NSR Query Results


Output year order : Descending
Format : Normal

NSR database version of May 10, 2024.

Search: Author = R.Munirathnam

Found 5 matches.

Back to query form



2023MA15      Nucl.Phys. A1032, 122621 (2023)

H.C.Manjunatha, N.Sowmya, R.Munirathnam, K.N.Sridhar, L.Seenappa, P.S.Damodara Gupta

Effect of entrance channel parameters on compound nucleus formation probability in heavy ion fusion reactions

doi: 10.1016/j.nuclphysa.2023.122621
Citations: PlumX Metrics


2023SR01      Nucl.Phys. A1036, 122673 (2023)

M.G.Srinivas, R.Munirathnam, N.Sowmya, H.C.Manjunatha

A systematic analysis for one proton radioactivity of ground state nuclei

RADIOACTIVITY 109I, 112,113Cs, 117La, 121Pr, 130,131Eu, 135Tb, 140,141Ho, 144,145,146,147Tm, 150,151Lu, 155,156,157Ta, 159,160,161Re, 164,165,166,167Ir, 170,171Au, 176,177Tl, 185Bi(p); calculated T1/2 using different macroscopic models CPPM, ELDM, GLM, UFM and UDLP. Comparison with available data.

doi: 10.1016/j.nuclphysa.2023.122673
Citations: PlumX Metrics


2022NA34      Int.J.Mod.Phys. E31, 2250081 (2022)

A.M.Nagaraja, R.Munirathnam, H.C.Manjunatha, N.Sowmya, K.N.Sridhar, L.Seenappa, S.A.C.Raj

Predictive power of theoretical models in cluster radioactivity

NUCLEAR STRUCTURE A=221-242, Z=87-96; calculated cluster decays using using modified generalized liquid drop model (MGLDM), Coulomb and proximity potential model (CPPM) and generalized liquid drop model (GLDM).

doi: 10.1142/S0218301322500811
Citations: PlumX Metrics


2022SR01      Int.J.Mod.Phys. E31, 2250030 (2022)

G.R.Sridhara, H.C.Manjunatha, R.Munirathnam, N.Sowmya, H.B.Ramalingam

Macroscopic versus microscopic models in predicting α-decay half-lives of actinide nuclei

RADIOACTIVITY 215,216,217,218,219,220,221,222,223,224,225Ac, 212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232Th, 211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231Pa, 222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238U, 219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237Np, 236,237,238,239,240,241,242,243,244Pu, 236,237,238,239,240,241,242,243Am, 240,241,242,243,244,245,246,247,248Cm, 233,234,235,236,237,238,239,240,241,242,243,244,245,246,247Bk, 240,241,242,243,244,245,246,247,248,249,250,251,252Cf, 240,241,242,243,244,245,246,247,248,249,250,251,252,253,254Es, 243,244,245,246,247,248,249,250,251,252,253,254,255,256,257Fm, 244,245,246,247,248,249,250,251,252,253,254,255,256,257,258Md, 251,252,253,254,255,256,257No, 253,254,255,256,257Lr(α); calculated T1/2. Comparison with available data.

doi: 10.1142/S0218301322500306
Citations: PlumX Metrics


2022SR02      Int.J.Mod.Phys. E31, 2250043 (2022)

M.G.Srinivas, N.Sowmya, H.C.Manjunatha, P.S.Damodara Gupta, R.Munirathnam, N.Manjunatha

Radioactivity of Dysprosium

RADIOACTIVITY 133,134,135Dy(β+), 133,134,135Tb(p), 132,133,134Gd, 132,133,134Eu, 132,133,134Sm, 132,133,134Pm, 132,133,134Nd, 132,133,134Pr, 132,133,134Ce, 132,133,134La, 132,133,134Ba(β+), 132,133Ba(2β+); analyzed available data; deduced the penetration probability, T1/2 for one proton radioactivity of all possible Dysprosium isotopes. The effective liquid drop model (ELDM).

doi: 10.1142/S0218301322500434
Citations: PlumX Metrics


Back to query form