NSR Query Results


Output year order : Descending
Format : Normal

NSR database version of April 29, 2024.

Search: Author = T.Nandi

Found 17 matches.

Back to query form



2023MA28      J.Phys.(London) G50, 035101 (2023)

H.C.Manjunatha, P.S.Damodara Gupta, N.Sowmya, N.Manjunatha, K.N.Sridhar, L.Seenappa, T.Nandi

Survival probability of compound nuclei in heavy-ion fusion reaction

NUCLEAR REACTIONS 249Cf(48Ca, X)294Og, E(cm)=200-230 MeV; 208Pb(50Ti, X)258Rf, 209Bi(50Ti, X)259Db, 244Pu(48Ca, X)292Fl, 208Pb(58Fe, X)266Hs, 208Pb(54Cr, X)262Sg, E not given; analyzed available data; calculated the survival probability of superheavy nuclei; deduced an empirical formula.

doi: 10.1088/1361-6471/acb1cb
Citations: PlumX Metrics


2022MA29      Eur.Phys.J.Plus 137, 693 (2022)

H.C.Manjunatha, N.Sowmya, P.S.Damodara Gupta, L.Seenappa, T.Nandi

Role of optimal beam energies in the heavy ion fusion reaction

NUCLEAR REACTIONS 208Pb, 209Bi(50Ti, n), (50Ti, 2n), (50Ti, 3n), 242,244Pu(48Ca, 3n), (48Ca, 4n), 245,248Cm(48Ca, 3n), E(cm)<300 MeV; analyzed available data; deduced optimal beam energies and σ for heavy ion fusion reactions.

doi: 10.1140/epjp/s13360-022-02677-9
Citations: PlumX Metrics


2022MA69      J.Phys.(London) G49, 125101 (2022)

H.C.Manjunatha, Y.S.Vidya, P.S.Damodara Gupta, N.Manjunatha, N.Sowmya, L.Seenappa, T.Nandi

Rules of thumb for synthesizing superheavy elements

NUCLEAR REACTIONS 249Cf(45Sc, X)294119, 249Bk(50Ti, X)299119, 248Cm(51V, X)299119, 249Cf(50Ti, X)299120, 243Am(54Cr, X)297119, 237Np(58Fe, X)295119, 238U(59Co, X)297119, 248Cm(54Cr, X)302120, 243Am(55Mn, X)298120, 237Np(59Co, X)296120, 244Pu(58Fe, X)302120, 238U(64Ni, X)302120, 248Cm(54Cr, X)302120, 244Pu(58Fe, X)302120, 244Pu(55Mn, X)299119, E not given; analyzed available data; deduced evaporation residue σ, deformation effects using ASM calculations.

doi: 10.1088/1361-6471/ac929c
Citations: PlumX Metrics


2022NA20      Pramana 96, 84 (2022)

T.Nandi, D.K.Swami, P.S.Damodara Gupta, Y.Kumar, S.Chakraborty, H.C.Manjunatha

Search for a viable nucleus-nucleus potential in heavy-ion nuclear reactions

doi: 10.1007/s12043-022-02331-0
Citations: PlumX Metrics


2022SI03      Nucl.Instrum.Methods Phys.Res. B512, 21 (2022)

S.Singh, M.Oswal, S.Kumar, K.P.Singh, D.Mitra, T.Nandi

K-shell ionization cross sections of Cu, Zn and Ge by 3-5 MeV/u Si-ion bombardment

NUCLEAR REACTIONS Cu, Zn, Ge(Si, X), E=3-5 MeV/nucleon; measured reaction products, X-rays; deduced K-shell ionization σ. Comparison with theoretical calculations.

doi: 10.1016/j.nimb.2021.11.015
Citations: PlumX Metrics


2022SO03      Phys.Rev. C 105, 044605 (2022)

N.Sowmya, P.S.Damodara Gupta, H.C.Manjunatha, T.Nandi

Accurate estimation of the neutron and fission decay widths for hot fusion reactions

NUCLEAR REACTIONS 248Cm(26Mg, X)274Hs, E*=5-90 MeV; calculated neutron to total decay width ratio. 248Cm(26Mg, X), E*<75 MeV; 208Pb(70Zn, X), E*<40 MeV; 238U(74Ge, X), E*<50 MeV; 244Pu(48Ca, X), E*<90 MeV; calculated fission barrier. Statistical calculations with level densities obtained with modified back-shifted Fermi gas model with the shell and pairing energy correction. Comparison to experimental data and other theoretical calculations.

doi: 10.1103/PhysRevC.105.044605
Citations: PlumX Metrics


2021MA16      Phys.Rev. C 103, 024311 (2021)

H.C.Manjunatha, L.Seenappa, P.S.Damodara Gupta, N.Manjunatha, K.N.Sridhar, N.Sowmya, T.Nandi

Quasifission and fusion-fission lifetime studies for the superheavy element Z=120

NUCLEAR REACTIONS 252Cf(50Ti, X)302120*, E=299 MeV; 251Cf(50Ti, X)301120*, E=293 MeV; 250Cf(50Ti, X)300120*, E=300 MeV; 252Cf(49Ti, X)301120*, E=299 MeV; 249Cf(50Ti, X)299120*, E=295 MeV; 248Cm(54Cr, X)302120*, E=316 MeV; 244Pu(58Fe, X)302120*, E=347 MeV; 238U(64Ni, X)302120*, E=372 MeV; 64Ni(238U, X)302120*, E=1383 MeV; 60Ni(238U, X)298120*, E=1476 MeV; calculated fusion barriers, fusion σ, evaporation σ, fusion-fission σ, quasifission σ, quasifission lifetimes, and fusion-fission lifetimes for synthesis of Z=120 nuclei. 65Zn(238U, X)303122*, E(cm)=275.7 MeV; 40Ca(238U, X)278Cn*, E(cm)=184.9 MeV; 48Ca(238U, X)278Cn*, E(cm)=215.7 MeV; 35Cl(238U, X)273Mt*, E(cm)=204.4 MeV; 32S(238U, X)270Hs*, E(cm)=152.0 MeV; 184W(72Ge, X)256Sg*, E(cm)=178.1 MeV; 27Al(238U, X)265Db*, E(cm)=146.0 MeV; 184W(64Ni, X)248No*, E(cm)=341.0 MeV; 184W(58Ni, X)242No*, E(cm)=250.9, 266.1, 285.1 MeV; 186W(48Ti, X)234Cm*, E(cm)=245.0 MeV; 184W(48Ti, X)232Cm*, E(cm)=190.3, 194.3, 202.2 MeV; 208Pb(16O, X)224Th*, E(cm)=140.0 MeV; 186W(32S, X)218Th*, E(cm)=180.0 MeV; 184W(32S, X)216Th*, E(cm)=153.3 MeV; calculated quasifission and fusion-fission lifetimes, and compared with experimental data. 248Cm(54Cr, X)302120*, E=326 MeV; 244Pu(58Fe, X)302120*, E(cm)=325 MeV; 238U(64Ni, X)302120*, E(cm)=349 MeV; 249Cf(50Ti, X)299120*, E(cm)=273 MeV; 249Bk(50Ti, X)299119*, E(cm)=267 MeV; 248Cm(51V, X)299120*, E(cm)=277 MeV; 249Cf(48Ca, X)297Og*, E(cm)=235 MeV; 249Bk(48Ca, X)297Ts*, E(cm)=239 MeV; 248Cm(48Ca, X)296Lv*, E(cm)=241 MeV; 243Am(48Ca, X)291Mc*, E(cm)=248 MeV; 242Pu(48Ca, X)290Fl*, E(cm)=244 MeV; 209Bi(70Zn, X)279Nh*, E(cm)=349 MeV; 208Pb(70Zn, X)278Cn*, E(cm)=346 MeV; calculated quasifission and fusion-fission lifetimes for the first six failed experiments to find evidence for Z=119 and 120, and the next seven successful experiments. Statistical method within the framework of the dinuclear system (DNS) model.

doi: 10.1103/PhysRevC.103.024311
Citations: PlumX Metrics


2020MA62      Phys.Rev. C 102, 064605 (2020)

H.C.Manjunatha, N.Sowmya, N.Manjunatha, P.S.Damodara Gupta, L.Seenappa, K.N.Sridhar, Ganesh, T.Nandi

Entrance channel dependent hot fusion reactions for superheavy element synthesis

NUCLEAR REACTIONS 208Pb(62Ni, n)269Ds, 251Cf(25Mg, 4n)272Ds, 249,253Bk(26Al, 5n)270Ds/274Ds, 209Bi(64Ni, n)272Rg, 234Th(48Sc, 3n)279Rg, 248Cm(33P, 4n)277Rg, 242Pu(37Cl, 4n)275Rg, 238U(40K, 5n)273Rg, 208Pb(70Zn, n)277Cn, 242Pu(42Ar, 3n)281Cn, 238U(47Ca, 3n)282Cn, 249Bk(33P, 4n)278Cn, 209Bi(70Zn, n)278Nh, 254Cf(31P, 4n)281Nh, 250Cm(37Cl, 4n)283Nh, 252Cf(32P, 4n)280Nh, 253Cf(33P, 4n)282Nh, 249Bk(33S, 5n)277Nh, 244Pu(48Ca, 3n)289Fl, 240Pu(43Ca, 3n)280Fl, 246Cm(36Ar, 4n)278Fl, 243Am(48Ca, 3n)288Mc, 244Pu(46Sc, 3n)287Mc, 246Bk(38Ar, 3n)281Mc, 240Pu(48Sc, 3n)285Mc, 236U(51V, 3n)284Mc, 248Cm(48Ca, 4n)292Lv, 249Cf(36Ar, 3n)282Lv, 240Cm(41Ca, 3n)278Lv, 252Cf(36Ar, 4n)284Lv, 249Bk(48Ca, 4n)293Ts, (48Ca, 3n)294Ts, 243Bk(46Ca, 2n)287Ts, 248Bk(48Ca, 3n)293Ts, 249Cf(48Ca, 3n)294Og, 244Pu(52Cr, 3n)293Og, 252Cf(47Ca, 3n)296Og, 253Cf(40Ca, 5n)288Og, 250Cm(50V, 3n)297119, 239Pu(53Mn, 3n)289119, 249Cf(44Ti, n)292120, (47Ti, n)295120, (50Ti, n)298120, 239Np(64Ni, 2n)301121, 252Cf(48V, 3n)297121, 253Cf(49V, 3n)299121, 225Rn(85Kr, X)310122, 223At(86Rb, n)308122, 239Pa(76Ge, n)314123, 242Np(72Zn, n)313123, 240Np(64Zn, 2n)302123, 232Th(71As, 2n)301123, 242,244Pu(72Zn, n)313124/315124, 227Ac(85Kr, n)311125, 245Bk(58Ni, n)302125, 249Bk(66Ni, n)314125, 247Bk(60Ni, n)305125, 232Th(83Kr, X)315126, (82Kr, X)314126, E not given; Z=5-40, A=10-96 projectiles; Z=72-114, A=180-290 targets; calculated evaporation residue fusion cross sections in 6645 different projectile-target combinations for synthesis of Z=110-126 superheavy nuclei, and their dependence on entrance channel effects of mass asymmetry, charge asymmetry, isospin asymmetry, Coulomb charge, Coulomb interaction parameter, mean fissility, and Businaro-Gallone mass asymmetry; compared with available experimental data. 266,270,272,274,276,278,280Ds, 278,280,282,284,286Cn, 272,274,276,278,280,282Fl, 276,278,280,282,284,286,288,290,292,294Lv, 292,294,296,298,300Og, 286,288,290,292,294,296,298,300,302,304120, 308,310,312,314122, 314,316,318124, 318,320126; calculated evaporation residue cross sections in fusion reactions as function of the mass asymmetry parameter.

NUCLEAR REACTIONS 231U(36Ar, X)267Ds, 208Pb(61Ni, X)269Ds, 232U(38Ar, X)270Ds, 249Bk(26Al, X)275Ds, 251Cf(25Mg, X)276Ds, 253Cf(24Mg, X)277Ds, 252Cf(26Mg, X)278Ds, 253,254Bk(26Al, X)279Ds/280Ds, 254Bk(27Al, X)281Ds, 248Cf(26Al, X)274Rg, 231Pa(44Ca, X)275Rg, 239Pu(37Cl, X)276Rg, 236U(41K, X)277Rg, 238U(40K, X)278Rg, 242Pu(37Cl, X)279Rg, 253Cf(27Al, X)280Rg, 248,250Cm(33P, X)281Rg/283Rg, 234Th(48Sc, X)282Rg, 239Np(39K, X)278Cn, 243Pu(36Ar, X)279Cn, 250Cf(30Si, X)280Cn, 248Cm(33S, X)281Cn, 249Bk(33P, X)282Cn, 253Cf(30Si, X)283Cn, 242Pu(42Ar, X)284Cn, 238U(37Ca, X)285Cn, 254Cf(32Si, X)286Cn, 212Bi(67Zn, X)279Nh, 226Ac(54Cr, X)280Nh, 249Bk(33S, X)282Nh, 235U(48Sc, X)283Nh, 252Cf(32P, X)284Nh, 254Cf(31P, X)285Nh, 253Cf(33P, X)286Nh, 250Cm(37Cl, X)287Nh, 219,220Rn(58Ni, X)277Fl/278Fl, 217At(63Cu, X)280Fl, 226Ac(55Mn, X)281Fl, 246Cm(36Ar, X)282Fl, 240Pu(43Ca, X)283Fl, 246Bk(38Ar, X)284Mc, 236U(51V, X)287Mc, 249Pu(48Sc, X)288Mc, 242,244Pu(47Sc, X)289Mc/291Mc, 244Pu(46Sc, X)290Mc, 240,242,243Cm(40Ca, X)280Lv/282Lv/283Lv, 240Cm(41Ca, X)281Lv, 248,249,250,252,253Cf(36Ar, X)284Lv/285Lv/286Lv/288Lv/289Lv, 250Cf(37Ar, X)287Lv, 243Bk(46Ca, X)289Mc, 242Am(49Ti, X)291Mc, 252Bk(42Ca, X)294Mc, 248Bk(48Ca, X)296Mc, 239Pu(53Cr, X)292Og, 253Cf(40Ca, X)293Og, 250Cf(44Ca, X)294Og, 230Ac(65Cu, X)295Og, 244Pu(52Cr, X)296Og, 238U(59Fe, X)297Og, 250Bk(48Sc, X)298Og, 252Cf, 254Bk(47Ca, X)299Og/301Og, 198Pt(91Nb, X)289119, 207Bi(83Kr, X)290119, 241Am(50Cr, X)291119, 248Bk(44Ti, X)292119, 227Ac(66Zn, X)293119, 229Th(65Cu, X)294119, 236U(59Co, X)295119, 243Am(53Cr, X)296119, 238U(60Co, X)298119, 250Cm(50V, X)300119, (51V, X)301119, 209Po(78Kr, 2n)285120, 202Pb(86Sr, 2n)286120, 232U(59Ni, 4n)287120, 209Po(81Kr, 2n)288120, 232Po(58Ni, n)289120, 204Pb(87Sr, n)290120, 228Pu(64Fe, n)291120, 249Cf(44Ti, n)292120, (47Ti, n)295120, (50Ti, n)298120, 244Cm(50Cr, n)293120, 242Am(53Mn, n)294120, 210Bi(87Rb, n)296120, 247Bk(51V, n)297120, 246Cm(54Cr, n)299120, 229Th(72Zn, n)300120, 226Ra(76Ge, n)301120, 250Cm(53Cr, n)302120, 246Bk(53Cr, X)299121, 252Cf(48V, X)300121, 228Ra(73As, X)301121, 250Cm(52Mn, X)302121, 239Np(64Ni, X)303121, 233Pa(71Zn, X)304121, 253Cf(54Cr, n)306122, 230Ra(78Se, n)307122, 223At(86Rb, n)308122, 228Rn(83Kr, 2n)309122, 225Rn(85Kr, X)310122, 226Ac(86As, n)311122, 234Ra(80Se, 2n)312122, 230Rn(84Kr, n)313122, 232Th(71As, n)302123, 240Pu(67Zn, 4n)303123, 214Bi(92Zr, n)305123, 213Pb(94Nb, n)306123, 241Pu(67Cu, n)307123, 214Bi(96Zr, 2n)308123, 228Ra(85Kr, n)312124, 242,244Pu(72Zn, n)313124/315124, 228,230Rn(87Sr, n)314124/316124, 245,246,247Bk(58Ni, X)303125/304125/305125, 247Bk(60Ni, X)307125, 239Np(69Ge, n)308125, 243Am(66Zn, X)309125, 242Am(68Zn, X)310125, 246Cm(65Cu, X)311125, 249Bk(66Ni, X)315125, 232Th(82Kr, X)314126, (83Kr, X)315126, (84Kr, X)316126, (86Kr, X)318126, E not given; calculated fusion evaporation residue σ for suitable projectile-target combinations to synthesize Z=110-126 superheavy nuclei. 208Pb(40Ca, X), (48Ti, X), (52Cr, X), (56Fe, X), (59Ni, X), (65Zn, X), 209Bi(45Ca, X), (51Ti, X), (52Cr, X), (59Ni, X), (65Zn, X), E not given; calculated evaporation residue σ for the synthesis of Z=102-113 elements in cold fusion reactions, and compared with experimental data. 208Pb, 226Ra, 238U, 237Np, 244Pu, 243Am, 247Cm, 247Bk, 251Cf(48Ca, X), E not given; calculated evaporation residue σ for the synthesis of Z=112-118 elements in hot fusion reactions, and compared with experimental data. 232Th(82Kr, X)314126; calculated large evaporation residue cross sections as high as 31 nb.

RADIOACTIVITY 283Cn, 279Ds, 275Hs, 271Sg, 267Rf, 263No, 259Fm, 255Cf, 247,251Bk, 243Am, 239Pu, 235Np(α); 251Cm, 247Am, 239Np, 235U(β-); 291Lv, 287Fl, 283Cn, 279Ds, 275Hs, 271Sg, 267Rf, 263No, 259Fm, 255Cf, 247,251Bk, 243Am, 239Pu, 235Np(α); 251Cm, 247Am, 239Np, 235U(β-); 296119, 292Ts, 288Mc, 284Nh, 280Rg, 276Mt, 272Bh, 268Db, 264Lr, 260Md, 256Es, 252Cf, 248Bk, 244Cm, 240Pu, 236Pu(α); 252Bk, 248Cm, 244Am, 236U(β-); 295Og, 291Lv, 287Fl, 283Cn, 279Ds, 275Hs, 271Sg, 267Rf, 263No, 259Fm, 255Cf, 247,251Bk, 243Am, 239Pu, 235Np(α); 251Cm, 247Am, 239Np, 235U(β-); 299120, 295Og, 291Lv, 287Fl, 283Cn, 279Ds, 275Hs, 271Sg, 267Rf, 263No, 259Fm, 255Cf, 247,251Bk, 243Am, 239Pu, 235Np(α); 251Cm, 247Am, 239Np, 235U(β-); predicted decay chains of 283Cn (Z=112), 291Lv (Z=116), 295Og (Z=118), 296119 (Z=119), and 299120 (Z=120).

doi: 10.1103/PhysRevC.102.064605
Citations: PlumX Metrics


2018OS02      Nucl.Instrum.Methods Phys.Res. B416, 110 (2018)

M.Oswal, S.Kumar, U.Singh, G.Singh, K.P.Singh, D.Mehta, D.Mitnik, C.C.Montanari, T.Nandi

L x-ray production cross sections in high-Z atoms by 3-5 MeV/u silicon ions

NUCLEAR REACTIONS W, 197Au, Pb, Bi(28Si, X), E=3-5 MeV/nucleon; measured reaction products, Eγ, Iγ, X-rays; deduced X-ray production σ.

doi: 10.1016/j.nimb.2017.11.025
Citations: PlumX Metrics


2017KU02      Nucl.Instrum.Methods Phys.Res. B395, 39 (2017)

S.Kumar, U.Singh, M.Oswal, G.Singh, N.Singh, D.Mehta, T.Nandi, G.Lapicki

L shell x ray production in high-Z elements using 4-6 MeV/u fluorine ions

NUCLEAR REACTIONS Pt, 197Au, Pb, 209Bi, Th, U(19F, X), E=4-6 MeV/nucleon; measured reaction products, X-rays, Eγ, Iγ; deduced L shell line and total x ray production σ. Comparison with available theories for L shell ionization using single- and multiple-hole fluorescence and the Coster-Kronig yields.

doi: 10.1016/j.nimb.2017.01.044
Citations: PlumX Metrics


2016RO06      Pramana 86, 97 (2016)

B.J.Roy, A.Parmar, T.Nandi, B.Mohanty, M.Oswal, S.Klumar, A.Jhingan, V.Jha, D.C.Biswas

Measurement of multinucleon transfer cross-sections in 58Ni, 56Fe(12C, x); x: 13, 11C, 11, 10B, 10, 9, 7Be, 8Beg.s. and 7, 6Li at E(12C) = 60 MeV

NUCLEAR REACTIONS 58Ni(12C, 13C), (12C, 11C), (12C, 11B), (12C, 10B), (12C, 10Be), (12C, 9Be), (12C, 7Be), (12C, 7Li), (12C, 6Li), E=60 MeV; measured reaction products, Eα, Iα; deduced σ(θ), parameters, transfer probabilities. The optical model (OM) search code SFRESCO, comparison with available data.

doi: 10.1007/s12043-015-0965-0
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 datasetD6274.


2015SH26      Nucl.Phys. A941, 265 (2015)

P.Sharma, T.Nandi

Theoretical studies on shaking processes in nuclear transfer reactions

ATOMIC PHYSICS 56Fe(12C, 8Be), E not given; calculated electron shaking probabilities for various atomic shells.

doi: 10.1016/j.nuclphysa.2015.07.006
Citations: PlumX Metrics


2000HA07      Nucl.Instrum.Methods Phys.Res. B160, 203 (2000)

M.Hajivaliei, S.Puri, M.L.Garg, D.Mehta, A.Kumar, S.K.Chamoli, D.K.Avasthi, A.Mandal, T.K.Nandi, K.P.Singh, N.Singh, I.M.Govil

K and L X-Ray Production Cross Sections and Intensity Ratios of Rare-Earth Elements for Proton Impact in the Energy Range 20-25 MeV

ATOMIC PHYSICS Nd, Sm, Eu, Gd, Dy, Er, Yb(p, X), E=20, 22, 25 MeV; measured X-ray production σ.

doi: 10.1016/S0168-583X(99)00587-X
Citations: PlumX Metrics


1995DH02      Nucl.Instrum.Methods Phys.Res. B101, 327 (1995)

B.B.Dhal, T.Nandi, H.C.Padhi

L-Subshell Ionization Studies in Au and Bi by 4.8-8.8 MeV Boron Ion Bombardment

NUCLEAR REACTIONS 197Au, 209Bi(B, X), E=4.8-8.8 MeV; measured L-subshell ionization σ(E). Model comparison.

ATOMIC PHYSICS 197Au, 209Bi(B, X), E=4.8-8.8 MeV; measured L-subshell ionization σ(E). Model comparison.

doi: 10.1016/0168-583X(95)00494-7
Citations: PlumX Metrics


1994DH02      Phys.Rev. A49, 329 (1994)

B.B.Dhal, T.Nandi, H.C.Padhi

L-Shell Ionization Studies of Pb and Bi with α Particles

NUCLEAR REACTIONS Pb, 209Bi(α, X), E=2.2-8.2 MeV; measured X-ray spectra; deduced L-subshell ionization σ vs E.

ATOMIC PHYSICS Pb, 209Bi(α, X), E=2.2-8.2 MeV; measured X-ray spectra; deduced L-subshell ionization σ vs E.

doi: 10.1103/PhysRevA.49.329
Citations: PlumX Metrics


1994JA01      J.Phys.(London) G20, 143 (1994)

A.K.Jana, T.K.Nandi, A.K.Paul, B.Talukdar

Equivalent Local Potentials and Phase Approach to Low-Energy Scattering Parameters

doi: 10.1088/0954-3899/20/1/014
Citations: PlumX Metrics


1989LA05      Z.Phys. A332, 305 (1989)

U.Laha, N.Haque, T.Nandi, G.C.Sett

Phase-Function Method for Elastic α-α Scattering

NUCLEAR REACTIONS 4He(α, α), E ≈ 0-100 MeV; calculated phase shifts. Phase function method.


Back to query form


Note: The following list of authors and aliases matches the search parameter T.Nandi: , T.K.NANDI