NSR Query Results


Output year order : Descending
Format : Normal

NSR database version of May 6, 2024.

Search: Author = H.C.Manjunatha

Found 63 matches.

Back to query form



2024RE02      Phys.Rev. C 109, 024610 (2024)

L.Reddi Rani, N.Sowmya, H.C.Manjunatha, K.N.Sridhar, M.M.Armstrong Arasu

Optimal incident energy of heavy ion fusion

doi: 10.1103/PhysRevC.109.024610
Citations: PlumX Metrics


2024RE03      Chin.Phys.C 48, 034104 (2024)

R.L.Reddi, N.Sowmya, K.N Sridhar, H.C.Manjunatha, M.M.Armstrong Arasu

Empirical model for fusion cross sections of Ca-induced reactions

doi: 10.1088/1674-1137/ad1a97
Citations: PlumX Metrics


2023AK06      Int.J.Mod.Phys. E32, 2350026 (2023)

D.T.Akrawy, H.C.Manjunatha, G.Saxena, Ali H.Ahmed, N.Sowmya

Systematic study of α-decay half-lives for Pa isotopes using MGLDM model

RADIOACTIVITY 211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241Pa(α); calculated T1/2 using MYQZR, RoyerA, YQZR, MRenB, Akrawy, SemFIS and AKRE formulas, MGLDM macroscopic model.

doi: 10.1142/S021830132350026X
Citations: PlumX Metrics


2023GU22      Int.J.Mod.Phys. E32, 2350069 (2023)

P.S.D.Gupta, N.Sowmya, H.C.Manjunatha, H.S.Anushree, L.Seenappa, K.N.Sridhar

A study of decay chains of radioactive actinium isotopes

RADIOACTIVITY 205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227Ac(α), (β-); calculated T1/2 using unified fission model (UFM) and the effective liquid drop model. Comparison with available data.

doi: 10.1142/S0218301323500696
Citations: PlumX Metrics


2023MA02      Nucl.Phys. A1030, 122568 (2023)

H.C.Manjunatha, Y.S.Vidya, K.N.Sridhar, L.Seenappa, P.S.Damodara Gupta

Effect of entrance channel parameters on the elastic scattering of light nuclei

NUCLEAR REACTIONS 11B, 14N, 6,7Li(p, p), 6,7Li, 12C, 28Si(d, d), 6Li(3He, 3He), 6,7Li, 24Mg, 9Be(α, α), 6Li, 9Be, 4He, 12C, 48Ti(6He, 6He), 12,13C, 16O, 208Pb, 26Mg, 28Si, 40Ca, 4He, 58Ni, 6,7Li, 90Zr(6Li, 6Li), 12,13C, 16O, 28Si, 7Li(7LI, 7Li), 12C, 7Li, 9Be(8Li, 8Li), 2H(11Be, 11Be), 10B, 12C, 14N, 9Be(7Be, 7Be), 16O, 9Be(9Be, 9Be), 12C, 16O, 7Li(10B, 10B), 13,14C, 7Li, 9Be(11B, 11B), 12C(8B, 8B), 14N(11C, 11C), 11B, 13C(12C, 12C), 12C(13C, 13C), 11B, 12,13C, 14N, 16O, 7Li, 9Be(14N, 14N), 9Be(15N, 15N), 11B(16N, 16N), 12C, 18O(16O, 16O), 208Pb(17O, 17O), 13C, 18O, 7Li(18O, 18O), 14N, 197Au, 208Pb(17F, 17F), E<100 MeV; analyzed available data; deduced elastic scattering σ derived from entrance channel parameters.

doi: 10.1016/j.nuclphysa.2022.122568
Citations: PlumX Metrics


2023MA06      Pramana 97, 12 (2023)

H.C.Manjunatha, N.Sowmya, K.N.Sridhar, L.Seenappa, P.S.Damodara Gupta

An accurate empirical formula for the average total kinetic energy released in fission

NUCLEAR STRUCTURE Z=23-120; analyzed available data; deduced s new improved formula of Viola systematics, covariance of the matrix and its parameters in both symmetric and asymmetric fission of nuclei.

doi: 10.1007/s12043-022-02485-x
Citations: PlumX Metrics


2023MA15      Nucl.Phys. A1032, 122621 (2023)

H.C.Manjunatha, N.Sowmya, R.Munirathnam, K.N.Sridhar, L.Seenappa, P.S.Damodara Gupta

Effect of entrance channel parameters on compound nucleus formation probability in heavy ion fusion reactions

doi: 10.1016/j.nuclphysa.2023.122621
Citations: PlumX Metrics


2023MA28      J.Phys.(London) G50, 035101 (2023)

H.C.Manjunatha, P.S.Damodara Gupta, N.Sowmya, N.Manjunatha, K.N.Sridhar, L.Seenappa, T.Nandi

Survival probability of compound nuclei in heavy-ion fusion reaction

NUCLEAR REACTIONS 249Cf(48Ca, X)294Og, E(cm)=200-230 MeV; 208Pb(50Ti, X)258Rf, 209Bi(50Ti, X)259Db, 244Pu(48Ca, X)292Fl, 208Pb(58Fe, X)266Hs, 208Pb(54Cr, X)262Sg, E not given; analyzed available data; calculated the survival probability of superheavy nuclei; deduced an empirical formula.

doi: 10.1088/1361-6471/acb1cb
Citations: PlumX Metrics


2023MA56      Chin.Phys.C 47, 104104 (2023)

H.C.Manjunatha, N.Sowmya, L.Seenappa, P.S.Damodara Gupta, N.Manjunatha

Heavy ion fusion of spherical nuclei

NUCLEAR REACTIONS 238U, 237Np, 242,244Pu, 243Am, 245,248Cm, 249Bk, 249Cf(48Ca, X)Po/Th/No, E(cm)=180-230 MeV; analyzed available data; deduced σ with theoretical models such as the dinuclear system (DNS) and advanced statistical model (ASM).

doi: 10.1088/1674-1137/acea21
Citations: PlumX Metrics


2023SO13      Phys.Part. and Nucl.Lett. 20, 544 (2023)

N.Sowmya, H.C.Manjunatha, K.N.Sridhar, P.S.Damodara Gupta, N.Dhanajaya

Competition between Cluster and Alpha Decay in Even Atomic Number Superheavy Nuclei 110 ≤ Z ≤ 126

RADIOACTIVITY 261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280Ds, 274,275,276,277,278,279,280,281,282,283Cn, 280,281,282,283,284,285,286,287,288Fl, 282,283,284,285,286,287,288,289,290,291,292,293,294,295Lv, 286,287,288,289,290,291,292,293,294,295,296,297,298,299,300,301,302,303Og, 288,289,290,291,292,293,294,295,296,297,298,299,300,301,302,303,304,305,306120, 292,293,294,295,296,297,298,299,300,301,302,303,304,305,306,307,308,309,310122, 292,293,294,295,296,297,298,299,300,301,302,303,304,305,306,307,308,309,310,311,312124, 292,293,294,295,296,297,298,299,300,301,302,303,304,305,306,307,308,309,310,311,312,313,314126(α), (SF); calculated T1/2, Q-values. Comparison with available data.

doi: 10.1134/S1547477123030664
Citations: PlumX Metrics


2023SO16      Can.J.Phys. 101, 453 (2023)

N.Sowmya, A.M.Nagaraja, H.C.Manjunatha

Radioactive decay properties of superheavy element Z = 119

RADIOACTIVITY 290,291,292,293,294,295,296,297,298,299,300,301,302,303119(α), (SF); calculated T1/2. Comparison with available data.

doi: 10.1139/cjp-2022-0301
Citations: PlumX Metrics


2023SO21      Int.J.Mod.Phys. E32, 2350054 (2023)

N.Sowmya, G.S.Vasudha, H.C.Manjunatha, P.S.Prabhavathi

Investigation on the elastic scattering of oxygen nuclei

NUCLEAR REACTIONS 10,11B, 12,13C, 16O, 40,42,44,48Ca, 56Fe, 58Ni, 90Zr, 116,120Sn, 208Pb(16O, 16O), (18O, 18O), E(cm)<50 MeV; analyzed available data; deduced σ(θ) using an optical model, different entrance channel parameters, an empirical relation as a function of the Coulomb interaction parameter, mass number of compound nuclei and center of mass-energy.

doi: 10.1142/S0218301323500544
Citations: PlumX Metrics


2023SR01      Nucl.Phys. A1036, 122673 (2023)

M.G.Srinivas, R.Munirathnam, N.Sowmya, H.C.Manjunatha

A systematic analysis for one proton radioactivity of ground state nuclei

RADIOACTIVITY 109I, 112,113Cs, 117La, 121Pr, 130,131Eu, 135Tb, 140,141Ho, 144,145,146,147Tm, 150,151Lu, 155,156,157Ta, 159,160,161Re, 164,165,166,167Ir, 170,171Au, 176,177Tl, 185Bi(p); calculated T1/2 using different macroscopic models CPPM, ELDM, GLM, UFM and UDLP. Comparison with available data.

doi: 10.1016/j.nuclphysa.2023.122673
Citations: PlumX Metrics


2023VA10      Int.J.Mod.Phys. E32, 2350040 (2023)

G.S.Vasudha, N.Sowmya, H.C.Manjunatha, D.PrakashBabu

Gamma-ray mean lifetimes of transitions 2+ → 0+state for even-even nuclei in the range 58 ≤ Z ≤ 100

NUCLEAR STRUCTURE Z=58-100; analyzed available data; deduced B(E2) values, level lifetimes.

doi: 10.1142/S0218301323500404
Citations: PlumX Metrics


2022DA17      Phys.Rev. C 106, 064603 (2022)

P.S.Damodara Gupta, N.Sowmya, H.C.Manjunatha, L.Seenappa, T.Ganesh

Quasifission barrier of heavy ion fusion reactions leading to the formation of the superheavy nucleus 302120

NUCLEAR REACTIONS 251Cf(56Ti, 3n)304120, E*=36 MeV; 251Cf(57Ti, 4n)304120, E*=47 MeV; 251Cf(58Ti, 5n)304120, E*=60 MeV; 249Bk(58V, 3n)304120, E*=37 MeV; 249Bk(59V, 4n)304120, E*=47 MeV; 249Bk(60V, 5n)304120, E*=59 MeV; 248Cm(59Cr, 3n)304120, E *=36 MeV; 248Cm(60Cr, 4n)304120, E*=46 MeV; 248Cm(61Cr, 5n)304120, E*=57 MeV; 248Cf(45Sc, 3n)290119, E*=39 MeV; 247Bk(50Ti, 3n)294119, E*=36 MeV; 242Cm(51V, 3n)290119, E*=38 MeV; 242Am(54Cr, 3n)293119, E*=37 MeV; calculated evaporation residue σ. 237Th(65Zn, X), 218Po(84Kr, X), E not given; calculated nucleus-nucleus interaction potential from the fusion which leads to 302120 production. 252Cf(50Ti, X), E(cm)=223 MeV; 249Bk(53V, X), E(cm)=229 MeV; 248Cm(54Cr, X), E(cm)=236 MeV; 244Pu(58Fe, X), E(cm)=249 MeV; 239Pa(63Cu, X), E(cm)=260 MeV; 232Th(70Zn, X), E(cm)=281 MeV; 222Rn(80Se, X), E(cm)=309 MeV; 228Ra(74Ge, X), E(cm)=240 MeV; 238U(64Ni, X), E(cm)=267 MeV; calculated quasifission barrier, evaporation residue σ, entrance channel parameters. Investigated the influence of the projectile-target orientation and angular momentum on quasifission barriers. Dinuclear system (DNS) model. Comparison to other theoretical estimations.

doi: 10.1103/PhysRevC.106.064603
Citations: PlumX Metrics


2022MA15      Int.J.Mod.Phys. E31, 2250015 (2022)

H.C.Manjunatha, P.S.Damodara Gupta, N.Sowmya, K.N.Sridhar

Investigations on 28Ca and 58Fe-induced heavy ion fusion reactions

NUCLEAR REACTIONS 40Ca, 44Ca, 48Ca, 48Ca, 46Ti, 48Ti, 50Ti, 58Ni, 60Ni, 62Ni, 64Ni, 90Zr, 94Zr, 96Zr(40Ca, X), 90Zr, 96Zr(48Ca, X), 124Sn(40Ca, X), 154Sm, 168Er, 170Er(48Ca, X), 192Os, 194Pt, 197Au(40Ca, X), 197Au(48Ca, X), 208Pb(40Ca, X), 208Pb(48Ca, X), 238U(40Ca, X), 238U(48Ca, X), 120Sn, 122Sn, 165Ho(56Fe, X), 238U, 237Np, 244Pu, 243Am, 245Cm, 249Bk, 249Cf(48Ca, X), 208Pb, 209Bi(58Fe, X), E<320 MeV; analyzed available data. 80Zr, 84Zr, 88Zr, 96Zr, 86Mo, 88Mo, 90Mo, 98Cd, 100Cd, 102Cd, 104Cd, 130Nd, 134Nd, 136Nd, 138Nd, 144Nd, 164Yb, 202Pb, 216Ra, 218Ra, 232Cm, 234Cf, 237Es, 245Es, 248No, 256No, 278Cn, 286Cn, 283Cn, 282Nh, 288Fl, 288Mc, 291Lv, 294Ts, 294Og, 265Hs, 266Mt; calculated evaporation residue σ.

doi: 10.1142/S021830132250015X
Citations: PlumX Metrics


2022MA29      Eur.Phys.J.Plus 137, 693 (2022)

H.C.Manjunatha, N.Sowmya, P.S.Damodara Gupta, L.Seenappa, T.Nandi

Role of optimal beam energies in the heavy ion fusion reaction

NUCLEAR REACTIONS 208Pb, 209Bi(50Ti, n), (50Ti, 2n), (50Ti, 3n), 242,244Pu(48Ca, 3n), (48Ca, 4n), 245,248Cm(48Ca, 3n), E(cm)<300 MeV; analyzed available data; deduced optimal beam energies and σ for heavy ion fusion reactions.

doi: 10.1140/epjp/s13360-022-02677-9
Citations: PlumX Metrics


2022MA67      Phys.Part. and Nucl.Lett. 19, 597 (2022)

H.C.Manjunatha, A.M.Nagaraja, P.S.Damodara Gupta, N.Manjunatha, N.Sowmya, S.A.Cecil Raj

Heavy Particle Radioactivity of Superheavy Element Z = 122

RADIOACTIVITY 222,223,224,226Ra(14C), 231Pa, 232U(24Ne), 233U(25Ne), 294,295,296,297,298,299,300122(86Kr), 301,302,303,304,305122(94Zr), 306,307,308,309,310,311,312,313,314122(α); calculated T1/2 using Coulomb and proximity potential model (CPPM) and modified generalized liquid drop model (MGLDM).

doi: 10.1134/S1547477122050260
Citations: PlumX Metrics


2022MA69      J.Phys.(London) G49, 125101 (2022)

H.C.Manjunatha, Y.S.Vidya, P.S.Damodara Gupta, N.Manjunatha, N.Sowmya, L.Seenappa, T.Nandi

Rules of thumb for synthesizing superheavy elements

NUCLEAR REACTIONS 249Cf(45Sc, X)294119, 249Bk(50Ti, X)299119, 248Cm(51V, X)299119, 249Cf(50Ti, X)299120, 243Am(54Cr, X)297119, 237Np(58Fe, X)295119, 238U(59Co, X)297119, 248Cm(54Cr, X)302120, 243Am(55Mn, X)298120, 237Np(59Co, X)296120, 244Pu(58Fe, X)302120, 238U(64Ni, X)302120, 248Cm(54Cr, X)302120, 244Pu(58Fe, X)302120, 244Pu(55Mn, X)299119, E not given; analyzed available data; deduced evaporation residue σ, deformation effects using ASM calculations.

doi: 10.1088/1361-6471/ac929c
Citations: PlumX Metrics


2022NA09      Int.J.Mod.Phys. E31, 2250004 (2022)

A.M.Nagaraja, H.C.Manjunatha, N.Sowmya, K.N.Sridhar, P.S.Damodara Gupta, S.A.Cecil Raj

Theoretical evidence for neutron magic number 184 from cluster radioactivity studies

RADIOACTIVITY 221Fr, 221,222,223,224Ra, 225Ac(14C), 228Th(20O), 230U(22Ne), 230Th, 231Pa, 232,233U(24Ne), 234U(26Ne), 234U, 236,238Pu(28Mg), 238Pu(32Si), 242Cm(34Si), 257,258,259,260,261,262Rf, 259,260,261,262Db, 261,262Sg, 263,264,265,266Bh, 264,265,266,267,268,269,270,271,272Hs, 271,272,273Mt, 266,267,268,269,270,271,272,273,274,275,276,277,278,279Ds, 271,272,273,274,275,276,277,278,279Rg, 276,277,278,279,280,281Cn, 291,292,293,294,295,296,297,298,299,300,301,302,303,304,305,306,307119, 287,288,289,290,291,292,293,294,295,296,297,298,299,300,301,302,303,304,305,306,307,308,309,310120, 290,291,292,293,294,295,296,297,298,299,300,301,302,303121, 270,271,272,273,274,275,276,277,278,279,280,281,282,283Nh, 271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287Fl, 272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288,289,290Mc, 275,276,277,278,279,280,281,282,283,284,285,286,287,288,289,290,291,292Lv, 278,279,280,281,282,283,284,285,286,287,288,289,290,291,292,293,294,295,296,297,298,299Ts, 281,282,283,284,285,286,287,288,289,290,291,292,293,294,295,296,297,298,299,300,301,302,303Og, 284,285,286,287,288,289,290119, 305,306,307,308,309,310,311,312,313,314,315,316,317124, 303,304,305,306,307,308,309,310,311,312,313,314,315,316,317,318,319,320,321,322,323125, 306,307,308,309,310,311,312,313,314,315,316,317,318,319,320,321,322,323,324,325,326,327,328,329126(α), (β+), (SF); calculated T1/2 using modified generalized liquid drop model (MGLDM); deduced magic numbers. Comparison with available data.

doi: 10.1142/S0218301322500045
Citations: PlumX Metrics


2022NA20      Pramana 96, 84 (2022)

T.Nandi, D.K.Swami, P.S.Damodara Gupta, Y.Kumar, S.Chakraborty, H.C.Manjunatha

Search for a viable nucleus-nucleus potential in heavy-ion nuclear reactions

doi: 10.1007/s12043-022-02331-0
Citations: PlumX Metrics


2022NA34      Int.J.Mod.Phys. E31, 2250081 (2022)

A.M.Nagaraja, R.Munirathnam, H.C.Manjunatha, N.Sowmya, K.N.Sridhar, L.Seenappa, S.A.C.Raj

Predictive power of theoretical models in cluster radioactivity

NUCLEAR STRUCTURE A=221-242, Z=87-96; calculated cluster decays using using modified generalized liquid drop model (MGLDM), Coulomb and proximity potential model (CPPM) and generalized liquid drop model (GLDM).

doi: 10.1142/S0218301322500811
Citations: PlumX Metrics


2022SO03      Phys.Rev. C 105, 044605 (2022)

N.Sowmya, P.S.Damodara Gupta, H.C.Manjunatha, T.Nandi

Accurate estimation of the neutron and fission decay widths for hot fusion reactions

NUCLEAR REACTIONS 248Cm(26Mg, X)274Hs, E*=5-90 MeV; calculated neutron to total decay width ratio. 248Cm(26Mg, X), E*<75 MeV; 208Pb(70Zn, X), E*<40 MeV; 238U(74Ge, X), E*<50 MeV; 244Pu(48Ca, X), E*<90 MeV; calculated fission barrier. Statistical calculations with level densities obtained with modified back-shifted Fermi gas model with the shell and pairing energy correction. Comparison to experimental data and other theoretical calculations.

doi: 10.1103/PhysRevC.105.044605
Citations: PlumX Metrics


2022SR01      Int.J.Mod.Phys. E31, 2250030 (2022)

G.R.Sridhara, H.C.Manjunatha, R.Munirathnam, N.Sowmya, H.B.Ramalingam

Macroscopic versus microscopic models in predicting α-decay half-lives of actinide nuclei

RADIOACTIVITY 215,216,217,218,219,220,221,222,223,224,225Ac, 212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232Th, 211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231Pa, 222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238U, 219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237Np, 236,237,238,239,240,241,242,243,244Pu, 236,237,238,239,240,241,242,243Am, 240,241,242,243,244,245,246,247,248Cm, 233,234,235,236,237,238,239,240,241,242,243,244,245,246,247Bk, 240,241,242,243,244,245,246,247,248,249,250,251,252Cf, 240,241,242,243,244,245,246,247,248,249,250,251,252,253,254Es, 243,244,245,246,247,248,249,250,251,252,253,254,255,256,257Fm, 244,245,246,247,248,249,250,251,252,253,254,255,256,257,258Md, 251,252,253,254,255,256,257No, 253,254,255,256,257Lr(α); calculated T1/2. Comparison with available data.

doi: 10.1142/S0218301322500306
Citations: PlumX Metrics


2022SR02      Int.J.Mod.Phys. E31, 2250043 (2022)

M.G.Srinivas, N.Sowmya, H.C.Manjunatha, P.S.Damodara Gupta, R.Munirathnam, N.Manjunatha

Radioactivity of Dysprosium

RADIOACTIVITY 133,134,135Dy(β+), 133,134,135Tb(p), 132,133,134Gd, 132,133,134Eu, 132,133,134Sm, 132,133,134Pm, 132,133,134Nd, 132,133,134Pr, 132,133,134Ce, 132,133,134La, 132,133,134Ba(β+), 132,133Ba(2β+); analyzed available data; deduced the penetration probability, T1/2 for one proton radioactivity of all possible Dysprosium isotopes. The effective liquid drop model (ELDM).

doi: 10.1142/S0218301322500434
Citations: PlumX Metrics


2022SR03      Ukr.J.Phys. 67, 631 (2022)

M.G.Srinivas, H.C.Manjunatha, K.N.Sridhar, A.C.Raj, P.S.Damodara Gupta

A Systematic Study of Proton Decay in Superheavy Elements

NUCLEAR STRUCTURE Z=104-126; calculated proton decay T1/2, penetration factors using the semiclassical WKB method. Comparison with available data.

doi: 10.15407/ujpe67.9.631
Citations: PlumX Metrics


2021MA01      Can.J.Phys. 99, 16 (2021)

H.C.Manjunatha, L.Seenappa, N.Sowmya, K.N.Sridhar

Investigations on 54-60Fe + 238-244Pu → 296-302120 fusion reactions

NUCLEAR REACTIONS 238,239,240,241,242,243,244Pu(54Fe, xn), (55Fe, xn), (56Fe, xn), (57Fe, xn), (58Fe, xn), (59Fe, xn), (60Fe, xn)296120/297120/298120/299120/300120/301120/302120, E(cm)<400 MeV; calculated formation probability, survival probability, and evaporation residue σ. Comparison with available data.

doi: 10.1139/cjp-2019-0580
Citations: PlumX Metrics


2021MA16      Phys.Rev. C 103, 024311 (2021)

H.C.Manjunatha, L.Seenappa, P.S.Damodara Gupta, N.Manjunatha, K.N.Sridhar, N.Sowmya, T.Nandi

Quasifission and fusion-fission lifetime studies for the superheavy element Z=120

NUCLEAR REACTIONS 252Cf(50Ti, X)302120*, E=299 MeV; 251Cf(50Ti, X)301120*, E=293 MeV; 250Cf(50Ti, X)300120*, E=300 MeV; 252Cf(49Ti, X)301120*, E=299 MeV; 249Cf(50Ti, X)299120*, E=295 MeV; 248Cm(54Cr, X)302120*, E=316 MeV; 244Pu(58Fe, X)302120*, E=347 MeV; 238U(64Ni, X)302120*, E=372 MeV; 64Ni(238U, X)302120*, E=1383 MeV; 60Ni(238U, X)298120*, E=1476 MeV; calculated fusion barriers, fusion σ, evaporation σ, fusion-fission σ, quasifission σ, quasifission lifetimes, and fusion-fission lifetimes for synthesis of Z=120 nuclei. 65Zn(238U, X)303122*, E(cm)=275.7 MeV; 40Ca(238U, X)278Cn*, E(cm)=184.9 MeV; 48Ca(238U, X)278Cn*, E(cm)=215.7 MeV; 35Cl(238U, X)273Mt*, E(cm)=204.4 MeV; 32S(238U, X)270Hs*, E(cm)=152.0 MeV; 184W(72Ge, X)256Sg*, E(cm)=178.1 MeV; 27Al(238U, X)265Db*, E(cm)=146.0 MeV; 184W(64Ni, X)248No*, E(cm)=341.0 MeV; 184W(58Ni, X)242No*, E(cm)=250.9, 266.1, 285.1 MeV; 186W(48Ti, X)234Cm*, E(cm)=245.0 MeV; 184W(48Ti, X)232Cm*, E(cm)=190.3, 194.3, 202.2 MeV; 208Pb(16O, X)224Th*, E(cm)=140.0 MeV; 186W(32S, X)218Th*, E(cm)=180.0 MeV; 184W(32S, X)216Th*, E(cm)=153.3 MeV; calculated quasifission and fusion-fission lifetimes, and compared with experimental data. 248Cm(54Cr, X)302120*, E=326 MeV; 244Pu(58Fe, X)302120*, E(cm)=325 MeV; 238U(64Ni, X)302120*, E(cm)=349 MeV; 249Cf(50Ti, X)299120*, E(cm)=273 MeV; 249Bk(50Ti, X)299119*, E(cm)=267 MeV; 248Cm(51V, X)299120*, E(cm)=277 MeV; 249Cf(48Ca, X)297Og*, E(cm)=235 MeV; 249Bk(48Ca, X)297Ts*, E(cm)=239 MeV; 248Cm(48Ca, X)296Lv*, E(cm)=241 MeV; 243Am(48Ca, X)291Mc*, E(cm)=248 MeV; 242Pu(48Ca, X)290Fl*, E(cm)=244 MeV; 209Bi(70Zn, X)279Nh*, E(cm)=349 MeV; 208Pb(70Zn, X)278Cn*, E(cm)=346 MeV; calculated quasifission and fusion-fission lifetimes for the first six failed experiments to find evidence for Z=119 and 120, and the next seven successful experiments. Statistical method within the framework of the dinuclear system (DNS) model.

doi: 10.1103/PhysRevC.103.024311
Citations: PlumX Metrics


2021MA20      Int.J.Mod.Phys. E30, 2150013 (2021)

H.C.Manjunatha, G.R.Sridhar, N.Sowmya, P.S.Damodara Gupta, H.B.Ramalingam

A systematic study of alpha decay in actinide nuclei using modified generalized liquid drop model

RADIOACTIVITY 210Ac, 214Ac, 220Ac, 223,224,225,226Ac, 209,211Th, 215,217Th, 218Th, 223,225Th, 226,227Th, 229Th, 232Th, 224,225Pa, 228,229,230Pa, 217,219U, 223,225,227U, 228U, 231U, 234,235U, 227,229,231Np, 235,236,237Np, 229,230Pu, 233Pu, 236,237Pu, 239,241Pu, 242Pu, 235Am, 239,240,241Am, 243Am, 239,240,241Cm, 243,245Cm, 246,247Cm, 243,244,245Bk, 247,249Bk, 237Cf, 244Cf, 247,249Cf, 250,251Cf, 253Cf, 245,246Es, 252,254Es, 255Es, 243,245Fm, 246Fm, 247,249,251Fm, 252,253Fm, 255,257Fm, 247,249,251Md, 255,256,257,258Md, 252,253No, 255,257,259No, 255,257,259Lr(α); calculated T1/2. Comparison with experimental data.

doi: 10.1142/S0218301321500130
Citations: PlumX Metrics


2021MA28      Can.J.Phys. 99, 353 (2021)

H.C.Manjunatha, L.Seenappa, K.N.Sridhar

Pocket formula for incoherent scattering cross section

NUCLEAR REACTIONS H, Li, C, N, O, 19F, 23Na, Mg, 27Al, 31P, S, Cl, K, Cr, Mg, Ni, Cu, Br, Rb, Sr, Zr(γ, γ'), E=661.6, 1115.5 keV; calculated σ. Comparison with available data.

doi: 10.1139/cjp-2020-0286
Citations: PlumX Metrics


2021MA57      Phys.Rev. C 104, 024622 (2021)

H.C.Manjunatha, P.S.Damodara Gupta, N.Sowmya, L.Seenappa, N.Manjunatha

Systematics of heavy ion fusion with entrance channel and deformation parameters

NUCLEAR REACTIONS 169Tm(13C, 5n)176Re, E*=59.3 MeV; 165Ho(16O, 5n)176Re, E*=63.3 MeV; 181Ta(9Be, 4n)186Ir, E*=48.5 MeV; 170Eu(30Si, 5n)195Ir, E*=96.5 MeV; 169Tm(16O, 3n)182Ir, E*=47.9 MeV; 187Re(α, n)190Ir, E*=11.7 MeV; 186W(9Be, 5n)190Pt, E*=56.7 MeV; 187Re(9Be, 5n)191Au, E*=50.8 MeV; 197Au(6He, 5n)198Tl, E*=55.2 MeV; 194Pt(6Li, 4n)196Tl, E*=47 MeV; 181Ta(16O, 5n)192Tl, E*=63.7 MeV; 181Ta(19F, 5n)195Pb, E*=63.4 MeV; 208Pb(α, 2n)210Po, E*=27.4 MeV; 198Pt(12C, 5n)205Po, E*=57 MeV; 164Dy(40Ar, 5n)199Po, E*=76.2 MeV; 154Gd(48Ca, 4n)198Po, E*=51.2 MeV; 209Bi(α, 3n)210At, E*=34 MeV; 208Pb(9Li, 5n)212At, E*=54.9 MeV; 197Au(12C, 5n)204At, E*=58.5 MeV; 192Os(19F, 6n)205At, E*=70.8 MeV; 205Tl(9Be, 4n)210At, E*=44.7 MeV; 159Tb(48Ca, 5n)202At, E*=53.6 MeV; 165Ho(40Ar, 4n)201At, E*=47.7 MeV; 209Bi(6Li, 5n)210Rn, E*=60 MeV; 208Pb(9Be, 5n)212Rn, E*=56.7 MeV; 190Os(22Ne, 7n)205Rn, E*=77 MeV; 162Dy(48Ca, 5n)205Rn, E*=48 MeV; 160Gd(50Ti, 5n)205Rn, E*=49.1 MeV; 209Bi(11Be, 4n)216Fr, E*=52.9 MeV; 169Tm(40Ar, 4n)205Fr, E*=47.6 MeV; 205Tl(12C, 4n)213Fr, E*=47.9 MeV; 197Au(18O, 5n)210Fr, E*=53.8 MeV; 165Ho(48Ca, 5n)208Fr, E*=55.8 MeV; 159Tb(50Ti, 4n)205Fr, E*=43.1 MeV; 209Bi(11B, 4n)216Ra, E*=44 MeV; 198Pt(22Ne, 6n)214Ra, E*=64.1 MeV; 174Yb(40Ar, 5n)209Ra, E*=20.9 MeV; 162Dy(50Ti, 3n)209Ra, E*=41.3 MeV; calculated Coulomb interaction parameter, mean fissility, charge and mass asymmetry, deformation parameter β2, and evaporation residue σ for synthesis of the pre-actinide nuclei using advanced statistical model (ASM) and dinuclear system model (DNS) models. Comparison with experimental data.

NUCLEAR REACTIONS 209Bi(12C, 6n)215Ac, E*=53.1 MeV; 197Au(22Ne, 5n)214Ac, E*=62.8 MeV; 175Lu(40Ar, 6n)209Ac, E*=68.2 MeV; 208Pb(16O, 3n)221Th, E*=31.5 MeV; 173Yb(48Ca, 4n)217Th, E*=46.6 MeV; 172Yb(48Ca, 4n)216Th, E*=45.7 MeV; 180Hf(40Ar, 4n)216Th, E*=49.4 MeV; 96Zr(124Sn, 4n)216Th, E*=48 MeV; 179Hf(40Ar, 4n)215Th, E*=38.9 MeV; 178Hf(40Ar, 5n)213Th, E*=44.8 MeV; 94Zr(124Sn, 3n)215Th, E*=37.1 MeV; 177Hf(40Ar, 4n)213Th, E*=39.2 MeV; 92Zr(124Sn, 3n)213Th, E*=31.7 MeV; 90Zr(124Sn, 3n)211Th, E*=38.4 MeV; 92Zr(124Sn, n)215Th, E*=23.6 MeV; 182W(32S, 4n)210Th, E*=53.1 MeV; 90Zr(124Sn, n)213Th, E*=22.6 MeV; 181Ta(40Ar, 4n)217Pa, E*=39.8 MeV; 208Pb(22Ne, 4n)226U, E*=37.2 MeV; 180Hf(48Ca, 3n)225U, E*=36.8 MeV; 238U(α, n)241Pu, E*=39.9 MeV; 235U(α, 2n)237Pu, E*=19.8 MeV; 234U(α, 2n)236Pu, E*=19.5 MeV; 233U(α, 2n)235Pu, E*=22.7 MeV; 184W(48Ca, 3n)229Pu, E*=31.2 MeV; 237Np(α, 2n)239Am, E*=21.5 MeV; 207Pb(34S, 3n)238Cf, E*=35.7 MeV; 207Pb(36S, 3n)240Cf, E*=32.1 MeV; 197Au(48Ca, 2n)243Es, E*=32.2 MeV; 238U(16O, 5n)249Fm, E*=50.2 MeV; 208Pb(48Ca, 2n)254No, E*=23.1 MeV; 246Cm(12C, 4n)254No, E*=41.2 MeV; 207Pb(48Ca, 2n)253No, E*=23.6 MeV; 248Cm(13C, 4n)257No, E*=38.7 MeV; 248Cm(12C, 4n)256No, E*=41.8 MeV; 246Cm(13C, 4n)255No, E*=42.3 MeV; 206Pb(48Ca, 2n)252No, E*=24.3 MeV; 244Cm(13C, 4n)253No, E*=41.4 MeV; 204Pb(48Ca, 2n)250No, E*=24, 25.4 MeV; 207Pb(48Ca, 2n)253No, E*=24.2 MeV; 209Bi(48Ca, 2n)255Lr, E*=22.9 MeV; calculated Coulomb interaction parameter, mean fissility, charge and mass asymmetry, deformation parameter β2, and evaporation residue σ for synthesis of the actinide nuclei using advanced statistical model (ASM) and dinuclear system model (DNS) models. Comparison with experimental data.

NUCLEAR REACTIONS 208Pb(50Ti, 2n)256Rf, E*=24.3 MeV; 248Cm(16O, 5n)259Rf, E*=53.58 MeV; 209Bi(50Ti, n)258Db, E*=15.8 MeV; 248Cm(19F, 5n)262Db, E*=55.4 MeV; 208Pb(54Cr, n)261Sg, E*=16.1 MeV; 248Cm(22Ne, 5n)265Sg, E*=54.9 MeV; 238U(30Si, 5n)263Sg, E*=40.5 MeV; 209Bi(54Cr, n)262Bh, E*=16.9 MeV; 208Pb(58Fe, n)265Hs, E*=16.1 MeV; 248Cm(26Mg, 5n)269Hs, E*=57 MeV; 238U(34S, 5n)267Hs, E*=57.6 MeV; 209Bi(58Fe, n)266Mt, E*=15.5 MeV; 208Pb(64Ni, n)271Ds, E*=18.1 MeV; 208Pb(62Ni, n)269Ds, E*=15.6 MeV; 209Bi(64Ni, n)272Rg, E*=13.1 MeV; 238U(48Ca, 3n)283Cn, E*=37.8 MeV; 208Pb(70Zn, n)277Cn, E*=10 MeV; 237Np(48Ca, 3n)282Nh, E*=46.9 MeV; 209Bi(70Zn, n)278Nh, E*=16.9 MeV; 244Pu(48Ca, 4n)288Fl, E*=41 MeV; 242Pu(48Ca, 4n)286Fl, E*=42.9 MeV; 240Pu(48Ca, 4n)284Fl, E*=49 MeV; 239Pu(48Ca, 3n)284Fl, E*=46.4 MeV; 243Am(48Ca, 3n)288Mc, E*=45 MeV; 248Cm(48Ca, 4n)292Lv, E*=46.9 MeV; 249Bk(48Ca, 4n)293Ts, E*=65.7 MeV; 249Cf(48Ca, 3n)294Og, E*=38.8 MeV; calculated Coulomb interaction parameter, mean fissility, charge and mass asymmetry, deformation parameter β2, and evaporation residue σ for synthesis of superheavy nuclei using advanced statistical model (ASM) and dinuclear system model (DNS) models. Comparison with experimental data.

doi: 10.1103/PhysRevC.104.024622
Citations: PlumX Metrics


2021NA21      Nucl.Phys. A1015, 122306 (2021)

A.M.Nagaraja, H.C.Manjunatha, N.Sowmya, L.Seenappa, P.S.Damodara Gupta, N.Manjunatha, S.A.Cecil Raj

Heavy particle radioactivity of superheavy element Z = 126

RADIOACTIVITY 221Fr, 221,222,223,224,226Ra, 225Ac(14C), 228Th(20O), 230U(22Ne), 230Th, 231Pa, 232,233U(24Ne), 234U(26Ne), 234U, 236,238Pu(28Mg), 238Pu(30Mg), 238Pu(32Si), 242Cm(34Si), 306,307,308,309,310,311,312,313,314,315,316,317,318,319,320,321,322,323,324,325,326126(α), (β+), (SF); analyzed available data; calculated T1/2.

doi: 10.1016/j.nuclphysa.2021.122306
Citations: PlumX Metrics


2021SO21      Phys.Part. and Nucl.Lett. 18, 177 (2021)

N.Sowmya, H.C.Manjunatha, P.S.Damodara gupta

Decay Properties of Superheavy Nuclei 269-290Fl

RADIOACTIVITY 269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288,289,290Fl(α); calculated T1/2 using the coulomb and proximity potential model (CPPM), generalized liquid drop model (GLDM), temperature dependent dynamical cluster model(DCM). Comparison with available data.

doi: 10.1134/S1547477121020199
Citations: PlumX Metrics


2021SR02      Int.J.Mod.Phys. E30, 2150094 (2021)

G.R.Sridhara, H.C.Manjunatha, N.Sowmya, P.S.Damodara Gupta

A study of alpha-decay using effective liquid drop model

RADIOACTIVITY 145Pm, 146,147Sm, 147,148Eu, 149,150,151,152Gd, 149Tb, 150Dy, 151Tb, 151,152,153,154Dy, 151,152,153,154Ho, 152,153,154,155,156Er, 153,154,155,156Tm, 154,155,156,157,158Yb, 155,156,157,158Lu, 156,157,158,159,160Hf, 162Hf, 174Hf, 157,158,159Ta, 163Ta, 158W, 171,172,173,174,175,176,177,178,179,180,181,182,183,184Pt, 186,188,190Pt, 170,171Au, 173Au, 175,176,177Au, 179,181,183,185Au, 186Au, 171,172,173,174Hg, 176,177,178,179,180,181,182,183,184,185,186Hg, 188Hg, 177Tl, 179,180,181Tl, 183Tl, 186,187Tl, 209,210,211,212,213,214,215,216Po, 218,219Po, 191,192,193,194,195At, 197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213At, 215At, 217,218,219,220At, 193,194,195,196,197Rn, 200Rn, 202,203,204,205,206,207,208,209,210,211Rn, 210Ac, 214Ac, 216Ac, 220Ac, 223,224,225,226Ac, 209Th, 211Th, 215Th, 217,218Th, 221Th, 223Th, 225,226,227Th, 229Th, 232Th, 224,225Pa, 228,229,230Pa, 219U, 223,225,227U, 228U, 231U, 234,235U, 227Np, 229Np, 231Np, 235,236,237Np, 229,230Pu, 233Pu, 236,237Pu, 239Pu, 241,242Pu, 235Am, 239,240Am, 257Rf, 259Rf, 263Rf, 255,256,257,258,259,260,261,262Db, 259,260,261Sg, 265Sg, 269Sg, 271Sg, 260,261,262Bh, 264Bh, 266,267Bh, 270Bh, 274Bh, 264,265,266,267,268,269Hs(α); calculated T1/2. Comparison with available data.

doi: 10.1142/S0218301321500944
Citations: PlumX Metrics


2021VI07      Int.J.Mod.Phys. E30, 2150078 (2021)

Y.S.Vidya, H.C.Manjunatha, P.S.Damodara Gupta

An attempt to construct semi-empirical formula for angular momentum-dependent fission barriers of actinides

NUCLEAR STRUCTURE 232Th, 230,231,232,233,234Pa, 231,232,233,234,235,236,237,238,239U, 236,237,238Np, 237,238,239,240,241,242,243,244,245Pu, 243Cm, 249Cm; analyzed available data; deduced a new semi-empirical formula for angular momentum-dependent fission barriers of actinides.

doi: 10.1142/S0218301321500786
Citations: PlumX Metrics


2020MA24      Z.Naturforsch. 75, 501 (2020)

H.C.Manjunatha, G.R.Sridhar, P.S.Damodara Gupta, H.B.Ramalingam, V.H.Doddamani

Pocket formula for alpha decay energies and half-lives of actinide nuclei

NUCLEAR STRUCTURE Z>88; analyzed available data; deduced formula for α-decay T1/2.

doi: 10.1515/zna-2020-0023
Citations: PlumX Metrics


2020MA29      Int.J.Mod.Phys. E29, 2050028 (2020)

H.C.Manjunatha, N.Sowmya, N.Manjunath, L.Seenappa

Investigations on the superheavy nuclei with magic number of neutrons and protons

RADIOACTIVITY 298,310Fl, 306,318122, 308,310124, 310,322126(α), (β-), (β+), (SF), (11B), (12C), (14N), (16O), (19F), (20Ne), (23Na), (24Mg), (27Al), (28Si), (31P), (34S), (35Cl), (40Ar), (39K), (40Ca); calculated T1/2. Comparison with available data.

doi: 10.1142/S0218301320500287
Citations: PlumX Metrics


2020MA51      Int.J.Mod.Phys. E29, 2050061 (2020)

H.C.Manjunatha, N.Manjunatha, L.Seenappa

Investigations on the study of entrance channel effects in synthesis of superheavy elements using Cr-induced fusion reactions

NUCLEAR STRUCTURE 232,234,236,238Lv, 235,236,237,238,239Ts, 238,239,240,241,242,243,244Og, 242,243119, 240,241,242,243,244,245,246,247,248,249,250120, 243,245,247,249,251121, 246,247,248,249,250,251,252,253,254122, 252,253,254,255123; calculated compound nucleus formation probability using Cr-induced fusion reactions.

doi: 10.1142/S0218301320500615
Citations: PlumX Metrics


2020MA62      Phys.Rev. C 102, 064605 (2020)

H.C.Manjunatha, N.Sowmya, N.Manjunatha, P.S.Damodara Gupta, L.Seenappa, K.N.Sridhar, Ganesh, T.Nandi

Entrance channel dependent hot fusion reactions for superheavy element synthesis

NUCLEAR REACTIONS 208Pb(62Ni, n)269Ds, 251Cf(25Mg, 4n)272Ds, 249,253Bk(26Al, 5n)270Ds/274Ds, 209Bi(64Ni, n)272Rg, 234Th(48Sc, 3n)279Rg, 248Cm(33P, 4n)277Rg, 242Pu(37Cl, 4n)275Rg, 238U(40K, 5n)273Rg, 208Pb(70Zn, n)277Cn, 242Pu(42Ar, 3n)281Cn, 238U(47Ca, 3n)282Cn, 249Bk(33P, 4n)278Cn, 209Bi(70Zn, n)278Nh, 254Cf(31P, 4n)281Nh, 250Cm(37Cl, 4n)283Nh, 252Cf(32P, 4n)280Nh, 253Cf(33P, 4n)282Nh, 249Bk(33S, 5n)277Nh, 244Pu(48Ca, 3n)289Fl, 240Pu(43Ca, 3n)280Fl, 246Cm(36Ar, 4n)278Fl, 243Am(48Ca, 3n)288Mc, 244Pu(46Sc, 3n)287Mc, 246Bk(38Ar, 3n)281Mc, 240Pu(48Sc, 3n)285Mc, 236U(51V, 3n)284Mc, 248Cm(48Ca, 4n)292Lv, 249Cf(36Ar, 3n)282Lv, 240Cm(41Ca, 3n)278Lv, 252Cf(36Ar, 4n)284Lv, 249Bk(48Ca, 4n)293Ts, (48Ca, 3n)294Ts, 243Bk(46Ca, 2n)287Ts, 248Bk(48Ca, 3n)293Ts, 249Cf(48Ca, 3n)294Og, 244Pu(52Cr, 3n)293Og, 252Cf(47Ca, 3n)296Og, 253Cf(40Ca, 5n)288Og, 250Cm(50V, 3n)297119, 239Pu(53Mn, 3n)289119, 249Cf(44Ti, n)292120, (47Ti, n)295120, (50Ti, n)298120, 239Np(64Ni, 2n)301121, 252Cf(48V, 3n)297121, 253Cf(49V, 3n)299121, 225Rn(85Kr, X)310122, 223At(86Rb, n)308122, 239Pa(76Ge, n)314123, 242Np(72Zn, n)313123, 240Np(64Zn, 2n)302123, 232Th(71As, 2n)301123, 242,244Pu(72Zn, n)313124/315124, 227Ac(85Kr, n)311125, 245Bk(58Ni, n)302125, 249Bk(66Ni, n)314125, 247Bk(60Ni, n)305125, 232Th(83Kr, X)315126, (82Kr, X)314126, E not given; Z=5-40, A=10-96 projectiles; Z=72-114, A=180-290 targets; calculated evaporation residue fusion cross sections in 6645 different projectile-target combinations for synthesis of Z=110-126 superheavy nuclei, and their dependence on entrance channel effects of mass asymmetry, charge asymmetry, isospin asymmetry, Coulomb charge, Coulomb interaction parameter, mean fissility, and Businaro-Gallone mass asymmetry; compared with available experimental data. 266,270,272,274,276,278,280Ds, 278,280,282,284,286Cn, 272,274,276,278,280,282Fl, 276,278,280,282,284,286,288,290,292,294Lv, 292,294,296,298,300Og, 286,288,290,292,294,296,298,300,302,304120, 308,310,312,314122, 314,316,318124, 318,320126; calculated evaporation residue cross sections in fusion reactions as function of the mass asymmetry parameter.

NUCLEAR REACTIONS 231U(36Ar, X)267Ds, 208Pb(61Ni, X)269Ds, 232U(38Ar, X)270Ds, 249Bk(26Al, X)275Ds, 251Cf(25Mg, X)276Ds, 253Cf(24Mg, X)277Ds, 252Cf(26Mg, X)278Ds, 253,254Bk(26Al, X)279Ds/280Ds, 254Bk(27Al, X)281Ds, 248Cf(26Al, X)274Rg, 231Pa(44Ca, X)275Rg, 239Pu(37Cl, X)276Rg, 236U(41K, X)277Rg, 238U(40K, X)278Rg, 242Pu(37Cl, X)279Rg, 253Cf(27Al, X)280Rg, 248,250Cm(33P, X)281Rg/283Rg, 234Th(48Sc, X)282Rg, 239Np(39K, X)278Cn, 243Pu(36Ar, X)279Cn, 250Cf(30Si, X)280Cn, 248Cm(33S, X)281Cn, 249Bk(33P, X)282Cn, 253Cf(30Si, X)283Cn, 242Pu(42Ar, X)284Cn, 238U(37Ca, X)285Cn, 254Cf(32Si, X)286Cn, 212Bi(67Zn, X)279Nh, 226Ac(54Cr, X)280Nh, 249Bk(33S, X)282Nh, 235U(48Sc, X)283Nh, 252Cf(32P, X)284Nh, 254Cf(31P, X)285Nh, 253Cf(33P, X)286Nh, 250Cm(37Cl, X)287Nh, 219,220Rn(58Ni, X)277Fl/278Fl, 217At(63Cu, X)280Fl, 226Ac(55Mn, X)281Fl, 246Cm(36Ar, X)282Fl, 240Pu(43Ca, X)283Fl, 246Bk(38Ar, X)284Mc, 236U(51V, X)287Mc, 249Pu(48Sc, X)288Mc, 242,244Pu(47Sc, X)289Mc/291Mc, 244Pu(46Sc, X)290Mc, 240,242,243Cm(40Ca, X)280Lv/282Lv/283Lv, 240Cm(41Ca, X)281Lv, 248,249,250,252,253Cf(36Ar, X)284Lv/285Lv/286Lv/288Lv/289Lv, 250Cf(37Ar, X)287Lv, 243Bk(46Ca, X)289Mc, 242Am(49Ti, X)291Mc, 252Bk(42Ca, X)294Mc, 248Bk(48Ca, X)296Mc, 239Pu(53Cr, X)292Og, 253Cf(40Ca, X)293Og, 250Cf(44Ca, X)294Og, 230Ac(65Cu, X)295Og, 244Pu(52Cr, X)296Og, 238U(59Fe, X)297Og, 250Bk(48Sc, X)298Og, 252Cf, 254Bk(47Ca, X)299Og/301Og, 198Pt(91Nb, X)289119, 207Bi(83Kr, X)290119, 241Am(50Cr, X)291119, 248Bk(44Ti, X)292119, 227Ac(66Zn, X)293119, 229Th(65Cu, X)294119, 236U(59Co, X)295119, 243Am(53Cr, X)296119, 238U(60Co, X)298119, 250Cm(50V, X)300119, (51V, X)301119, 209Po(78Kr, 2n)285120, 202Pb(86Sr, 2n)286120, 232U(59Ni, 4n)287120, 209Po(81Kr, 2n)288120, 232Po(58Ni, n)289120, 204Pb(87Sr, n)290120, 228Pu(64Fe, n)291120, 249Cf(44Ti, n)292120, (47Ti, n)295120, (50Ti, n)298120, 244Cm(50Cr, n)293120, 242Am(53Mn, n)294120, 210Bi(87Rb, n)296120, 247Bk(51V, n)297120, 246Cm(54Cr, n)299120, 229Th(72Zn, n)300120, 226Ra(76Ge, n)301120, 250Cm(53Cr, n)302120, 246Bk(53Cr, X)299121, 252Cf(48V, X)300121, 228Ra(73As, X)301121, 250Cm(52Mn, X)302121, 239Np(64Ni, X)303121, 233Pa(71Zn, X)304121, 253Cf(54Cr, n)306122, 230Ra(78Se, n)307122, 223At(86Rb, n)308122, 228Rn(83Kr, 2n)309122, 225Rn(85Kr, X)310122, 226Ac(86As, n)311122, 234Ra(80Se, 2n)312122, 230Rn(84Kr, n)313122, 232Th(71As, n)302123, 240Pu(67Zn, 4n)303123, 214Bi(92Zr, n)305123, 213Pb(94Nb, n)306123, 241Pu(67Cu, n)307123, 214Bi(96Zr, 2n)308123, 228Ra(85Kr, n)312124, 242,244Pu(72Zn, n)313124/315124, 228,230Rn(87Sr, n)314124/316124, 245,246,247Bk(58Ni, X)303125/304125/305125, 247Bk(60Ni, X)307125, 239Np(69Ge, n)308125, 243Am(66Zn, X)309125, 242Am(68Zn, X)310125, 246Cm(65Cu, X)311125, 249Bk(66Ni, X)315125, 232Th(82Kr, X)314126, (83Kr, X)315126, (84Kr, X)316126, (86Kr, X)318126, E not given; calculated fusion evaporation residue σ for suitable projectile-target combinations to synthesize Z=110-126 superheavy nuclei. 208Pb(40Ca, X), (48Ti, X), (52Cr, X), (56Fe, X), (59Ni, X), (65Zn, X), 209Bi(45Ca, X), (51Ti, X), (52Cr, X), (59Ni, X), (65Zn, X), E not given; calculated evaporation residue σ for the synthesis of Z=102-113 elements in cold fusion reactions, and compared with experimental data. 208Pb, 226Ra, 238U, 237Np, 244Pu, 243Am, 247Cm, 247Bk, 251Cf(48Ca, X), E not given; calculated evaporation residue σ for the synthesis of Z=112-118 elements in hot fusion reactions, and compared with experimental data. 232Th(82Kr, X)314126; calculated large evaporation residue cross sections as high as 31 nb.

RADIOACTIVITY 283Cn, 279Ds, 275Hs, 271Sg, 267Rf, 263No, 259Fm, 255Cf, 247,251Bk, 243Am, 239Pu, 235Np(α); 251Cm, 247Am, 239Np, 235U(β-); 291Lv, 287Fl, 283Cn, 279Ds, 275Hs, 271Sg, 267Rf, 263No, 259Fm, 255Cf, 247,251Bk, 243Am, 239Pu, 235Np(α); 251Cm, 247Am, 239Np, 235U(β-); 296119, 292Ts, 288Mc, 284Nh, 280Rg, 276Mt, 272Bh, 268Db, 264Lr, 260Md, 256Es, 252Cf, 248Bk, 244Cm, 240Pu, 236Pu(α); 252Bk, 248Cm, 244Am, 236U(β-); 295Og, 291Lv, 287Fl, 283Cn, 279Ds, 275Hs, 271Sg, 267Rf, 263No, 259Fm, 255Cf, 247,251Bk, 243Am, 239Pu, 235Np(α); 251Cm, 247Am, 239Np, 235U(β-); 299120, 295Og, 291Lv, 287Fl, 283Cn, 279Ds, 275Hs, 271Sg, 267Rf, 263No, 259Fm, 255Cf, 247,251Bk, 243Am, 239Pu, 235Np(α); 251Cm, 247Am, 239Np, 235U(β-); predicted decay chains of 283Cn (Z=112), 291Lv (Z=116), 295Og (Z=118), 296119 (Z=119), and 299120 (Z=120).

doi: 10.1103/PhysRevC.102.064605
Citations: PlumX Metrics


2020MA64      Phys.Atomic Nuclei 17, 909 (2020)

H.C.Manjunatha, M.G.Srinivas, N.Sowmya, P.S.Damodara Gupta, A.Cecil Raj

Proton Radioactivity of Heavy Nuclei of Atomic Number Range 72 < Z < 88

NUCLEAR STRUCTURE Z=72-88; calculated proton radioactivity of heavy nuclei, energy released during the proton decay and T1/2. Comparison with available data, checks of the Geiger-Nuttall law for proton decay.

doi: 10.1134/S1547477120070043
Citations: PlumX Metrics


2020NA35      Eur.Phys.J.Plus 135, 814 (2020)

A.M.Nagaraja, H.C.Manjunatha, N.Sowmya, N.Manjunath, S.A.Cecil Raj

Cluster radioactivity of superheavy nuclei 290-310120 using different proximity functions

RADIOACTIVITY 290,291,292,293,294,295,296,297,298,299,300,301,302,303,304,305,306,307,308,309,310120(α), (6Li), (9Be), (20Ne), (21Ne), (22Ne), (23Na), (25Mg), (26Mg), (28Si), (29Si), (30Si), (31P), (32Si), (33S), (34S), (35Cl), (36Ar), (39K), (40Ar), (42Ca), (43Ca), (44Ca), (46Ca); calculated T1/2. Comparison with available data.

doi: 10.1140/epjp/s13360-020-00834-6
Citations: PlumX Metrics


2020SO25      Int.J.Mod.Phys. E29, 2050087 (2020)

N.Sowmya, H.C.Manjunatha, P.S.Damodara Gupta

Competition between decay modes of superheavy nuclei 281-310Og

RADIOACTIVITY 281,282,283,284,285,286,287,288,289,290,291,292,293,294,295,296,297,298,299,300,301,302,303,304,305,306,307,308,309,310Og(α), (12C), (14N), (16O), (22Ne), (24Mg), (28Si), (32S), (40Ar), (40Ca); calculated T1/2. Comparison with available data.

doi: 10.1142/S0218301320500871
Citations: PlumX Metrics


2020SR01      Nucl.Phys. A995, 121689 (2020)

M.G.Srinivas, H.C.Manjunatha, K.N.Sridhar, N.Sowmya, A.Cecil Raj

Proton decay of actinide nuclei

doi: 10.1016/j.nuclphysa.2019.121689
Citations: PlumX Metrics


2019MA01      Nucl.Phys. A981, 17 (2019)

H.C.Manjunatha, K.N.Sridhar, H.B.Ramalingam

Synthesis of superheavy elements using 50, 51V-induced fusion reactions

NUCLEAR STRUCTURE 168Ta; calculated proton, neutron sp levels near Fermi surface, energy, J, π, occupation probability of orbitals, kinematic high spin rotational bands, band crossings, moment of inertia, major shells using PNC-CSM (Particle Number Conserving) method - Cranking Shell Model. High-spin rotational bands compared to data.

doi: 10.1016/j.nuclphysa.2018.10.084
Citations: PlumX Metrics


2019MA39      Nucl.Phys. A987, 382 (2019)

H.C.Manjunatha, K.N.Sridhar, N.Sowmya

Investigations on 64Ni + ZAnAZ=104-123(SHN)A=250-310

NUCLEAR REACTIONS 192Os, 193Ir, 194,195,196Pt, 197,198Au, 202Hg, 204,205Tl, 207,208Pb, 209Bi, 209Po, 223,226Ra, 225,227Ac, 230,232Th, 231Pa, 232,238U, 235,237Np, 239Pu, 241,243Am(64Ni, x), E*=35 MeV;(64Ni, xn), E*=20-45 MeV; calculated compound nucleus formation probability and yields of superheavies for Ni projectiles, evaporation residue elements σER for x=3, 4 and 5; identified suitable targets for synthesis of superheavy elements using 64Ni fusion reactions.

doi: 10.1016/j.nuclphysa.2019.05.006
Citations: PlumX Metrics


2019MA86      Phys.Part. and Nucl.Lett. 16, 647 (2019)

H.C.Manjunatha, K.N.Sridhar

A Detail Investigation on the Synthesis of Superheavy Element Z = 119

doi: 10.1134/s1547477119060487
Citations: PlumX Metrics


2019SR01      Nucl.Phys. A983, 195 (2019)

K.N.Sridhar, H.C.Manjunatha, H.B.Ramalingam

Studies on the synthesis superheavy element Z = 120

RADIOACTIVITY 290,291,292,293,294,295,296,297,298,299,300,301,302,303,304120 (SF), (α); calculated T1/2 of both α-decay and spontaneous fission using Coulomb potential plus proximity potential; calculated decay chains and maximum evaporation residue σ for different projectile-target combinations, proper E* and different neutron evaporation channels to achieve maximal σ; deduced superheavy σ, most probable projectile-target combination to synthetize superheavy Z=120 is Ti+Cf. Halflives and σ compared to available data.

doi: 10.1016/j.nuclphysa.2018.11.032
Citations: PlumX Metrics


2019SR04      Pramana 93, 81 (2019)

G.R.Sridhara, H.C.Manjunatha, K.N.Sridhar, H.B.Ramalingam

Systematic study of the α decay properties of actinides

RADIOACTIVITY 211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238Ac, 214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236Th, 217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240Pa, 219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245U, 221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245Np, 228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245Pu, 228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250Am, 233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251Cm, 255Cm, 234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252Bk, 238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255Cf, 241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258Es, 243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258Fm, 246,247,248,249,250,251,252,253,254,255,256,257,258,259Md, 246,247,248,249,250,251,252,253,254,255,256,257,258,259,260No, 251,252,253,254,255,256,257,258,259,260,261,262Lr(α); calculated T1/2. Comparison with available data.

RADIOACTIVITY 210Ac, 200,201,202,203,204,205,206,207,208,209,210,211,212,213Th, 200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216Pa, 210,211,212,213,214,215,216,217,218U, 215,216,217,218,219,220Np, 220,221,222,223,224,225,226,227Pu, 226,227Am, 252,253,254Cm, 230,231,232,233Bk, 253,254,255Bk, 230,231,232,233,234,235,236,237Cf, 235,236,237,238,239,240Es, 259,260Es, 235,236,237,238,239,240,241,242Fm, 259,260Fm, 240,241,242,243,244,245Md, 260Md, 245No, 261,262,263,264,265No, 245,246,247,248,249,250Lr, 263,264,265Lr(SF); calculated T1/2. Comparison with available data.

doi: 10.1007/s12043-019-1845-9
Citations: PlumX Metrics


2018MA01      Nucl.Phys. A969, 68 (2018)

H.C.Manjunatha, N.Sowmya

Competition between spontaneous fission ternary fission cluster decay and alpha decay in the super heavy nuclei of Z = 126

RADIOACTIVITY 318,319,320,323,324,325,326126(SF), (α)[and also cluster decay]; calculated binary fission, ternary fission (α-particle as the third fragment) T1/2 vs fragment mass, T1/2 of cluster (12,13,14C, 14N, 20,21,22,23,24Ne, 28,29,30,31,32,33,34Si, 36,37,38,39,40,41,42,43,44Ar, 40,41,42,43,44,45,46,47,48Ca) emission T1/2, decay constant, other cluster decay characteristics, α-decay branching ratio with respect to spontaneous fission, ternary fission and cluster decay, T1/2 for α-decay, spontaneous fission, ternary fission and cluster decay.

doi: 10.1016/j.nuclphysa.2017.09.008
Citations: PlumX Metrics


2018MA19      Nucl.Phys. A971, 83 (2018)

H.C.Manjunatha, K.N.Sridhar

Fusion barrier characteristics of actinides

NUCLEAR STRUCTURE Z=89-103; calculated fusion barrier parameters (position, height, width) by using data of more than 7000 different combinations of projectile and target leading to the same composite system; deduced parameters, fusion σ formula. Compared with other parameterizations and with data.

doi: 10.1016/j.nuclphysa.2018.01.016
Citations: PlumX Metrics


2018MA29      Pramana 90, 62 (2018)

H.C.Manjunatha, N.Sowmya

Parametrisation of the experimental fusion-fission cross-sections

NUCLEAR STRUCTURE Z=72-88; analyzed available data; deduced compound nucleus fusion-fission σ.

doi: 10.1007/s12043-018-1553-x
Citations: PlumX Metrics


2018MA30      Int.J.Mod.Phys. E27, 1850041 (2018)

H.C.Manjunatha, N.Sowmya

Decay modes of superheavy nuclei Z=124

NUCLEAR STRUCTURE 313,314,315,316,317,318124; calculated driving potential for spontaneous and ternary fission as a function of the mass number of fragment, energy released, T1/2 for cluster emissions.

doi: 10.1142/S0218301318500416
Citations: PlumX Metrics


2018MA31      Nucl.Phys. A975, 136 (2018)

H.C.Manjunatha, K.N.Sridhar

Investigation to synthesis more isotopes of superheavy nuclei Z=118

RADIOACTIVITY 291,293,295,297,299,301Og(α); calculated T1/2, α-decay chains (ending with Og(SF) nuclei).

NUCLEAR REACTIONS Cf(Ca, x), Cm(Ti, x), Bk(Sc, x), Am(V, x), Pu(Cr, x), U(Fe, x), Np(Mn, x), Th(Ni, x), Pb(Kr, x); calculated simple relations for maximum evapopration residue σ and the corresponding energy, reaction Q-values, nucleon separation energy, fusion barriers, evaporation residue σ vs projectile mass number, maximum evaporation σ, compound nucleus formation probability, survival probability, α-decay chains (ending with Og(SF) nuclei); deduced parameters.

doi: 10.1016/j.nuclphysa.2018.04.009
Citations: PlumX Metrics


2018MA50      Phys.Rev. C 98, 024308 (2018)

H.C.Manjunatha, K.N.Sridhar, N.Sowmya

Investigations of the synthesis of the superheavy element Z=122

NUCLEAR REACTIONS 250Cm(57Fe, X)307122*, E(cm)=288 MeV; 247Cm(60Fe, X)307122*, E(cm)=287 MeV; 244Pu(63Ni, X)307122*, E(cm)=302 MeV; 235U(72Zn, X)307122*, E(cm)=314 MeV; 228Ra(79Se, X)307122*, E(cm)=339 MeV; 250Cm(58Fe, X)308122*, E(cm)=284 MeV; 248Cm(60Fe, X)308122*, E(cm)=283 MeV; 244Pu(64Ni, X)308122*, E(cm)=297 MeV; 238U(70Zn, X)308122*, E(cm)=310 MeV; 236U(72Zn, X)308122*, E(cm)=310 MeV; 232Th(76Ge, X)308122*, E(cm)=322 MeV; 228Ra(80Se, X)308122*, E(cm)=334 MeV; 226Ra(82Se, X)308122*, E(cm)=334 MeV; 256Cf(53Cr, X)309122*, E(cm)=266 MeV; 255Cf(54Cr, X)309122*, E(cm)=266 MeV; 252Cm(57Fe, X)309122*, E(cm)=281 MeV; 251Cm(58Fe, X)309122*, E(cm)=281 MeV; 250Cm(59Fe, X)309122*, E(cm)=281 MeV; 249Cm(60Fe, X)309122*, E(cm)=280 MeV; 243Pu(66Ni, X)309122*, E(cm)=294 MeV; 239U(70Zn, X)309122*, E(cm)=308 MeV; 237U(72Fe, X)309122*, E(cm)=307 MeV; 233Th(76Ge, X)309122*, E(cm)=320 MeV; 230Ra(79Se, X)309122*, E(cm)=332 MeV; 227Ra(82Se, X)309122*, E(cm)=331 MeV; 256Cf(54Cr, X)310122*, E(cm)=263 MeV; 252Cm(58Fe, X)310122*, E(cm)=278 MeV; 251Cm(59Fe, X)310122*, E(cm)=278 MeV; 250Cm(60Fe, X)310122*, E(cm)=278 MeV; 244Pu(66Ni, X)310122*, E(cm)=291 MeV; 238U(72Zn, X)310122*, E(cm)=304 MeV; 234Th(76Ge, X)310122*, E(cm)=317 MeV; 235Ac(75As, X)310122*, E(cm)=324 MeV; 230Ra(80Se, X)310122*, E(cm)=329 MeV; 228Ra(82Se, X)310122*, E(cm)=328 MeV; (60Fe, X)311122*, E(cm)=277 MeV; 239U(72Zn, X)311122*, E(cm)=303 MeV; 236Ac(75As, X)311122*, E(cm)=323 MeV; 235Ac(76As, X)311122*, E(cm)=323 MeV; 234Ac(77As, X)311122*, E(cm)=322 MeV; 234Ra(77Se, X)311122*, E(cm)=329 MeV; 233Ra(78Se, X)311122*, E(cm)=328 MeV; 232Ra(79Se, X)311122*, E(cm)=328 MeV; 231Ra(80Se, X)311122*, E(cm)=328 MeV; 229Ra(82Se, X)311122*, E(cm)=327 MeV; 252Cm(60Fe, X)312122*, E(cm)=277 MeV; 236Ac(76As, X)312122*, E(cm)=322 MeV; 235Ac(77As, X)312122*, E(cm)=322 MeV; 234Ra(78Se, X)312122*, E(cm)=328 MeV; 233Ra(79Se, X)312122*, E(cm)=328 MeV; 232Ra(80Se, X)312122*, E(cm)=328 MeV; 230Ra(82Se, X)312122*, E(cm)=327 MeV; 236Ac(77As, X)313122*, E(cm)=322 MeV; 234Ra(79Se, X)313122*, E(cm)=328 MeV; 233Ra(80Se, X)313122*, E(cm)=327 MeV; 231Ra(82Se, X)313122*, E(cm)=327 MeV; 234Ra(80Se, X)314122*, E(cm)=327 MeV; 232Ra(82Se, X)314122*, E(cm)=326 MeV; calculated evaporation residue σ, compound nucleus formation probability, and survival probability. Dinuclear system (DNS) model. Discussed most probable projectile-target combinations to synthesize the superheavy element Z=122.

RADIOACTIVITY 307,308,309,310,311,312,313,314122(α), (12C), (14C), (14N), (20Ne), (22Ne), (24Ne), (28Si), (30Si), (32Si), (34Si), (36Ar), (38Ar), (40Ar), (42Ar), (44Ar), (40Ca), (42Ca), (44Ca), (46Ca), (48Ca), (SF); calculated half-lives, Q values, penetrability, branching ratios relative to α decay. Dinuclear system (DNS) model.

doi: 10.1103/PhysRevC.98.024308
Citations: PlumX Metrics


2018SR05      Phys.Rev. C 98, 064605 (2018)

K.N.Sridhar, H.C.Manjunatha, H.B.Ramalingam

Search for possible fusion reactions to synthesize the superheavy element Z=121

RADIOACTIVITY 299,300,301,302,303,304,305121, 295,296,297,298,299,300119, 291,292,293,294,295,296Ts, 287,288,289Mc(α), (SF); calculated half-lives for different decay modes using Wong model for SF decay. Comparison with several other theoretical calculations.

NUCLEAR STRUCTURE 280,281,282,283,284,285,286,287,288,289,290,291,292,293,294,295,296,297,298,299,300,301,302,303,304,305,306,307,308,309,310,311,312,313,314,315,316,317,318,319,320,321,322,323,324,325,326,327,328,329,330121; calculated S(n), S(p), S(2n), S(2p), Q(β).

NUCLEAR REACTIONS 249,250,251Cf(50V, 2n), 250,252Cf(51V, 2n), 244Pu(60Co, 2n)302121, 250Cm(55Mn, 2n)303121, E*=20-50 MeV; calculated evaporation σ(E). 299,300,301,302,303,304,305121; calculated compound nucleus probability, and survival probability at 35 MeV excitation energy and 2n channel reaction as a function of projectile mass number. 249,250,251,252,253,254Cf(48V, xn), (49V, xn), (50V, xn), (51V, xn), E*=20, 25, 30, 35 MeV; 247,248,249Bk(50Cr, xn), (51Cr, xn), (52Cr, xn), (53Cr, xn), (54Cr, xn), E*=20, 25, 30, 35 MeV; 244,245,246,247,248,250Cm(52Mn, xn), (53Mn, xn), (54Mn, xn), (55Mn, xn), E*=20, 25, 30, 35 MeV; 241,242,243Am(56Fe, xn), (57Fe, xn), (58Fe, xn), (60Fe, xn), E*=20, 25, 30, 35 MeV; 239,240,241,242,244Pu(59Co, xn), (60Co, xn), E*=15-35 MeV, x=1-6. calculated evaporation residue σ(E) for the production of 300,301,302,303,304,305121 nuclei, fusion barrier heights.

doi: 10.1103/PhysRevC.98.064605
Citations: PlumX Metrics


2017MA20      Nucl.Phys. A962, 7 (2017)

H.C.Manjunatha, K.N.Sridhar

Projectile target combination to synthesis superheavy nuclei Z=126

NUCLEAR STRUCTURE 307,318,319,320126; calculated different combinations of colliding ions with varied energy capable to reach isotopes of Z=126 element, their fusion, fission, survival σ, compound nucleus formation and survival probability, α-decay chains (finishing at spontaneously fissioning isotopes of Hs, Lv and Og); deduced, identified most probable combination of nuclei and energy.

doi: 10.1016/j.nuclphysa.2017.03.007
Citations: PlumX Metrics


2017MA25      Eur.Phys.J. A 53, 97 (2017)

H.C.Manjunatha, K.N.Sridhar

Survival and compound nucleus probability of super heavy element Z = 117

NUCLEAR STRUCTURE 289,290,291,292,293,294,295,296,297Ts; calculated possible projectile-target combinations for Ts synthesis, where the driving potential has its minimum, fusion σ, survival σ, fission σ.

NUCLEAR REACTIONS 238U, 242,243Pu, 243Am, 245,248Cm, 249Bk, 294Cf(48Ca, xn), E*=31-53 MeV; calculated evaporation residue σ leading to Z=112-117. 203Tl(86Kr, xn), 213Bi(80Se, xn), 222At(74Ge, xn), 223Fr(70Zn, xn), 232Ra(65Cu, xn), 232Ac(64Ni, xn), 249Bk(80Se, xn), 259,260Md(36S, xn), E(cm)=180-360 MeV; calculated evaporation residue σ leading on Ts isotopes; deduced suitable ways to synthetize Ts element.

doi: 10.1140/epja/i2017-12279-4
Citations: PlumX Metrics


2017MA42      Eur.Phys.J. A 53, 156 (2017)

H.C.Manjunatha, K.N.Sridhar

New semi-empirical formula for α-decay half-lives of the heavy and superheavy nuclei

RADIOACTIVITY Z=95-135(α); calculated T1/2 of isotopes of given nuclei (separately for even and odd Z) vs A/√; deduced parameters for newly suggested formula using fit to data of more than 2600 isotopes.

doi: 10.1140/epja/i2017-12337-y
Citations: PlumX Metrics


2017MA78      Eur.Phys.J. A 53, 196 (2017)

H.C.Manjunatha, K.N.Sridhar

A probability of synthesis of the superheavy element Z=124

NUCLEAR STRUCTURE 313,314,315,316,317,318124; calculated total fusion σ, survival probability, evaporation residue σ vs E(cm) for combinations of different isotopes Cm+Ni, Bk+Co, Cf+Fe, Pu+Zn, Ac+Br, Th+Se, U+Ge, Ra+Kr, Ac+Br, Th+Se, U+Ge, Pu+Zn, Rn+Sr, At+Y giving the composite system at excitation energy E*=0-95 MeV; deduced projectile-target combinations with maximal fusion σ, combinations with maximum survival σ and minimal fission σ.

doi: 10.1140/epja/i2017-12380-8
Citations: PlumX Metrics


2016MA01      Nucl.Phys. A945, 42 (2016)

H.C.Manjunatha

Alpha decay properties of superheavy nuclei Z = 126

RADIOACTIVITY 312,313,314,315,316,317,318,319,320,321,322,323,324,325,326,327,328,329,330,331,332,333,334,335,336,337,338,339126(α), (SF); calculated α decay T1/2, SF T1/2, fission products T1/2 using CPPMDN (Coulomb and Proximity Potential model for Deformed Nuclei). Compared to other papers.

NUCLEAR STRUCTURE 312,313,314,315,316,317,318,319,320,321,322,323,324,325,326,327,328,329,330,331,332,333,334,335,336,337,338,339126; calculated α decay T1/2, SF T1/2, fission products T1/2 using CPPMDN (Coulomb and Proximity Potential model for Deformed Nuclei). Compared to other papers.

doi: 10.1016/j.nuclphysa.2015.09.014
Citations: PlumX Metrics


2016MA56      Int.J.Mod.Phys. E25, 1650074 (2016)

H.C.Manjunatha

Comparison of alpha decay with fission for isotopes of superheavy nuclei Z=124

RADIOACTIVITY 282,283,284,285,306,307,308,309,310,311,312,313,314,315,316,317124(α), (SF); calculated T1/2. Coulomb and proximity potential model for deformed nuclei (CPPMDN), comparison with available data.

doi: 10.1142/S0218301316500749
Citations: PlumX Metrics


2016MA72      Int.J.Mod.Phys. E25, 1650100 (2016)

H.C.Manjunatha

Theoretical prediction of probable isotopes of superheavy nuclei of Z = 122

RADIOACTIVITY 307,308,309,310,311,312,313,314122(α), (SF); calculated T1/2. Comparison with available data.

doi: 10.1142/S0218301316501007
Citations: PlumX Metrics


2011MA02      Nucl.Instrum.Methods Phys.Res. A632, 18 (2011)

H.C.Manjunatha, B.Rudraswamy

Yield constants of external Bremsstrahlung excited by 90Sr-90Y, 147Pm and 204Tl in CdO and lead compounds

NUCLEAR REACTIONS Cd, Pb(e, γ), E<2274 keV [from 90Sr, 90Y, 147Pm, 204Tl(β-)]; measured Eγ, Iγ; deduced Bremsstrahlung photon and energy yields. Comparison with theoretical calculations.

doi: 10.1016/j.nima.2010.12.181
Citations: PlumX Metrics


Back to query form