NSR Query Results


Output year order : Descending
Format : Normal

NSR database version of May 10, 2024.

Search: Author = L.Seenappa

Found 18 matches.

Back to query form



2023GU22      Int.J.Mod.Phys. E32, 2350069 (2023)

P.S.D.Gupta, N.Sowmya, H.C.Manjunatha, H.S.Anushree, L.Seenappa, K.N.Sridhar

A study of decay chains of radioactive actinium isotopes

RADIOACTIVITY 205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227Ac(α), (β-); calculated T1/2 using unified fission model (UFM) and the effective liquid drop model. Comparison with available data.

doi: 10.1142/S0218301323500696
Citations: PlumX Metrics


2023MA02      Nucl.Phys. A1030, 122568 (2023)

H.C.Manjunatha, Y.S.Vidya, K.N.Sridhar, L.Seenappa, P.S.Damodara Gupta

Effect of entrance channel parameters on the elastic scattering of light nuclei

NUCLEAR REACTIONS 11B, 14N, 6,7Li(p, p), 6,7Li, 12C, 28Si(d, d), 6Li(3He, 3He), 6,7Li, 24Mg, 9Be(α, α), 6Li, 9Be, 4He, 12C, 48Ti(6He, 6He), 12,13C, 16O, 208Pb, 26Mg, 28Si, 40Ca, 4He, 58Ni, 6,7Li, 90Zr(6Li, 6Li), 12,13C, 16O, 28Si, 7Li(7LI, 7Li), 12C, 7Li, 9Be(8Li, 8Li), 2H(11Be, 11Be), 10B, 12C, 14N, 9Be(7Be, 7Be), 16O, 9Be(9Be, 9Be), 12C, 16O, 7Li(10B, 10B), 13,14C, 7Li, 9Be(11B, 11B), 12C(8B, 8B), 14N(11C, 11C), 11B, 13C(12C, 12C), 12C(13C, 13C), 11B, 12,13C, 14N, 16O, 7Li, 9Be(14N, 14N), 9Be(15N, 15N), 11B(16N, 16N), 12C, 18O(16O, 16O), 208Pb(17O, 17O), 13C, 18O, 7Li(18O, 18O), 14N, 197Au, 208Pb(17F, 17F), E<100 MeV; analyzed available data; deduced elastic scattering σ derived from entrance channel parameters.

doi: 10.1016/j.nuclphysa.2022.122568
Citations: PlumX Metrics


2023MA06      Pramana 97, 12 (2023)

H.C.Manjunatha, N.Sowmya, K.N.Sridhar, L.Seenappa, P.S.Damodara Gupta

An accurate empirical formula for the average total kinetic energy released in fission

NUCLEAR STRUCTURE Z=23-120; analyzed available data; deduced s new improved formula of Viola systematics, covariance of the matrix and its parameters in both symmetric and asymmetric fission of nuclei.

doi: 10.1007/s12043-022-02485-x
Citations: PlumX Metrics


2023MA15      Nucl.Phys. A1032, 122621 (2023)

H.C.Manjunatha, N.Sowmya, R.Munirathnam, K.N.Sridhar, L.Seenappa, P.S.Damodara Gupta

Effect of entrance channel parameters on compound nucleus formation probability in heavy ion fusion reactions

doi: 10.1016/j.nuclphysa.2023.122621
Citations: PlumX Metrics


2023MA28      J.Phys.(London) G50, 035101 (2023)

H.C.Manjunatha, P.S.Damodara Gupta, N.Sowmya, N.Manjunatha, K.N.Sridhar, L.Seenappa, T.Nandi

Survival probability of compound nuclei in heavy-ion fusion reaction

NUCLEAR REACTIONS 249Cf(48Ca, X)294Og, E(cm)=200-230 MeV; 208Pb(50Ti, X)258Rf, 209Bi(50Ti, X)259Db, 244Pu(48Ca, X)292Fl, 208Pb(58Fe, X)266Hs, 208Pb(54Cr, X)262Sg, E not given; analyzed available data; calculated the survival probability of superheavy nuclei; deduced an empirical formula.

doi: 10.1088/1361-6471/acb1cb
Citations: PlumX Metrics


2023MA56      Chin.Phys.C 47, 104104 (2023)

H.C.Manjunatha, N.Sowmya, L.Seenappa, P.S.Damodara Gupta, N.Manjunatha

Heavy ion fusion of spherical nuclei

NUCLEAR REACTIONS 238U, 237Np, 242,244Pu, 243Am, 245,248Cm, 249Bk, 249Cf(48Ca, X)Po/Th/No, E(cm)=180-230 MeV; analyzed available data; deduced σ with theoretical models such as the dinuclear system (DNS) and advanced statistical model (ASM).

doi: 10.1088/1674-1137/acea21
Citations: PlumX Metrics


2022DA17      Phys.Rev. C 106, 064603 (2022)

P.S.Damodara Gupta, N.Sowmya, H.C.Manjunatha, L.Seenappa, T.Ganesh

Quasifission barrier of heavy ion fusion reactions leading to the formation of the superheavy nucleus 302120

NUCLEAR REACTIONS 251Cf(56Ti, 3n)304120, E*=36 MeV; 251Cf(57Ti, 4n)304120, E*=47 MeV; 251Cf(58Ti, 5n)304120, E*=60 MeV; 249Bk(58V, 3n)304120, E*=37 MeV; 249Bk(59V, 4n)304120, E*=47 MeV; 249Bk(60V, 5n)304120, E*=59 MeV; 248Cm(59Cr, 3n)304120, E *=36 MeV; 248Cm(60Cr, 4n)304120, E*=46 MeV; 248Cm(61Cr, 5n)304120, E*=57 MeV; 248Cf(45Sc, 3n)290119, E*=39 MeV; 247Bk(50Ti, 3n)294119, E*=36 MeV; 242Cm(51V, 3n)290119, E*=38 MeV; 242Am(54Cr, 3n)293119, E*=37 MeV; calculated evaporation residue σ. 237Th(65Zn, X), 218Po(84Kr, X), E not given; calculated nucleus-nucleus interaction potential from the fusion which leads to 302120 production. 252Cf(50Ti, X), E(cm)=223 MeV; 249Bk(53V, X), E(cm)=229 MeV; 248Cm(54Cr, X), E(cm)=236 MeV; 244Pu(58Fe, X), E(cm)=249 MeV; 239Pa(63Cu, X), E(cm)=260 MeV; 232Th(70Zn, X), E(cm)=281 MeV; 222Rn(80Se, X), E(cm)=309 MeV; 228Ra(74Ge, X), E(cm)=240 MeV; 238U(64Ni, X), E(cm)=267 MeV; calculated quasifission barrier, evaporation residue σ, entrance channel parameters. Investigated the influence of the projectile-target orientation and angular momentum on quasifission barriers. Dinuclear system (DNS) model. Comparison to other theoretical estimations.

doi: 10.1103/PhysRevC.106.064603
Citations: PlumX Metrics


2022MA29      Eur.Phys.J.Plus 137, 693 (2022)

H.C.Manjunatha, N.Sowmya, P.S.Damodara Gupta, L.Seenappa, T.Nandi

Role of optimal beam energies in the heavy ion fusion reaction

NUCLEAR REACTIONS 208Pb, 209Bi(50Ti, n), (50Ti, 2n), (50Ti, 3n), 242,244Pu(48Ca, 3n), (48Ca, 4n), 245,248Cm(48Ca, 3n), E(cm)<300 MeV; analyzed available data; deduced optimal beam energies and σ for heavy ion fusion reactions.

doi: 10.1140/epjp/s13360-022-02677-9
Citations: PlumX Metrics


2022MA69      J.Phys.(London) G49, 125101 (2022)

H.C.Manjunatha, Y.S.Vidya, P.S.Damodara Gupta, N.Manjunatha, N.Sowmya, L.Seenappa, T.Nandi

Rules of thumb for synthesizing superheavy elements

NUCLEAR REACTIONS 249Cf(45Sc, X)294119, 249Bk(50Ti, X)299119, 248Cm(51V, X)299119, 249Cf(50Ti, X)299120, 243Am(54Cr, X)297119, 237Np(58Fe, X)295119, 238U(59Co, X)297119, 248Cm(54Cr, X)302120, 243Am(55Mn, X)298120, 237Np(59Co, X)296120, 244Pu(58Fe, X)302120, 238U(64Ni, X)302120, 248Cm(54Cr, X)302120, 244Pu(58Fe, X)302120, 244Pu(55Mn, X)299119, E not given; analyzed available data; deduced evaporation residue σ, deformation effects using ASM calculations.

doi: 10.1088/1361-6471/ac929c
Citations: PlumX Metrics


2022NA34      Int.J.Mod.Phys. E31, 2250081 (2022)

A.M.Nagaraja, R.Munirathnam, H.C.Manjunatha, N.Sowmya, K.N.Sridhar, L.Seenappa, S.A.C.Raj

Predictive power of theoretical models in cluster radioactivity

NUCLEAR STRUCTURE A=221-242, Z=87-96; calculated cluster decays using using modified generalized liquid drop model (MGLDM), Coulomb and proximity potential model (CPPM) and generalized liquid drop model (GLDM).

doi: 10.1142/S0218301322500811
Citations: PlumX Metrics


2021MA01      Can.J.Phys. 99, 16 (2021)

H.C.Manjunatha, L.Seenappa, N.Sowmya, K.N.Sridhar

Investigations on 54-60Fe + 238-244Pu → 296-302120 fusion reactions

NUCLEAR REACTIONS 238,239,240,241,242,243,244Pu(54Fe, xn), (55Fe, xn), (56Fe, xn), (57Fe, xn), (58Fe, xn), (59Fe, xn), (60Fe, xn)296120/297120/298120/299120/300120/301120/302120, E(cm)<400 MeV; calculated formation probability, survival probability, and evaporation residue σ. Comparison with available data.

doi: 10.1139/cjp-2019-0580
Citations: PlumX Metrics


2021MA16      Phys.Rev. C 103, 024311 (2021)

H.C.Manjunatha, L.Seenappa, P.S.Damodara Gupta, N.Manjunatha, K.N.Sridhar, N.Sowmya, T.Nandi

Quasifission and fusion-fission lifetime studies for the superheavy element Z=120

NUCLEAR REACTIONS 252Cf(50Ti, X)302120*, E=299 MeV; 251Cf(50Ti, X)301120*, E=293 MeV; 250Cf(50Ti, X)300120*, E=300 MeV; 252Cf(49Ti, X)301120*, E=299 MeV; 249Cf(50Ti, X)299120*, E=295 MeV; 248Cm(54Cr, X)302120*, E=316 MeV; 244Pu(58Fe, X)302120*, E=347 MeV; 238U(64Ni, X)302120*, E=372 MeV; 64Ni(238U, X)302120*, E=1383 MeV; 60Ni(238U, X)298120*, E=1476 MeV; calculated fusion barriers, fusion σ, evaporation σ, fusion-fission σ, quasifission σ, quasifission lifetimes, and fusion-fission lifetimes for synthesis of Z=120 nuclei. 65Zn(238U, X)303122*, E(cm)=275.7 MeV; 40Ca(238U, X)278Cn*, E(cm)=184.9 MeV; 48Ca(238U, X)278Cn*, E(cm)=215.7 MeV; 35Cl(238U, X)273Mt*, E(cm)=204.4 MeV; 32S(238U, X)270Hs*, E(cm)=152.0 MeV; 184W(72Ge, X)256Sg*, E(cm)=178.1 MeV; 27Al(238U, X)265Db*, E(cm)=146.0 MeV; 184W(64Ni, X)248No*, E(cm)=341.0 MeV; 184W(58Ni, X)242No*, E(cm)=250.9, 266.1, 285.1 MeV; 186W(48Ti, X)234Cm*, E(cm)=245.0 MeV; 184W(48Ti, X)232Cm*, E(cm)=190.3, 194.3, 202.2 MeV; 208Pb(16O, X)224Th*, E(cm)=140.0 MeV; 186W(32S, X)218Th*, E(cm)=180.0 MeV; 184W(32S, X)216Th*, E(cm)=153.3 MeV; calculated quasifission and fusion-fission lifetimes, and compared with experimental data. 248Cm(54Cr, X)302120*, E=326 MeV; 244Pu(58Fe, X)302120*, E(cm)=325 MeV; 238U(64Ni, X)302120*, E(cm)=349 MeV; 249Cf(50Ti, X)299120*, E(cm)=273 MeV; 249Bk(50Ti, X)299119*, E(cm)=267 MeV; 248Cm(51V, X)299120*, E(cm)=277 MeV; 249Cf(48Ca, X)297Og*, E(cm)=235 MeV; 249Bk(48Ca, X)297Ts*, E(cm)=239 MeV; 248Cm(48Ca, X)296Lv*, E(cm)=241 MeV; 243Am(48Ca, X)291Mc*, E(cm)=248 MeV; 242Pu(48Ca, X)290Fl*, E(cm)=244 MeV; 209Bi(70Zn, X)279Nh*, E(cm)=349 MeV; 208Pb(70Zn, X)278Cn*, E(cm)=346 MeV; calculated quasifission and fusion-fission lifetimes for the first six failed experiments to find evidence for Z=119 and 120, and the next seven successful experiments. Statistical method within the framework of the dinuclear system (DNS) model.

doi: 10.1103/PhysRevC.103.024311
Citations: PlumX Metrics


2021MA28      Can.J.Phys. 99, 353 (2021)

H.C.Manjunatha, L.Seenappa, K.N.Sridhar

Pocket formula for incoherent scattering cross section

NUCLEAR REACTIONS H, Li, C, N, O, 19F, 23Na, Mg, 27Al, 31P, S, Cl, K, Cr, Mg, Ni, Cu, Br, Rb, Sr, Zr(γ, γ'), E=661.6, 1115.5 keV; calculated σ. Comparison with available data.

doi: 10.1139/cjp-2020-0286
Citations: PlumX Metrics


2021MA57      Phys.Rev. C 104, 024622 (2021)

H.C.Manjunatha, P.S.Damodara Gupta, N.Sowmya, L.Seenappa, N.Manjunatha

Systematics of heavy ion fusion with entrance channel and deformation parameters

NUCLEAR REACTIONS 169Tm(13C, 5n)176Re, E*=59.3 MeV; 165Ho(16O, 5n)176Re, E*=63.3 MeV; 181Ta(9Be, 4n)186Ir, E*=48.5 MeV; 170Eu(30Si, 5n)195Ir, E*=96.5 MeV; 169Tm(16O, 3n)182Ir, E*=47.9 MeV; 187Re(α, n)190Ir, E*=11.7 MeV; 186W(9Be, 5n)190Pt, E*=56.7 MeV; 187Re(9Be, 5n)191Au, E*=50.8 MeV; 197Au(6He, 5n)198Tl, E*=55.2 MeV; 194Pt(6Li, 4n)196Tl, E*=47 MeV; 181Ta(16O, 5n)192Tl, E*=63.7 MeV; 181Ta(19F, 5n)195Pb, E*=63.4 MeV; 208Pb(α, 2n)210Po, E*=27.4 MeV; 198Pt(12C, 5n)205Po, E*=57 MeV; 164Dy(40Ar, 5n)199Po, E*=76.2 MeV; 154Gd(48Ca, 4n)198Po, E*=51.2 MeV; 209Bi(α, 3n)210At, E*=34 MeV; 208Pb(9Li, 5n)212At, E*=54.9 MeV; 197Au(12C, 5n)204At, E*=58.5 MeV; 192Os(19F, 6n)205At, E*=70.8 MeV; 205Tl(9Be, 4n)210At, E*=44.7 MeV; 159Tb(48Ca, 5n)202At, E*=53.6 MeV; 165Ho(40Ar, 4n)201At, E*=47.7 MeV; 209Bi(6Li, 5n)210Rn, E*=60 MeV; 208Pb(9Be, 5n)212Rn, E*=56.7 MeV; 190Os(22Ne, 7n)205Rn, E*=77 MeV; 162Dy(48Ca, 5n)205Rn, E*=48 MeV; 160Gd(50Ti, 5n)205Rn, E*=49.1 MeV; 209Bi(11Be, 4n)216Fr, E*=52.9 MeV; 169Tm(40Ar, 4n)205Fr, E*=47.6 MeV; 205Tl(12C, 4n)213Fr, E*=47.9 MeV; 197Au(18O, 5n)210Fr, E*=53.8 MeV; 165Ho(48Ca, 5n)208Fr, E*=55.8 MeV; 159Tb(50Ti, 4n)205Fr, E*=43.1 MeV; 209Bi(11B, 4n)216Ra, E*=44 MeV; 198Pt(22Ne, 6n)214Ra, E*=64.1 MeV; 174Yb(40Ar, 5n)209Ra, E*=20.9 MeV; 162Dy(50Ti, 3n)209Ra, E*=41.3 MeV; calculated Coulomb interaction parameter, mean fissility, charge and mass asymmetry, deformation parameter β2, and evaporation residue σ for synthesis of the pre-actinide nuclei using advanced statistical model (ASM) and dinuclear system model (DNS) models. Comparison with experimental data.

NUCLEAR REACTIONS 209Bi(12C, 6n)215Ac, E*=53.1 MeV; 197Au(22Ne, 5n)214Ac, E*=62.8 MeV; 175Lu(40Ar, 6n)209Ac, E*=68.2 MeV; 208Pb(16O, 3n)221Th, E*=31.5 MeV; 173Yb(48Ca, 4n)217Th, E*=46.6 MeV; 172Yb(48Ca, 4n)216Th, E*=45.7 MeV; 180Hf(40Ar, 4n)216Th, E*=49.4 MeV; 96Zr(124Sn, 4n)216Th, E*=48 MeV; 179Hf(40Ar, 4n)215Th, E*=38.9 MeV; 178Hf(40Ar, 5n)213Th, E*=44.8 MeV; 94Zr(124Sn, 3n)215Th, E*=37.1 MeV; 177Hf(40Ar, 4n)213Th, E*=39.2 MeV; 92Zr(124Sn, 3n)213Th, E*=31.7 MeV; 90Zr(124Sn, 3n)211Th, E*=38.4 MeV; 92Zr(124Sn, n)215Th, E*=23.6 MeV; 182W(32S, 4n)210Th, E*=53.1 MeV; 90Zr(124Sn, n)213Th, E*=22.6 MeV; 181Ta(40Ar, 4n)217Pa, E*=39.8 MeV; 208Pb(22Ne, 4n)226U, E*=37.2 MeV; 180Hf(48Ca, 3n)225U, E*=36.8 MeV; 238U(α, n)241Pu, E*=39.9 MeV; 235U(α, 2n)237Pu, E*=19.8 MeV; 234U(α, 2n)236Pu, E*=19.5 MeV; 233U(α, 2n)235Pu, E*=22.7 MeV; 184W(48Ca, 3n)229Pu, E*=31.2 MeV; 237Np(α, 2n)239Am, E*=21.5 MeV; 207Pb(34S, 3n)238Cf, E*=35.7 MeV; 207Pb(36S, 3n)240Cf, E*=32.1 MeV; 197Au(48Ca, 2n)243Es, E*=32.2 MeV; 238U(16O, 5n)249Fm, E*=50.2 MeV; 208Pb(48Ca, 2n)254No, E*=23.1 MeV; 246Cm(12C, 4n)254No, E*=41.2 MeV; 207Pb(48Ca, 2n)253No, E*=23.6 MeV; 248Cm(13C, 4n)257No, E*=38.7 MeV; 248Cm(12C, 4n)256No, E*=41.8 MeV; 246Cm(13C, 4n)255No, E*=42.3 MeV; 206Pb(48Ca, 2n)252No, E*=24.3 MeV; 244Cm(13C, 4n)253No, E*=41.4 MeV; 204Pb(48Ca, 2n)250No, E*=24, 25.4 MeV; 207Pb(48Ca, 2n)253No, E*=24.2 MeV; 209Bi(48Ca, 2n)255Lr, E*=22.9 MeV; calculated Coulomb interaction parameter, mean fissility, charge and mass asymmetry, deformation parameter β2, and evaporation residue σ for synthesis of the actinide nuclei using advanced statistical model (ASM) and dinuclear system model (DNS) models. Comparison with experimental data.

NUCLEAR REACTIONS 208Pb(50Ti, 2n)256Rf, E*=24.3 MeV; 248Cm(16O, 5n)259Rf, E*=53.58 MeV; 209Bi(50Ti, n)258Db, E*=15.8 MeV; 248Cm(19F, 5n)262Db, E*=55.4 MeV; 208Pb(54Cr, n)261Sg, E*=16.1 MeV; 248Cm(22Ne, 5n)265Sg, E*=54.9 MeV; 238U(30Si, 5n)263Sg, E*=40.5 MeV; 209Bi(54Cr, n)262Bh, E*=16.9 MeV; 208Pb(58Fe, n)265Hs, E*=16.1 MeV; 248Cm(26Mg, 5n)269Hs, E*=57 MeV; 238U(34S, 5n)267Hs, E*=57.6 MeV; 209Bi(58Fe, n)266Mt, E*=15.5 MeV; 208Pb(64Ni, n)271Ds, E*=18.1 MeV; 208Pb(62Ni, n)269Ds, E*=15.6 MeV; 209Bi(64Ni, n)272Rg, E*=13.1 MeV; 238U(48Ca, 3n)283Cn, E*=37.8 MeV; 208Pb(70Zn, n)277Cn, E*=10 MeV; 237Np(48Ca, 3n)282Nh, E*=46.9 MeV; 209Bi(70Zn, n)278Nh, E*=16.9 MeV; 244Pu(48Ca, 4n)288Fl, E*=41 MeV; 242Pu(48Ca, 4n)286Fl, E*=42.9 MeV; 240Pu(48Ca, 4n)284Fl, E*=49 MeV; 239Pu(48Ca, 3n)284Fl, E*=46.4 MeV; 243Am(48Ca, 3n)288Mc, E*=45 MeV; 248Cm(48Ca, 4n)292Lv, E*=46.9 MeV; 249Bk(48Ca, 4n)293Ts, E*=65.7 MeV; 249Cf(48Ca, 3n)294Og, E*=38.8 MeV; calculated Coulomb interaction parameter, mean fissility, charge and mass asymmetry, deformation parameter β2, and evaporation residue σ for synthesis of superheavy nuclei using advanced statistical model (ASM) and dinuclear system model (DNS) models. Comparison with experimental data.

doi: 10.1103/PhysRevC.104.024622
Citations: PlumX Metrics


2021NA21      Nucl.Phys. A1015, 122306 (2021)

A.M.Nagaraja, H.C.Manjunatha, N.Sowmya, L.Seenappa, P.S.Damodara Gupta, N.Manjunatha, S.A.Cecil Raj

Heavy particle radioactivity of superheavy element Z = 126

RADIOACTIVITY 221Fr, 221,222,223,224,226Ra, 225Ac(14C), 228Th(20O), 230U(22Ne), 230Th, 231Pa, 232,233U(24Ne), 234U(26Ne), 234U, 236,238Pu(28Mg), 238Pu(30Mg), 238Pu(32Si), 242Cm(34Si), 306,307,308,309,310,311,312,313,314,315,316,317,318,319,320,321,322,323,324,325,326126(α), (β+), (SF); analyzed available data; calculated T1/2.

doi: 10.1016/j.nuclphysa.2021.122306
Citations: PlumX Metrics


2020MA29      Int.J.Mod.Phys. E29, 2050028 (2020)

H.C.Manjunatha, N.Sowmya, N.Manjunath, L.Seenappa

Investigations on the superheavy nuclei with magic number of neutrons and protons

RADIOACTIVITY 298,310Fl, 306,318122, 308,310124, 310,322126(α), (β-), (β+), (SF), (11B), (12C), (14N), (16O), (19F), (20Ne), (23Na), (24Mg), (27Al), (28Si), (31P), (34S), (35Cl), (40Ar), (39K), (40Ca); calculated T1/2. Comparison with available data.

doi: 10.1142/S0218301320500287
Citations: PlumX Metrics


2020MA51      Int.J.Mod.Phys. E29, 2050061 (2020)

H.C.Manjunatha, N.Manjunatha, L.Seenappa

Investigations on the study of entrance channel effects in synthesis of superheavy elements using Cr-induced fusion reactions

NUCLEAR STRUCTURE 232,234,236,238Lv, 235,236,237,238,239Ts, 238,239,240,241,242,243,244Og, 242,243119, 240,241,242,243,244,245,246,247,248,249,250120, 243,245,247,249,251121, 246,247,248,249,250,251,252,253,254122, 252,253,254,255123; calculated compound nucleus formation probability using Cr-induced fusion reactions.

doi: 10.1142/S0218301320500615
Citations: PlumX Metrics


2020MA62      Phys.Rev. C 102, 064605 (2020)

H.C.Manjunatha, N.Sowmya, N.Manjunatha, P.S.Damodara Gupta, L.Seenappa, K.N.Sridhar, Ganesh, T.Nandi

Entrance channel dependent hot fusion reactions for superheavy element synthesis

NUCLEAR REACTIONS 208Pb(62Ni, n)269Ds, 251Cf(25Mg, 4n)272Ds, 249,253Bk(26Al, 5n)270Ds/274Ds, 209Bi(64Ni, n)272Rg, 234Th(48Sc, 3n)279Rg, 248Cm(33P, 4n)277Rg, 242Pu(37Cl, 4n)275Rg, 238U(40K, 5n)273Rg, 208Pb(70Zn, n)277Cn, 242Pu(42Ar, 3n)281Cn, 238U(47Ca, 3n)282Cn, 249Bk(33P, 4n)278Cn, 209Bi(70Zn, n)278Nh, 254Cf(31P, 4n)281Nh, 250Cm(37Cl, 4n)283Nh, 252Cf(32P, 4n)280Nh, 253Cf(33P, 4n)282Nh, 249Bk(33S, 5n)277Nh, 244Pu(48Ca, 3n)289Fl, 240Pu(43Ca, 3n)280Fl, 246Cm(36Ar, 4n)278Fl, 243Am(48Ca, 3n)288Mc, 244Pu(46Sc, 3n)287Mc, 246Bk(38Ar, 3n)281Mc, 240Pu(48Sc, 3n)285Mc, 236U(51V, 3n)284Mc, 248Cm(48Ca, 4n)292Lv, 249Cf(36Ar, 3n)282Lv, 240Cm(41Ca, 3n)278Lv, 252Cf(36Ar, 4n)284Lv, 249Bk(48Ca, 4n)293Ts, (48Ca, 3n)294Ts, 243Bk(46Ca, 2n)287Ts, 248Bk(48Ca, 3n)293Ts, 249Cf(48Ca, 3n)294Og, 244Pu(52Cr, 3n)293Og, 252Cf(47Ca, 3n)296Og, 253Cf(40Ca, 5n)288Og, 250Cm(50V, 3n)297119, 239Pu(53Mn, 3n)289119, 249Cf(44Ti, n)292120, (47Ti, n)295120, (50Ti, n)298120, 239Np(64Ni, 2n)301121, 252Cf(48V, 3n)297121, 253Cf(49V, 3n)299121, 225Rn(85Kr, X)310122, 223At(86Rb, n)308122, 239Pa(76Ge, n)314123, 242Np(72Zn, n)313123, 240Np(64Zn, 2n)302123, 232Th(71As, 2n)301123, 242,244Pu(72Zn, n)313124/315124, 227Ac(85Kr, n)311125, 245Bk(58Ni, n)302125, 249Bk(66Ni, n)314125, 247Bk(60Ni, n)305125, 232Th(83Kr, X)315126, (82Kr, X)314126, E not given; Z=5-40, A=10-96 projectiles; Z=72-114, A=180-290 targets; calculated evaporation residue fusion cross sections in 6645 different projectile-target combinations for synthesis of Z=110-126 superheavy nuclei, and their dependence on entrance channel effects of mass asymmetry, charge asymmetry, isospin asymmetry, Coulomb charge, Coulomb interaction parameter, mean fissility, and Businaro-Gallone mass asymmetry; compared with available experimental data. 266,270,272,274,276,278,280Ds, 278,280,282,284,286Cn, 272,274,276,278,280,282Fl, 276,278,280,282,284,286,288,290,292,294Lv, 292,294,296,298,300Og, 286,288,290,292,294,296,298,300,302,304120, 308,310,312,314122, 314,316,318124, 318,320126; calculated evaporation residue cross sections in fusion reactions as function of the mass asymmetry parameter.

NUCLEAR REACTIONS 231U(36Ar, X)267Ds, 208Pb(61Ni, X)269Ds, 232U(38Ar, X)270Ds, 249Bk(26Al, X)275Ds, 251Cf(25Mg, X)276Ds, 253Cf(24Mg, X)277Ds, 252Cf(26Mg, X)278Ds, 253,254Bk(26Al, X)279Ds/280Ds, 254Bk(27Al, X)281Ds, 248Cf(26Al, X)274Rg, 231Pa(44Ca, X)275Rg, 239Pu(37Cl, X)276Rg, 236U(41K, X)277Rg, 238U(40K, X)278Rg, 242Pu(37Cl, X)279Rg, 253Cf(27Al, X)280Rg, 248,250Cm(33P, X)281Rg/283Rg, 234Th(48Sc, X)282Rg, 239Np(39K, X)278Cn, 243Pu(36Ar, X)279Cn, 250Cf(30Si, X)280Cn, 248Cm(33S, X)281Cn, 249Bk(33P, X)282Cn, 253Cf(30Si, X)283Cn, 242Pu(42Ar, X)284Cn, 238U(37Ca, X)285Cn, 254Cf(32Si, X)286Cn, 212Bi(67Zn, X)279Nh, 226Ac(54Cr, X)280Nh, 249Bk(33S, X)282Nh, 235U(48Sc, X)283Nh, 252Cf(32P, X)284Nh, 254Cf(31P, X)285Nh, 253Cf(33P, X)286Nh, 250Cm(37Cl, X)287Nh, 219,220Rn(58Ni, X)277Fl/278Fl, 217At(63Cu, X)280Fl, 226Ac(55Mn, X)281Fl, 246Cm(36Ar, X)282Fl, 240Pu(43Ca, X)283Fl, 246Bk(38Ar, X)284Mc, 236U(51V, X)287Mc, 249Pu(48Sc, X)288Mc, 242,244Pu(47Sc, X)289Mc/291Mc, 244Pu(46Sc, X)290Mc, 240,242,243Cm(40Ca, X)280Lv/282Lv/283Lv, 240Cm(41Ca, X)281Lv, 248,249,250,252,253Cf(36Ar, X)284Lv/285Lv/286Lv/288Lv/289Lv, 250Cf(37Ar, X)287Lv, 243Bk(46Ca, X)289Mc, 242Am(49Ti, X)291Mc, 252Bk(42Ca, X)294Mc, 248Bk(48Ca, X)296Mc, 239Pu(53Cr, X)292Og, 253Cf(40Ca, X)293Og, 250Cf(44Ca, X)294Og, 230Ac(65Cu, X)295Og, 244Pu(52Cr, X)296Og, 238U(59Fe, X)297Og, 250Bk(48Sc, X)298Og, 252Cf, 254Bk(47Ca, X)299Og/301Og, 198Pt(91Nb, X)289119, 207Bi(83Kr, X)290119, 241Am(50Cr, X)291119, 248Bk(44Ti, X)292119, 227Ac(66Zn, X)293119, 229Th(65Cu, X)294119, 236U(59Co, X)295119, 243Am(53Cr, X)296119, 238U(60Co, X)298119, 250Cm(50V, X)300119, (51V, X)301119, 209Po(78Kr, 2n)285120, 202Pb(86Sr, 2n)286120, 232U(59Ni, 4n)287120, 209Po(81Kr, 2n)288120, 232Po(58Ni, n)289120, 204Pb(87Sr, n)290120, 228Pu(64Fe, n)291120, 249Cf(44Ti, n)292120, (47Ti, n)295120, (50Ti, n)298120, 244Cm(50Cr, n)293120, 242Am(53Mn, n)294120, 210Bi(87Rb, n)296120, 247Bk(51V, n)297120, 246Cm(54Cr, n)299120, 229Th(72Zn, n)300120, 226Ra(76Ge, n)301120, 250Cm(53Cr, n)302120, 246Bk(53Cr, X)299121, 252Cf(48V, X)300121, 228Ra(73As, X)301121, 250Cm(52Mn, X)302121, 239Np(64Ni, X)303121, 233Pa(71Zn, X)304121, 253Cf(54Cr, n)306122, 230Ra(78Se, n)307122, 223At(86Rb, n)308122, 228Rn(83Kr, 2n)309122, 225Rn(85Kr, X)310122, 226Ac(86As, n)311122, 234Ra(80Se, 2n)312122, 230Rn(84Kr, n)313122, 232Th(71As, n)302123, 240Pu(67Zn, 4n)303123, 214Bi(92Zr, n)305123, 213Pb(94Nb, n)306123, 241Pu(67Cu, n)307123, 214Bi(96Zr, 2n)308123, 228Ra(85Kr, n)312124, 242,244Pu(72Zn, n)313124/315124, 228,230Rn(87Sr, n)314124/316124, 245,246,247Bk(58Ni, X)303125/304125/305125, 247Bk(60Ni, X)307125, 239Np(69Ge, n)308125, 243Am(66Zn, X)309125, 242Am(68Zn, X)310125, 246Cm(65Cu, X)311125, 249Bk(66Ni, X)315125, 232Th(82Kr, X)314126, (83Kr, X)315126, (84Kr, X)316126, (86Kr, X)318126, E not given; calculated fusion evaporation residue σ for suitable projectile-target combinations to synthesize Z=110-126 superheavy nuclei. 208Pb(40Ca, X), (48Ti, X), (52Cr, X), (56Fe, X), (59Ni, X), (65Zn, X), 209Bi(45Ca, X), (51Ti, X), (52Cr, X), (59Ni, X), (65Zn, X), E not given; calculated evaporation residue σ for the synthesis of Z=102-113 elements in cold fusion reactions, and compared with experimental data. 208Pb, 226Ra, 238U, 237Np, 244Pu, 243Am, 247Cm, 247Bk, 251Cf(48Ca, X), E not given; calculated evaporation residue σ for the synthesis of Z=112-118 elements in hot fusion reactions, and compared with experimental data. 232Th(82Kr, X)314126; calculated large evaporation residue cross sections as high as 31 nb.

RADIOACTIVITY 283Cn, 279Ds, 275Hs, 271Sg, 267Rf, 263No, 259Fm, 255Cf, 247,251Bk, 243Am, 239Pu, 235Np(α); 251Cm, 247Am, 239Np, 235U(β-); 291Lv, 287Fl, 283Cn, 279Ds, 275Hs, 271Sg, 267Rf, 263No, 259Fm, 255Cf, 247,251Bk, 243Am, 239Pu, 235Np(α); 251Cm, 247Am, 239Np, 235U(β-); 296119, 292Ts, 288Mc, 284Nh, 280Rg, 276Mt, 272Bh, 268Db, 264Lr, 260Md, 256Es, 252Cf, 248Bk, 244Cm, 240Pu, 236Pu(α); 252Bk, 248Cm, 244Am, 236U(β-); 295Og, 291Lv, 287Fl, 283Cn, 279Ds, 275Hs, 271Sg, 267Rf, 263No, 259Fm, 255Cf, 247,251Bk, 243Am, 239Pu, 235Np(α); 251Cm, 247Am, 239Np, 235U(β-); 299120, 295Og, 291Lv, 287Fl, 283Cn, 279Ds, 275Hs, 271Sg, 267Rf, 263No, 259Fm, 255Cf, 247,251Bk, 243Am, 239Pu, 235Np(α); 251Cm, 247Am, 239Np, 235U(β-); predicted decay chains of 283Cn (Z=112), 291Lv (Z=116), 295Og (Z=118), 296119 (Z=119), and 299120 (Z=120).

doi: 10.1103/PhysRevC.102.064605
Citations: PlumX Metrics


Back to query form