 291,293Lv, 111I, 147Eu, 149,151Tb, 153Tm, 169Ir, 177Ir, 173Au, 181,183,185Au, 177,179Tl, 187,189Bi, 193,195Bi, 211,213Bi, 197,199,201,203,205,207,209,211,213,215,217,219At, 201,203,205,207,209,211,213,215,217,219,221,223Fr, 209,211,213,215,217,219,221,223,225,227Ac, 213,215,217,219Pa, 225,227Pa, 231Pa, 235,237Np, 239,241,243Am, 243,245Bk, 249Bk, 243,245Es, 255,257Lr, 257,259Db, 263Db, 261Bh, 267Bh, 275Mt, 279Rg, 283,285Nh, 287,289Mc, 293Ts, 110,112I, 114Cs, 148Eu, 152,154Ho, 154,156Tm, 158Lu, 162Ta, 160,162Re, 166Ir, 170,172,174Au, 182Au, 182Tl, 212,213,214Bi, 196,198,200,202,204,206,208,210,212,214,216,218At, 200,202,204,206,208,210,212,214,216,218,220Fr, 206,208,210,212,214,216,218,220,222,224Ac, 212Pa, 216Pa, 226Pa, 230Pa, 254Es, 256Md, 256,258Db, 260Bh, 264,266Bh, 270,272,274Bh, 268Mt, 274,276,278Mt, 272,274Rg, 278,280Rg, 278Nh, 284,286Nh, 288,290Mc, 294Ts(α); calculated T1/2. Comparison with available data.

doi: 10.1140/epja/s10050-022-00789-5
Citations: PlumX Metrics


2022GH01      J.Phys.(London) G49, 25103 (2022)

T.Ghosh, B.Maheshwari, Sangeeta, G.Saxena, B.K.Agrawal

Nuclear level densities away from line of β-stability

NUCLEAR STRUCTURE Z=10-80; analyzed available data; deduced nuclear level densities, ground-shell corrections, parameters.

doi: 10.1088/1361-6471/ac44ac
Citations: PlumX Metrics


2022SA17      Phys.Rev. C 105, 044320 (2022)

Sangeeta, T.Ghosh, B.Maheshwari, G.Saxena, B.K.Agrawal

Astrophysical reaction rates with realistic nuclear level densities

NUCLEAR STRUCTURE 51V, 55Fe, 59Ni; calculated ground-state energies, nuclear level densities. 49,50Ti, 51V, 53Cr, 55,57Fe, 59Ni; calculated S-wave neutron resonances. Ground state properties calculated by using shell-model with the GXPF1A residual interaction. Nuclear level densities obtained within the spectral distribution method (SDM). Comparison to available experimental data and other theoretical calculations.

NUCLEAR REACTIONS 50V, 54Fe, 58Ni(n, γ), E(cm)<8 MeV; calculated σ(E), astrophysical reaction rates. TALYS 1.95 calculations using nuclear level densities obtained within the spectral distribution method (SDM). Comparison to experimental data and recommended values from ENDF and KADONIS V0.3.

doi: 10.1103/PhysRevC.105.044320
Citations: PlumX Metrics


2022SH29      Phys.Scr. 97, 045307 (2022)

R.Sharma, A.Jain, P.K.Sharma, S.K.Jain, G.Saxena

A comprehensive study of decay modes associated with Pb isotopes

RADIOACTIVITY 176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,205Pb(β+), (EC), 209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266Pb(β-), 178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193Pb(α); calculated T1/2. Comparison with available data.

doi: 10.1088/1402-4896/ac607c
Citations: PlumX Metrics


2021JA09      Hyperfine Interactions 242, 60 (2021)

A.Jain, R.Sharma, S.K.Jain, P.K.Sharma, G.Saxena

Cluster radioactivity in 294, 296Og

RADIOACTIVITY 294,296Og(α), (8Be), (12C), (14C), (16O), (18O), (20O), (22Ne), (24Ne), (26Mg), (28Mg), (30Si), (32Si), (34Si), (36S), (38S), (40Ar), (42Ar), (44Ar), (46Ca), (48Ca), (50Ca), (52Ti), (54Ti), (56Cr), (58Cr), (60Cr), (62Fe), (64Fe), (66Ni), (68Ni), (70Ni), (72Zn), (74Ge), (76Zn), (78Ge), (80Ge), (82Ge), (84Se), (86Kr), (88Kr), (90Sr), (92Kr), (94Sr), (96Zr), (98Zr), (100Mo), (102Mo); calculated T1/2. Comparison with available data.

doi: 10.1007/s10751-021-01748-0
Citations: PlumX Metrics


2021SA30      J.Phys.(London) G48, 055103 (2021)

G.Saxena, P.K.Sharma, P.Saxena

Modified empirical formulas and machine learning for α-decay systematics

RADIOACTIVITY 276,278,280,282,284Cn, 284,285,286,287,288,289Fl, 290,292,294Lv, 294Og(α), (SF); calculated T1/2. Comparison with available data.

doi: 10.1088/1361-6471/abcd1c
Citations: PlumX Metrics


2021SA57      J.Phys.(London) G48, 125102 (2021)

G.Saxena, M.Kumawat, R.Sharma, M.Aggarwal

Collapse of N = 28 magicity in exotic 40Mg-probe of deformed halo and 2n-radioactivity at Mg neutron drip-line

NUCLEAR STRUCTURE 40,42,44Mg; calculated neutron separation energies, single particle energies, neutron and proton pairing energy contributions, shell gaps, radial moments, radial density distributions, neutron skin thickness. 40Mg; deduced neutron halo, dineutron correlations.

doi: 10.1088/1361-6471/ac288b
Citations: PlumX Metrics


2021SA59      Phys.Scr. 96, 125304 (2021)

G.Saxena, A.Jain, P.K.Sharma

A new empirical formula for α-decay half-life and decay chains of Z = 120 isotopes

NUCLEAR STRUCTURE Z=50-118; analyzed available data; deduced a new formula (QF) with only 4 coefficients as well as to modify the Tagepera-Nurmia formula with just 3 coefficients (MTNF) by employing nonlinear regressions.

RADIOACTIVITY 288,289,290,291,292,293,294,295,296,297,298,299,300,301,302,303,304120, 284,285,286,287,288,289,290,291,292,293,294,295,296,297,298,299,300Og, 280,281,282,283,284,285,286,287,288,289,290,291,292,293,294,295,296Lv, 276,277,278,279,280,281,282,283,284,285,286,287,288,289,290,291,292Fl, 272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288Cn, 268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284Ds, 264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280Hs, 260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276Sg(α); calculated T1/2. Comparison with available data.

doi: 10.1088/1402-4896/ac1a4d
Citations: PlumX Metrics


2021SH29      Int.J.Mod.Phys. E30, 2150070 (2021)

R.Sharma, A.Jain, M.Kaushik, S.K.Jain, G.Saxena

Structural properties of nuclei with semi-magic number N(Z)=40

NUCLEAR STRUCTURE 56S, 58Ar, 60Ca, 62Ti, 64Cr, 66Fe, 68Ni, 70Zn, 72Ge, 74Se, 76Kr, 78Sr, 80Zr, 82Mo, 84Ru, 86Pd, 78,80,82,84,86,88,90,92,94,96,98,100,102,104,106,108,110,112,114,116,118,120,122,124Zr; calculated binding energies, deformation parameters.

doi: 10.1142/S0218301321500701
Citations: PlumX Metrics


2021SH38      Nucl.Phys. A1016, 122318 (2021)

P.K.Sharma, A.Jain, G.Saxena

New modified empirical formulae for favoured and unfavoured α-decay

RADIOACTIVITY 305,319,321,331,337121, 294,295,296,298,299,300,301,302,304,306,308,310,311,312,314,316,317,318,320,322,324,326,328,330,331,332,334,336,338,339122, 321123, 300,302,304,306,308,310,312,313,314,316,318,319,320,322,324,326,328,330,332,333,334,336,338124, 291,293,295,297,299,301,303,305,307,309,311,313,315,317,319,321,323,325,327,329,331,333,335,337,339121, 307,309,311,313,315,317,319,321,323,325,327,329,331,333,335,337122, 297,299,301,303,305,307,309,311,313,315,317,319,321,323,325,327,329,331,333,335,337,339123, 301,303,305,307,309,311,313,315,317,319,321,323,325,327,329,331,333,335,337,339124(α); calculated T1/2; deduced formulae.

doi: 10.1016/j.nuclphysa.2021.122318
Citations: PlumX Metrics


2021SH43      Hyperfine Interactions 242, 35 (2021)

R.Sharma, A.Jain, S.K.Jain, G.Saxena

Magicity in the nuclei with N = 32 and 34

NUCLEAR STRUCTURE 46,48Si, 48,50S, 50,52Ar, 52,54Ca, 54,56Ti, 56,58Cr, 58,60Fe, 60,62Ni, 62,64Zn, 64,66Ge, 66,68Se, 68,70Kr; analyzed available data; calculated potential energy surfaces, quadrupole deformation parameters, two proton shell gap, isotopic shift using relativistic mean-field (RMF) approach with density-dependent meson-nucleon couplings using DD-ME2 parameter.

doi: 10.1007/s10751-021-01751-5
Citations: PlumX Metrics


2021SI02      Nucl.Phys. A1006, 122066 (2021)

U.K.Singh, R.Sharma, P.K.Sharma, M.Kaushik, S.K.Jain, G.Saxena

Structural properties and α-decay chains of transfermium nuclei (101 ≤ Z ≤ 110)

RADIOACTIVITY 235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287Md, 238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288No, 241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288,289Lr, 243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288,289,290Rf, 245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288,289,290,291Db, 248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288,289,290,291,292Sg, 250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288,289,290,291,292,293Bh, 253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288,289,290,291,292,293,294Hs, 255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288,289,290,291,292,293,294,295Mt, 255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288,289,290,291,292,293,294,295,296Ds(α), (SF); calculated potential energy surfaces (PESs), occupancies of neutron single particle states, rms α-decay T1/2, T1/2. Comparison with available data.

doi: 10.1016/j.nuclphysa.2020.122066
Citations: PlumX Metrics


2020KU26      Int.J.Mod.Phys. E29, 2050068 (2020)

M.Kumawat, G.Saxena, M.Kaushik, S.K.Jain, J.K.Deegwal, M.Aggarwal

Novel feature of doubly bubble nuclei in 50 ≤ Z(N) ≤ 82 region along with magicity and weakly bound structure

NUCLEAR STRUCTURE Z=50-82; calculated the separation energies, s.p. energies, pairing energies, proton and neutron density profiles along with deformations of even-even nuclei using the Relativistic Mean-Field (RMF) approach; deduced central density depletion in both proton and neutron named as doubly bubble nuclei.

doi: 10.1142/S0218301320500688
Citations: PlumX Metrics


2020SI27      Nucl.Phys. A1004, 122035 (2020)

U.K.Singh, P.K.Sharma, M.Kaushik, S.K.Jain, D.T.Akrawy, G.Saxena

Study of decay modes in transfermium isotopes

RADIOACTIVITY 245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260Md, 250,251,252,253,254,255,256,257,258,259,260,261,262No, 252,253,254,255,256,257,258,259,260,261,262,263,264,265,266Lr, 253,254,255,256,257,258,259,260,261,262,263,264,265Rf, 255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270Db, 258,259,260,261,262,263,264,265,266,267,268,269,270,271Sg, 260,261,262,263,264,265,266,267,268,269,270,271,272,273,274Bh, 263,264,265,266,267,268,269,270,271,272,273,274,275,276,277Hs, 266,267,268,269,270,271,272,273,274,275,276,277,278Mt(EC), (β-), (α), (SF); calculated T1/2. Comparison with available data.

doi: 10.1016/j.nuclphysa.2020.122035
Citations: PlumX Metrics


2019AG14      Int.J.Mod.Phys. E28, 1950099 (2019)

M.Aggarwal, M.Kaushik, G.Saxena

High spin states of Zr isotopes around A=80 mass region- study on cold and hot rotating nuclei

NUCLEAR STRUCTURE 76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124Zr; calculated ground state quadrupole deformation, parameters, high-spin states, proton and neutron pairing gaps, moments of inertia.

doi: 10.1142/S021830131950099X
Citations: PlumX Metrics


2019SA02      Phys.Lett. B 788, 1 (2019)

G.Saxena, M.Kumawat, M.Kaushik, S.K.Jain, M.Aggarwal

Bubble structure in magic nuclei

NUCLEAR STRUCTURE 12,13,14,15,16,17,18,19,20,21,22,23,24O, 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70Ca, 48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98Ni, 80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150Zr, 78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126Sn, 178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262Pb, 251Fr, 299Mc, 302Og, 22Si, 34Si, 46Ar, 56S, 58Ar, 184Ce, 347119, 292120, 341Nh; calculated charge and matter densities, single particle levels and depletion fraction (DF) across the periodic chart; deduced that the central depletion is correlated to shell structure and occurs due to unoccupancy in s-orbit (2s, 3s, 4s) and inversion of (2s, 1d) and (3s, 1h) states in nuclei upto Z less or equal to 82. Bubble effect in superheavy region is a signature of the interplay between the Coulomb and nn-interaction where the depletion fraction is found to increase with Z (Coulomb repulsion) and decrease with isospin.

doi: 10.1016/j.physletb.2018.08.076
Citations: PlumX Metrics


2019SA08      Phys.Lett. B 789, 323 (2019)

G.Saxena, M.Kumawat, B.K.Agrawal, M.Aggarwal

Anti-bubble effect of temperature and deformation: A systematic study for nuclei across all mass regions between A=20-300

NUCLEAR STRUCTURE 22,34Si, 46,58Ar, 56S, 184Ce, 294,302Og, 292120, 22O, 34Ca, 24Ne, 40Mg, 44S, 32Ar; calculated charge and neutron densities as function of temperatures, proton single-particle energies, nuclear charge form factors, depletion fractions, quadrupole deformation parameters, occupation probabilities.

doi: 10.1016/j.physletb.2018.10.062
Citations: PlumX Metrics


2019SA25      Int.J.Mod.Phys. E28, 1950008 (2019)

G.Saxena, M.Kumawat, S.Somorendro Singh, M.Aggarwal

Structural properties and decay modes of Z = 122, 120 and 118 superheavy nuclei

NUCLEAR STRUCTURE 284,285,286,287,288,289,290,291,292,293,294,295,296,297,298,299Og, 290,291,292,293,294,295,296,297,298,299,300,301,302,303,304,305120, 298,299,300,301,302,303,304,305,306,307,308,309,310,311,312,313,314122; calculated neutron and charge densities, ground state properties viz. binding energies, charge, proton, neutron, matter radii.

RADIOACTIVITY 272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288Cn, 276,277,278,279,280,281,282,283,284,285,286,287,288,289,290,291,292Fl, 280,281,282,283,284,285,286,287,288,289,290,291,292,293,294,295,296Lv, 284,285,286,287,288,289,290,291,292,293,294,295,296,297,298,299,300Og, 288,289,290,291,292,293,294,295,296,297,298,299,300,301,302,303,304120, 292,293,294,295,296,297,298,299,300,301,302,303,304,305,306,307,308122(α); calculated T1/2. Comparison with available data.

doi: 10.1142/S0218301319500083
Citations: PlumX Metrics


2019SA45      J.Phys.(London) G46, 065105 (2019)

G.Saxena, M.Kumawat, B.K.Agrawal, M.Aggarwal

A systematic study of the factors affecting central depletion in nuclei

NUCLEAR STRUCTURE 30Ne, 32Mg, 34Si, 46Ar, 56S, 58Ar; calculated bubble parameters, proton single-particle energies, binding energies.

doi: 10.1088/1361-6471/ab0853
Citations: PlumX Metrics


2019SA50      Hyperfine Interactions 240, 74 (2019)

G.Saxena, M.Kumawat, B.K.Agrawal, M.Aggarwal

Effect of quadrupole deformation and temperature on bubble structure in N=14 nuclei

NUCLEAR STRUCTURE 24Ne, 32Ar; calculated quadrupole deformation parameters, proton occupation probability using the relativistic mean-field plus BCS approach using NL3* and PK1 parameters.

doi: 10.1007/s10751-019-1620-9
Citations: PlumX Metrics


2019SA58      Int.J.Mod.Phys. E28, 1950101 (2019)

G.Saxena, M.Kumawat, M.Aggarwal

Search for exotic features in the ground state light nuclei with 10≤Z≤18 from stable valley to drip lines

NUCLEAR STRUCTURE 16,18,20,22,24,26,28,30,32,34,36,38,40,42,44,46,48,50,52Ne, 18,20,22,24,26,28,30,32,34,36,38,40,42,44,46,48,50,52,54Mg, 20,22,24,26,28,30,32,34,36,38,40,42,44,46,48,50,52,54,56Si, 22,24,26,28,30,32,34,36,38,40,42,44,46,48,50,52,54,56,58S, 24,26,28,30,32,34,36,38,40,42,44,46,48,50,52,54,56,58,60Ar; calculated two neutron separation energy, charge and neutron radii, neutron density and skin, charge form factor, deformation parameters, potential energy surface as a function of the deformation parameter, ground state properties.

doi: 10.1142/S0218301319501015
Citations: PlumX Metrics


2018AG06      Int.J.Mod.Phys. E27, 1850062 (2018)

M.Aggarwal, G.Saxena

Persistence of magicity in neutron-rich exotic 78Ni in ground as well as excited states

NUCLEAR STRUCTURE 70Ca, 72Ti, 74Cr, 76Fe, 78Ni; calculated charge distribution along with radius, pairing energy contributions from protons and neutrons, neutron and proton single-particle energies for Ni isotopes, two-neutron shell gaps, level density parameter versus mass number A for Ni isotopes at different temperatures, entropy versus mass number A for Ni isotopes at different temperatures, rotational states. Comparison with available data.

doi: 10.1142/S0218301318500623
Citations: PlumX Metrics


2018KU17      Can.J.Phys. 96, 1413 (2018)

M.Kumawat, G.Saxena, M.Kaushik, R.Sharma, S.K.Jain

Description of nuclei with magic number Z (N) = 6

NUCLEAR STRUCTURE Z=6, N=6; calculated ground state properties of entire chains of isotopes (isotones) with Z (N) = 6 including even and odd mass nuclei using relativistic mean-field plus BCS, including quadrupole deformation, binding energy, separation energy, single particle energy, root mean squared radii, along with charge and neutron density profile. Comparison with available data.

doi: 10.1139/cjp-2017-1013
Citations: PlumX Metrics


2018SA44      Int.J.Mod.Phys. E27, 1850074 (2018)

G.Saxena, U.K.Singh, M.Kumawat, M.Kaushik, S.K.Jain, M.Aggarwal

Distinct ground state features and the decay chains of Z=121 superheavy nuclei

NUCLEAR STRUCTURE Z=121; calculated separation energies, shell corrections, deformation parameters, radial variation of charge density and neutron density using RMF+BCS approach.

RADIOACTIVITY 293,294,295,296,297,298,299,300,301,302,303,304,305,306,307,308,309,310,311,312121(α); calculated Q-values, T1/2. Comparison with available data.

doi: 10.1142/S021830131850074X
Citations: PlumX Metrics


2017SA09      Acta Phys.Pol. B48, 309 (2017)

G.Saxena, M.Kaushik

Study of N = 16 Shell Closure Within RMF+BCS Approach

NUCLEAR STRUCTURE 22C, 24O, 26Ne, 28Mg, 30Si, 32S, 34Ar, 36Ca; calculated low-lying sp levels, J, π for N=16 isotones vs Z using RMF+BCS approach; deduced shell gap development. 10,12,14,16,18,20,22,24C, 12,14,16,18,20,22,24,26O; calculated pairing energy, two neutron shell gap using BCS+RMF(TMA) approach.

doi: 10.5506/APhysPolB.48.309
Citations: PlumX Metrics


2017SA33      Phys.Atomic Nuclei 80, 211 (2017)

G.Saxena, M.Kaushik

Ground-state properties of neutron magic nuclei

doi: 10.1134/s1063778817020259
Citations: PlumX Metrics


2017SA46      Chin.J.Phys.(Taiwan) 55, 1149 (2017)

G.Saxena, M.Kaushik

Behaviour of the pf shell under the RMF+BCS description

NUCLEAR STRUCTURE 52,60Ca, 48Si, 84,116Se; calculated two neutron shell gaps, neutron single particle states, occupancy, quadrupole deformation parameters; deduced magicity. RMF+BCS approach.

doi: 10.1016/j.cjph.2017.03.022
Citations: PlumX Metrics


2017SA69      Int.J.Mod.Phys. E26, 1750072 (2017)

G.Saxena, M.Kumawat, M.Kaushik, U.K.Singh, S.K.Jain, S.Somorendro Singh, M.Aggarwal

Implications of occupancy of 2s1/2 state in sd-shell within RMF+BCS approach

NUCLEAR STRUCTURE 22C, 22,24O, 34,36Ca, 26S, 36S, 56S, 22,34,48Si; calculated quadrupole deformation parameters, neutron single particle states, neutron density. Comparison with available data.

doi: 10.1142/S0218301317500720
Citations: PlumX Metrics


2017SA70      Phys.Lett. B 775, 126 (2017)

G.Saxena, M.Kumawat, M.Kaushik, S.K.Jain, M.Aggarwal

Two-proton radioactivity with 2p halo in light mass nuclei A = 18-34

NUCLEAR STRUCTURE 19Mg, 22Si, 26S, 30Ar, 34Ca; calculated variation of charge density, charge radii, RMF potential energy, centrifugal barrier energy for proton resonant states; deduced 2-proton halo.

doi: 10.1016/j.physletb.2017.10.055
Citations: PlumX Metrics


2015KA35      Phys.Part. and Nucl.Lett. 24, 516 (2015)

M.Kaushik, G.Saxena

High-spin structure of 80Kr

NUCLEAR STRUCTURE 80Kr; calculated energy levels, J, π, high-spin states, deformation parameters; deduced prolate deformation. Fully self-consistent cranked HFB approach.

doi: 10.1134/S1547477115040184
Citations: PlumX Metrics


2014SA13      Rom.J.Phys. 59, 86 (2014)

G.Saxena, D.Singh, M.Kaushik

Weakly Bound Neutron Rich C Isotopes within RMF+BCS Approach

NUCLEAR STRUCTURE 10,12,14,16,18,20,22C; calculated neutron single-particle energies, occupancy, neutron density, RMF potential energy sum, binding and two-neutron separation energies, neutron radii. Relativistic Mean Field calculations, comparison with available data.


2013SA25      Int.J.Mod.Phys. E22, 1350025 (2013); Erratum Int.J.Mod.Phys. E22, 1392002 (2013)

G.Saxena, D.Singh

Study of neutron magic drip-line nuclei within relativistic mean-field plus BCS approach

NUCLEAR STRUCTURE 46Fe, 58Zn, 96Pd, 154Hf, 220Pu; calculated two proton separation energy, proton single particle energy and occupancy, RMF potential energy plots (sum of the scalar and vector potentials). Comparison with available data.

doi: 10.1142/S0218301313500250
Citations: PlumX Metrics


2013SA26      J.Exper.Theo.Phys. 116, 567 (2013)

G.Saxena, D. Singh

Shell Closures, Loosely Bound Structures, and Halos in Exotic Nuclei

NUCLEAR STRUCTURE Z=6, 14, 16, 34;N=6, 14, 16, 34, 40, 70, 112; calculated single-particle spectrum, pairing energies, and densities of the nuclei; deduced shell closure. Relativistic mean-field (RMF) plus state-dependent BCS approach, comparison with available data.

doi: 10.1134/S1063776113040092
Citations: PlumX Metrics


2013SA34      Phys.Part. and Nucl.Lett. 10, 220 (2013)

G.Saxena, D.Singh, M.Kaushik

Magicity in Exotic Nuclei

NUCLEAR STRUCTURE 34,36,38,40,42,44,46,48,50,52,54,56,58,60,62,64,66Ca; calculated proton and neutron density distributions, two-neutron separation and neutron single-particle energies. Relativistic mean field (RMF) plus state-dependent BCS approach.

doi: 10.1134/S1547477113030114
Citations: PlumX Metrics


2012SI16      Int.J.Mod.Phys. E21, 1250076 (2012); Erratum Int.J.Mod.Phys. E22, 1392001 (2013)

D.Singh, G.Saxena

Study of two-proton radioactivity within the relativistic mean-field plus BCS approach

RADIOACTIVITY 38Ti, 42Cr, 45Fe, 48Ni, 55Zn, 60Ge, 63,64Se, 68Kr, 72Sr, 76Zr(2p); calculated one- and two-proton separation energies, quadrupole deformation parameters, pairing gap, radial wave functions and density distributions. Comparison with available data.

doi: 10.1142/S0218301312500760
Citations: PlumX Metrics


1971SA16      Can.J.Phys. 49, 2276 (1971)

G.P.Saxena, C.Vincent

ENDOR of the 55Mn2+ Ion in MgO and CaO

NUCLEAR MOMENTS 55Mn; measured a, b; deduced μ. ENDOR.

doi: 10.1139/p71-275
Citations: PlumX Metrics


Back to query form


Note: The following list of authors and aliases matches the search parameter G.Saxena: , G.P.SAXENA