NSR Query Results


Output year order : Descending
Format : Normal

NSR database version of April 27, 2024.

Search: Author = P.K.Sharma

Found 10 matches.

Back to query form



2024SA15      Eur.Phys.J. A 60, (2024)

G.Saxena, P.K.Sharma, P.Saxena

A global study of α-clusters decay in heavy and superheavy nuclei with half-life and preformation factor

NUCLEAR STRUCTURE N=100-180; calculated T1/2, preformation factor with microscopic structural information and cast in the form of quite precise empirical formulas.

doi: 10.1140/epja/s10050-024-01259-w
Citations: PlumX Metrics


2023JA02      Nucl.Phys. A1031, 122597 (2023)

A.Jain, P.K.Sharma, S.K.Jain, J.K.Deegwal, G.Saxena

Cluster radioactivity in trans-lead region: A systematic study with modified empirical formulas

RADIOACTIVITY 221Fr, 221,222,223Ra, 223Ac(14C), 223Ac(15N), 224Ra, 225Ac, 226Ra, 226Th(14C), 228Th(20O), 230Th(24Ne), 230U(22Ne), 231Pa(24Ne), 232Th(24Ne), (26Ne), 232U(24Ne), (28Mg), 233U(24Ne), (25Ne), (28Mg), 234U(24Ne), (26Ne), (28Mg), 235U(24Ne), (25Ne), (28Mg), (29Mg), 236U(24Ne), (26Ne), (28Mg), (30Mg), 236Pu(28Mg), 237Np(30Mg), 238Pu(28Mg), (30Mg), (32Si), 240Pu, 241Am, 242Cm(34Si), 216Rn(8Be), 222Fr(14B), 221Ra(13C), 223Ra(15C), 222Ac(14N), (15N), (16N), (17N), 224Th(16O), 225Th(17O), 226Th(18O), 227Th(19O), 228Th(20O), 229Th(21O), 230Th(22O), 231Th(23O), 228Pa(20F), 229Pa(21F), 231Pa(23F), 231U(23Ne), (25Ne); calculated T1/2. Comparison with available data.

doi: 10.1016/j.nuclphysa.2022.122597
Citations: PlumX Metrics


2023SA02      J.Phys.(London) G50, 015102 (2023)

G.Saxena, M.Aggarwal, D.Singh, A.Jain, P.K.Sharma, H.L.Yadav

Deformation dependence of 2p-radioactivity half-lives: probe with a new formula across the mass region with Z < 82

RADIOACTIVITY 6Be, 12O, 16Ne, 19Mg, 45Fe, 48Ni, 54Zn, 67Kr, 10N, 28Cl, 32K, 52Cu, 57Ga, 60,62As(2p); analyzed available data; deduced T1/2 by employing our newly proposed semi-empirical formula wherein the nuclear deformation has been incorporated in a phenomenological way.

doi: 10.1088/1361-6471/ac991d
Citations: PlumX Metrics


2022SH29      Phys.Scr. 97, 045307 (2022)

R.Sharma, A.Jain, P.K.Sharma, S.K.Jain, G.Saxena

A comprehensive study of decay modes associated with Pb isotopes

RADIOACTIVITY 176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,205Pb(β+), (EC), 209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266Pb(β-), 178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193Pb(α); calculated T1/2. Comparison with available data.

doi: 10.1088/1402-4896/ac607c
Citations: PlumX Metrics


2021JA09      Hyperfine Interactions 242, 60 (2021)

A.Jain, R.Sharma, S.K.Jain, P.K.Sharma, G.Saxena

Cluster radioactivity in 294, 296Og

RADIOACTIVITY 294,296Og(α), (8Be), (12C), (14C), (16O), (18O), (20O), (22Ne), (24Ne), (26Mg), (28Mg), (30Si), (32Si), (34Si), (36S), (38S), (40Ar), (42Ar), (44Ar), (46Ca), (48Ca), (50Ca), (52Ti), (54Ti), (56Cr), (58Cr), (60Cr), (62Fe), (64Fe), (66Ni), (68Ni), (70Ni), (72Zn), (74Ge), (76Zn), (78Ge), (80Ge), (82Ge), (84Se), (86Kr), (88Kr), (90Sr), (92Kr), (94Sr), (96Zr), (98Zr), (100Mo), (102Mo); calculated T1/2. Comparison with available data.

doi: 10.1007/s10751-021-01748-0
Citations: PlumX Metrics


2021SA30      J.Phys.(London) G48, 055103 (2021)

G.Saxena, P.K.Sharma, P.Saxena

Modified empirical formulas and machine learning for α-decay systematics

RADIOACTIVITY 276,278,280,282,284Cn, 284,285,286,287,288,289Fl, 290,292,294Lv, 294Og(α), (SF); calculated T1/2. Comparison with available data.

doi: 10.1088/1361-6471/abcd1c
Citations: PlumX Metrics


2021SA59      Phys.Scr. 96, 125304 (2021)

G.Saxena, A.Jain, P.K.Sharma

A new empirical formula for α-decay half-life and decay chains of Z = 120 isotopes

NUCLEAR STRUCTURE Z=50-118; analyzed available data; deduced a new formula (QF) with only 4 coefficients as well as to modify the Tagepera-Nurmia formula with just 3 coefficients (MTNF) by employing nonlinear regressions.

RADIOACTIVITY 288,289,290,291,292,293,294,295,296,297,298,299,300,301,302,303,304120, 284,285,286,287,288,289,290,291,292,293,294,295,296,297,298,299,300Og, 280,281,282,283,284,285,286,287,288,289,290,291,292,293,294,295,296Lv, 276,277,278,279,280,281,282,283,284,285,286,287,288,289,290,291,292Fl, 272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288Cn, 268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284Ds, 264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280Hs, 260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276Sg(α); calculated T1/2. Comparison with available data.

doi: 10.1088/1402-4896/ac1a4d
Citations: PlumX Metrics


2021SH38      Nucl.Phys. A1016, 122318 (2021)

P.K.Sharma, A.Jain, G.Saxena

New modified empirical formulae for favoured and unfavoured α-decay

RADIOACTIVITY 305,319,321,331,337121, 294,295,296,298,299,300,301,302,304,306,308,310,311,312,314,316,317,318,320,322,324,326,328,330,331,332,334,336,338,339122, 321123, 300,302,304,306,308,310,312,313,314,316,318,319,320,322,324,326,328,330,332,333,334,336,338124, 291,293,295,297,299,301,303,305,307,309,311,313,315,317,319,321,323,325,327,329,331,333,335,337,339121, 307,309,311,313,315,317,319,321,323,325,327,329,331,333,335,337122, 297,299,301,303,305,307,309,311,313,315,317,319,321,323,325,327,329,331,333,335,337,339123, 301,303,305,307,309,311,313,315,317,319,321,323,325,327,329,331,333,335,337,339124(α); calculated T1/2; deduced formulae.

doi: 10.1016/j.nuclphysa.2021.122318
Citations: PlumX Metrics


2021SI02      Nucl.Phys. A1006, 122066 (2021)

U.K.Singh, R.Sharma, P.K.Sharma, M.Kaushik, S.K.Jain, G.Saxena

Structural properties and α-decay chains of transfermium nuclei (101 ≤ Z ≤ 110)

RADIOACTIVITY 235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287Md, 238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288No, 241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288,289Lr, 243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288,289,290Rf, 245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288,289,290,291Db, 248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288,289,290,291,292Sg, 250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288,289,290,291,292,293Bh, 253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288,289,290,291,292,293,294Hs, 255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288,289,290,291,292,293,294,295Mt, 255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288,289,290,291,292,293,294,295,296Ds(α), (SF); calculated potential energy surfaces (PESs), occupancies of neutron single particle states, rms α-decay T1/2, T1/2. Comparison with available data.

doi: 10.1016/j.nuclphysa.2020.122066
Citations: PlumX Metrics


2020SI27      Nucl.Phys. A1004, 122035 (2020)

U.K.Singh, P.K.Sharma, M.Kaushik, S.K.Jain, D.T.Akrawy, G.Saxena

Study of decay modes in transfermium isotopes

RADIOACTIVITY 245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260Md, 250,251,252,253,254,255,256,257,258,259,260,261,262No, 252,253,254,255,256,257,258,259,260,261,262,263,264,265,266Lr, 253,254,255,256,257,258,259,260,261,262,263,264,265Rf, 255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270Db, 258,259,260,261,262,263,264,265,266,267,268,269,270,271Sg, 260,261,262,263,264,265,266,267,268,269,270,271,272,273,274Bh, 263,264,265,266,267,268,269,270,271,272,273,274,275,276,277Hs, 266,267,268,269,270,271,272,273,274,275,276,277,278Mt(EC), (β-), (α), (SF); calculated T1/2. Comparison with available data.

doi: 10.1016/j.nuclphysa.2020.122035
Citations: PlumX Metrics


Back to query form