NSR Query Results


Output year order : Descending
Format : Normal

NSR database version of May 6, 2024.

Search: Author = P.S.Damodara Gupta

Found 27 matches.

Back to query form



2023MA02      Nucl.Phys. A1030, 122568 (2023)

H.C.Manjunatha, Y.S.Vidya, K.N.Sridhar, L.Seenappa, P.S.Damodara Gupta

Effect of entrance channel parameters on the elastic scattering of light nuclei

NUCLEAR REACTIONS 11B, 14N, 6,7Li(p, p), 6,7Li, 12C, 28Si(d, d), 6Li(3He, 3He), 6,7Li, 24Mg, 9Be(α, α), 6Li, 9Be, 4He, 12C, 48Ti(6He, 6He), 12,13C, 16O, 208Pb, 26Mg, 28Si, 40Ca, 4He, 58Ni, 6,7Li, 90Zr(6Li, 6Li), 12,13C, 16O, 28Si, 7Li(7LI, 7Li), 12C, 7Li, 9Be(8Li, 8Li), 2H(11Be, 11Be), 10B, 12C, 14N, 9Be(7Be, 7Be), 16O, 9Be(9Be, 9Be), 12C, 16O, 7Li(10B, 10B), 13,14C, 7Li, 9Be(11B, 11B), 12C(8B, 8B), 14N(11C, 11C), 11B, 13C(12C, 12C), 12C(13C, 13C), 11B, 12,13C, 14N, 16O, 7Li, 9Be(14N, 14N), 9Be(15N, 15N), 11B(16N, 16N), 12C, 18O(16O, 16O), 208Pb(17O, 17O), 13C, 18O, 7Li(18O, 18O), 14N, 197Au, 208Pb(17F, 17F), E<100 MeV; analyzed available data; deduced elastic scattering σ derived from entrance channel parameters.

doi: 10.1016/j.nuclphysa.2022.122568
Citations: PlumX Metrics


2023MA06      Pramana 97, 12 (2023)

H.C.Manjunatha, N.Sowmya, K.N.Sridhar, L.Seenappa, P.S.Damodara Gupta

An accurate empirical formula for the average total kinetic energy released in fission

NUCLEAR STRUCTURE Z=23-120; analyzed available data; deduced s new improved formula of Viola systematics, covariance of the matrix and its parameters in both symmetric and asymmetric fission of nuclei.

doi: 10.1007/s12043-022-02485-x
Citations: PlumX Metrics


2023MA15      Nucl.Phys. A1032, 122621 (2023)

H.C.Manjunatha, N.Sowmya, R.Munirathnam, K.N.Sridhar, L.Seenappa, P.S.Damodara Gupta

Effect of entrance channel parameters on compound nucleus formation probability in heavy ion fusion reactions

doi: 10.1016/j.nuclphysa.2023.122621
Citations: PlumX Metrics


2023MA28      J.Phys.(London) G50, 035101 (2023)

H.C.Manjunatha, P.S.Damodara Gupta, N.Sowmya, N.Manjunatha, K.N.Sridhar, L.Seenappa, T.Nandi

Survival probability of compound nuclei in heavy-ion fusion reaction

NUCLEAR REACTIONS 249Cf(48Ca, X)294Og, E(cm)=200-230 MeV; 208Pb(50Ti, X)258Rf, 209Bi(50Ti, X)259Db, 244Pu(48Ca, X)292Fl, 208Pb(58Fe, X)266Hs, 208Pb(54Cr, X)262Sg, E not given; analyzed available data; calculated the survival probability of superheavy nuclei; deduced an empirical formula.

doi: 10.1088/1361-6471/acb1cb
Citations: PlumX Metrics


2023MA56      Chin.Phys.C 47, 104104 (2023)

H.C.Manjunatha, N.Sowmya, L.Seenappa, P.S.Damodara Gupta, N.Manjunatha

Heavy ion fusion of spherical nuclei

NUCLEAR REACTIONS 238U, 237Np, 242,244Pu, 243Am, 245,248Cm, 249Bk, 249Cf(48Ca, X)Po/Th/No, E(cm)=180-230 MeV; analyzed available data; deduced σ with theoretical models such as the dinuclear system (DNS) and advanced statistical model (ASM).

doi: 10.1088/1674-1137/acea21
Citations: PlumX Metrics


2023SO13      Phys.Part. and Nucl.Lett. 20, 544 (2023)

N.Sowmya, H.C.Manjunatha, K.N.Sridhar, P.S.Damodara Gupta, N.Dhanajaya

Competition between Cluster and Alpha Decay in Even Atomic Number Superheavy Nuclei 110 ≤ Z ≤ 126

RADIOACTIVITY 261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280Ds, 274,275,276,277,278,279,280,281,282,283Cn, 280,281,282,283,284,285,286,287,288Fl, 282,283,284,285,286,287,288,289,290,291,292,293,294,295Lv, 286,287,288,289,290,291,292,293,294,295,296,297,298,299,300,301,302,303Og, 288,289,290,291,292,293,294,295,296,297,298,299,300,301,302,303,304,305,306120, 292,293,294,295,296,297,298,299,300,301,302,303,304,305,306,307,308,309,310122, 292,293,294,295,296,297,298,299,300,301,302,303,304,305,306,307,308,309,310,311,312124, 292,293,294,295,296,297,298,299,300,301,302,303,304,305,306,307,308,309,310,311,312,313,314126(α), (SF); calculated T1/2, Q-values. Comparison with available data.

doi: 10.1134/S1547477123030664
Citations: PlumX Metrics


2022DA17      Phys.Rev. C 106, 064603 (2022)

P.S.Damodara Gupta, N.Sowmya, H.C.Manjunatha, L.Seenappa, T.Ganesh

Quasifission barrier of heavy ion fusion reactions leading to the formation of the superheavy nucleus 302120

NUCLEAR REACTIONS 251Cf(56Ti, 3n)304120, E*=36 MeV; 251Cf(57Ti, 4n)304120, E*=47 MeV; 251Cf(58Ti, 5n)304120, E*=60 MeV; 249Bk(58V, 3n)304120, E*=37 MeV; 249Bk(59V, 4n)304120, E*=47 MeV; 249Bk(60V, 5n)304120, E*=59 MeV; 248Cm(59Cr, 3n)304120, E *=36 MeV; 248Cm(60Cr, 4n)304120, E*=46 MeV; 248Cm(61Cr, 5n)304120, E*=57 MeV; 248Cf(45Sc, 3n)290119, E*=39 MeV; 247Bk(50Ti, 3n)294119, E*=36 MeV; 242Cm(51V, 3n)290119, E*=38 MeV; 242Am(54Cr, 3n)293119, E*=37 MeV; calculated evaporation residue σ. 237Th(65Zn, X), 218Po(84Kr, X), E not given; calculated nucleus-nucleus interaction potential from the fusion which leads to 302120 production. 252Cf(50Ti, X), E(cm)=223 MeV; 249Bk(53V, X), E(cm)=229 MeV; 248Cm(54Cr, X), E(cm)=236 MeV; 244Pu(58Fe, X), E(cm)=249 MeV; 239Pa(63Cu, X), E(cm)=260 MeV; 232Th(70Zn, X), E(cm)=281 MeV; 222Rn(80Se, X), E(cm)=309 MeV; 228Ra(74Ge, X), E(cm)=240 MeV; 238U(64Ni, X), E(cm)=267 MeV; calculated quasifission barrier, evaporation residue σ, entrance channel parameters. Investigated the influence of the projectile-target orientation and angular momentum on quasifission barriers. Dinuclear system (DNS) model. Comparison to other theoretical estimations.

doi: 10.1103/PhysRevC.106.064603
Citations: PlumX Metrics


2022MA15      Int.J.Mod.Phys. E31, 2250015 (2022)

H.C.Manjunatha, P.S.Damodara Gupta, N.Sowmya, K.N.Sridhar

Investigations on 28Ca and 58Fe-induced heavy ion fusion reactions

NUCLEAR REACTIONS 40Ca, 44Ca, 48Ca, 48Ca, 46Ti, 48Ti, 50Ti, 58Ni, 60Ni, 62Ni, 64Ni, 90Zr, 94Zr, 96Zr(40Ca, X), 90Zr, 96Zr(48Ca, X), 124Sn(40Ca, X), 154Sm, 168Er, 170Er(48Ca, X), 192Os, 194Pt, 197Au(40Ca, X), 197Au(48Ca, X), 208Pb(40Ca, X), 208Pb(48Ca, X), 238U(40Ca, X), 238U(48Ca, X), 120Sn, 122Sn, 165Ho(56Fe, X), 238U, 237Np, 244Pu, 243Am, 245Cm, 249Bk, 249Cf(48Ca, X), 208Pb, 209Bi(58Fe, X), E<320 MeV; analyzed available data. 80Zr, 84Zr, 88Zr, 96Zr, 86Mo, 88Mo, 90Mo, 98Cd, 100Cd, 102Cd, 104Cd, 130Nd, 134Nd, 136Nd, 138Nd, 144Nd, 164Yb, 202Pb, 216Ra, 218Ra, 232Cm, 234Cf, 237Es, 245Es, 248No, 256No, 278Cn, 286Cn, 283Cn, 282Nh, 288Fl, 288Mc, 291Lv, 294Ts, 294Og, 265Hs, 266Mt; calculated evaporation residue σ.

doi: 10.1142/S021830132250015X
Citations: PlumX Metrics


2022MA29      Eur.Phys.J.Plus 137, 693 (2022)

H.C.Manjunatha, N.Sowmya, P.S.Damodara Gupta, L.Seenappa, T.Nandi

Role of optimal beam energies in the heavy ion fusion reaction

NUCLEAR REACTIONS 208Pb, 209Bi(50Ti, n), (50Ti, 2n), (50Ti, 3n), 242,244Pu(48Ca, 3n), (48Ca, 4n), 245,248Cm(48Ca, 3n), E(cm)<300 MeV; analyzed available data; deduced optimal beam energies and σ for heavy ion fusion reactions.

doi: 10.1140/epjp/s13360-022-02677-9
Citations: PlumX Metrics


2022MA67      Phys.Part. and Nucl.Lett. 19, 597 (2022)

H.C.Manjunatha, A.M.Nagaraja, P.S.Damodara Gupta, N.Manjunatha, N.Sowmya, S.A.Cecil Raj

Heavy Particle Radioactivity of Superheavy Element Z = 122

RADIOACTIVITY 222,223,224,226Ra(14C), 231Pa, 232U(24Ne), 233U(25Ne), 294,295,296,297,298,299,300122(86Kr), 301,302,303,304,305122(94Zr), 306,307,308,309,310,311,312,313,314122(α); calculated T1/2 using Coulomb and proximity potential model (CPPM) and modified generalized liquid drop model (MGLDM).

doi: 10.1134/S1547477122050260
Citations: PlumX Metrics


2022MA69      J.Phys.(London) G49, 125101 (2022)

H.C.Manjunatha, Y.S.Vidya, P.S.Damodara Gupta, N.Manjunatha, N.Sowmya, L.Seenappa, T.Nandi

Rules of thumb for synthesizing superheavy elements

NUCLEAR REACTIONS 249Cf(45Sc, X)294119, 249Bk(50Ti, X)299119, 248Cm(51V, X)299119, 249Cf(50Ti, X)299120, 243Am(54Cr, X)297119, 237Np(58Fe, X)295119, 238U(59Co, X)297119, 248Cm(54Cr, X)302120, 243Am(55Mn, X)298120, 237Np(59Co, X)296120, 244Pu(58Fe, X)302120, 238U(64Ni, X)302120, 248Cm(54Cr, X)302120, 244Pu(58Fe, X)302120, 244Pu(55Mn, X)299119, E not given; analyzed available data; deduced evaporation residue σ, deformation effects using ASM calculations.

doi: 10.1088/1361-6471/ac929c
Citations: PlumX Metrics


2022NA09      Int.J.Mod.Phys. E31, 2250004 (2022)

A.M.Nagaraja, H.C.Manjunatha, N.Sowmya, K.N.Sridhar, P.S.Damodara Gupta, S.A.Cecil Raj

Theoretical evidence for neutron magic number 184 from cluster radioactivity studies

RADIOACTIVITY 221Fr, 221,222,223,224Ra, 225Ac(14C), 228Th(20O), 230U(22Ne), 230Th, 231Pa, 232,233U(24Ne), 234U(26Ne), 234U, 236,238Pu(28Mg), 238Pu(32Si), 242Cm(34Si), 257,258,259,260,261,262Rf, 259,260,261,262Db, 261,262Sg, 263,264,265,266Bh, 264,265,266,267,268,269,270,271,272Hs, 271,272,273Mt, 266,267,268,269,270,271,272,273,274,275,276,277,278,279Ds, 271,272,273,274,275,276,277,278,279Rg, 276,277,278,279,280,281Cn, 291,292,293,294,295,296,297,298,299,300,301,302,303,304,305,306,307119, 287,288,289,290,291,292,293,294,295,296,297,298,299,300,301,302,303,304,305,306,307,308,309,310120, 290,291,292,293,294,295,296,297,298,299,300,301,302,303121, 270,271,272,273,274,275,276,277,278,279,280,281,282,283Nh, 271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287Fl, 272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288,289,290Mc, 275,276,277,278,279,280,281,282,283,284,285,286,287,288,289,290,291,292Lv, 278,279,280,281,282,283,284,285,286,287,288,289,290,291,292,293,294,295,296,297,298,299Ts, 281,282,283,284,285,286,287,288,289,290,291,292,293,294,295,296,297,298,299,300,301,302,303Og, 284,285,286,287,288,289,290119, 305,306,307,308,309,310,311,312,313,314,315,316,317124, 303,304,305,306,307,308,309,310,311,312,313,314,315,316,317,318,319,320,321,322,323125, 306,307,308,309,310,311,312,313,314,315,316,317,318,319,320,321,322,323,324,325,326,327,328,329126(α), (β+), (SF); calculated T1/2 using modified generalized liquid drop model (MGLDM); deduced magic numbers. Comparison with available data.

doi: 10.1142/S0218301322500045
Citations: PlumX Metrics


2022NA20      Pramana 96, 84 (2022)

T.Nandi, D.K.Swami, P.S.Damodara Gupta, Y.Kumar, S.Chakraborty, H.C.Manjunatha

Search for a viable nucleus-nucleus potential in heavy-ion nuclear reactions

doi: 10.1007/s12043-022-02331-0
Citations: PlumX Metrics


2022SO03      Phys.Rev. C 105, 044605 (2022)

N.Sowmya, P.S.Damodara Gupta, H.C.Manjunatha, T.Nandi

Accurate estimation of the neutron and fission decay widths for hot fusion reactions

NUCLEAR REACTIONS 248Cm(26Mg, X)274Hs, E*=5-90 MeV; calculated neutron to total decay width ratio. 248Cm(26Mg, X), E*<75 MeV; 208Pb(70Zn, X), E*<40 MeV; 238U(74Ge, X), E*<50 MeV; 244Pu(48Ca, X), E*<90 MeV; calculated fission barrier. Statistical calculations with level densities obtained with modified back-shifted Fermi gas model with the shell and pairing energy correction. Comparison to experimental data and other theoretical calculations.

doi: 10.1103/PhysRevC.105.044605
Citations: PlumX Metrics


2022SR02      Int.J.Mod.Phys. E31, 2250043 (2022)

M.G.Srinivas, N.Sowmya, H.C.Manjunatha, P.S.Damodara Gupta, R.Munirathnam, N.Manjunatha

Radioactivity of Dysprosium

RADIOACTIVITY 133,134,135Dy(β+), 133,134,135Tb(p), 132,133,134Gd, 132,133,134Eu, 132,133,134Sm, 132,133,134Pm, 132,133,134Nd, 132,133,134Pr, 132,133,134Ce, 132,133,134La, 132,133,134Ba(β+), 132,133Ba(2β+); analyzed available data; deduced the penetration probability, T1/2 for one proton radioactivity of all possible Dysprosium isotopes. The effective liquid drop model (ELDM).

doi: 10.1142/S0218301322500434
Citations: PlumX Metrics


2022SR03      Ukr.J.Phys. 67, 631 (2022)

M.G.Srinivas, H.C.Manjunatha, K.N.Sridhar, A.C.Raj, P.S.Damodara Gupta

A Systematic Study of Proton Decay in Superheavy Elements

NUCLEAR STRUCTURE Z=104-126; calculated proton decay T1/2, penetration factors using the semiclassical WKB method. Comparison with available data.

doi: 10.15407/ujpe67.9.631
Citations: PlumX Metrics


2021MA16      Phys.Rev. C 103, 024311 (2021)

H.C.Manjunatha, L.Seenappa, P.S.Damodara Gupta, N.Manjunatha, K.N.Sridhar, N.Sowmya, T.Nandi

Quasifission and fusion-fission lifetime studies for the superheavy element Z=120

NUCLEAR REACTIONS 252Cf(50Ti, X)302120*, E=299 MeV; 251Cf(50Ti, X)301120*, E=293 MeV; 250Cf(50Ti, X)300120*, E=300 MeV; 252Cf(49Ti, X)301120*, E=299 MeV; 249Cf(50Ti, X)299120*, E=295 MeV; 248Cm(54Cr, X)302120*, E=316 MeV; 244Pu(58Fe, X)302120*, E=347 MeV; 238U(64Ni, X)302120*, E=372 MeV; 64Ni(238U, X)302120*, E=1383 MeV; 60Ni(238U, X)298120*, E=1476 MeV; calculated fusion barriers, fusion σ, evaporation σ, fusion-fission σ, quasifission σ, quasifission lifetimes, and fusion-fission lifetimes for synthesis of Z=120 nuclei. 65Zn(238U, X)303122*, E(cm)=275.7 MeV; 40Ca(238U, X)278Cn*, E(cm)=184.9 MeV; 48Ca(238U, X)278Cn*, E(cm)=215.7 MeV; 35Cl(238U, X)273Mt*, E(cm)=204.4 MeV; 32S(238U, X)270Hs*, E(cm)=152.0 MeV; 184W(72Ge, X)256Sg*, E(cm)=178.1 MeV; 27Al(238U, X)265Db*, E(cm)=146.0 MeV; 184W(64Ni, X)248No*, E(cm)=341.0 MeV; 184W(58Ni, X)242No*, E(cm)=250.9, 266.1, 285.1 MeV; 186W(48Ti, X)234Cm*, E(cm)=245.0 MeV; 184W(48Ti, X)232Cm*, E(cm)=190.3, 194.3, 202.2 MeV; 208Pb(16O, X)224Th*, E(cm)=140.0 MeV; 186W(32S, X)218Th*, E(cm)=180.0 MeV; 184W(32S, X)216Th*, E(cm)=153.3 MeV; calculated quasifission and fusion-fission lifetimes, and compared with experimental data. 248Cm(54Cr, X)302120*, E=326 MeV; 244Pu(58Fe, X)302120*, E(cm)=325 MeV; 238U(64Ni, X)302120*, E(cm)=349 MeV; 249Cf(50Ti, X)299120*, E(cm)=273 MeV; 249Bk(50Ti, X)299119*, E(cm)=267 MeV; 248Cm(51V, X)299120*, E(cm)=277 MeV; 249Cf(48Ca, X)297Og*, E(cm)=235 MeV; 249Bk(48Ca, X)297Ts*, E(cm)=239 MeV; 248Cm(48Ca, X)296Lv*, E(cm)=241 MeV; 243Am(48Ca, X)291Mc*, E(cm)=248 MeV; 242Pu(48Ca, X)290Fl*, E(cm)=244 MeV; 209Bi(70Zn, X)279Nh*, E(cm)=349 MeV; 208Pb(70Zn, X)278Cn*, E(cm)=346 MeV; calculated quasifission and fusion-fission lifetimes for the first six failed experiments to find evidence for Z=119 and 120, and the next seven successful experiments. Statistical method within the framework of the dinuclear system (DNS) model.

doi: 10.1103/PhysRevC.103.024311
Citations: PlumX Metrics


2021MA20      Int.J.Mod.Phys. E30, 2150013 (2021)

H.C.Manjunatha, G.R.Sridhar, N.Sowmya, P.S.Damodara Gupta, H.B.Ramalingam

A systematic study of alpha decay in actinide nuclei using modified generalized liquid drop model

RADIOACTIVITY 210Ac, 214Ac, 220Ac, 223,224,225,226Ac, 209,211Th, 215,217Th, 218Th, 223,225Th, 226,227Th, 229Th, 232Th, 224,225Pa, 228,229,230Pa, 217,219U, 223,225,227U, 228U, 231U, 234,235U, 227,229,231Np, 235,236,237Np, 229,230Pu, 233Pu, 236,237Pu, 239,241Pu, 242Pu, 235Am, 239,240,241Am, 243Am, 239,240,241Cm, 243,245Cm, 246,247Cm, 243,244,245Bk, 247,249Bk, 237Cf, 244Cf, 247,249Cf, 250,251Cf, 253Cf, 245,246Es, 252,254Es, 255Es, 243,245Fm, 246Fm, 247,249,251Fm, 252,253Fm, 255,257Fm, 247,249,251Md, 255,256,257,258Md, 252,253No, 255,257,259No, 255,257,259Lr(α); calculated T1/2. Comparison with experimental data.

doi: 10.1142/S0218301321500130
Citations: PlumX Metrics


2021MA57      Phys.Rev. C 104, 024622 (2021)

H.C.Manjunatha, P.S.Damodara Gupta, N.Sowmya, L.Seenappa, N.Manjunatha

Systematics of heavy ion fusion with entrance channel and deformation parameters

NUCLEAR REACTIONS 169Tm(13C, 5n)176Re, E*=59.3 MeV; 165Ho(16O, 5n)176Re, E*=63.3 MeV; 181Ta(9Be, 4n)186Ir, E*=48.5 MeV; 170Eu(30Si, 5n)195Ir, E*=96.5 MeV; 169Tm(16O, 3n)182Ir, E*=47.9 MeV; 187Re(α, n)190Ir, E*=11.7 MeV; 186W(9Be, 5n)190Pt, E*=56.7 MeV; 187Re(9Be, 5n)191Au, E*=50.8 MeV; 197Au(6He, 5n)198Tl, E*=55.2 MeV; 194Pt(6Li, 4n)196Tl, E*=47 MeV; 181Ta(16O, 5n)192Tl, E*=63.7 MeV; 181Ta(19F, 5n)195Pb, E*=63.4 MeV; 208Pb(α, 2n)210Po, E*=27.4 MeV; 198Pt(12C, 5n)205Po, E*=57 MeV; 164Dy(40Ar, 5n)199Po, E*=76.2 MeV; 154Gd(48Ca, 4n)198Po, E*=51.2 MeV; 209Bi(α, 3n)210At, E*=34 MeV; 208Pb(9Li, 5n)212At, E*=54.9 MeV; 197Au(12C, 5n)204At, E*=58.5 MeV; 192Os(19F, 6n)205At, E*=70.8 MeV; 205Tl(9Be, 4n)210At, E*=44.7 MeV; 159Tb(48Ca, 5n)202At, E*=53.6 MeV; 165Ho(40Ar, 4n)201At, E*=47.7 MeV; 209Bi(6Li, 5n)210Rn, E*=60 MeV; 208Pb(9Be, 5n)212Rn, E*=56.7 MeV; 190Os(22Ne, 7n)205Rn, E*=77 MeV; 162Dy(48Ca, 5n)205Rn, E*=48 MeV; 160Gd(50Ti, 5n)205Rn, E*=49.1 MeV; 209Bi(11Be, 4n)216Fr, E*=52.9 MeV; 169Tm(40Ar, 4n)205Fr, E*=47.6 MeV; 205Tl(12C, 4n)213Fr, E*=47.9 MeV; 197Au(18O, 5n)210Fr, E*=53.8 MeV; 165Ho(48Ca, 5n)208Fr, E*=55.8 MeV; 159Tb(50Ti, 4n)205Fr, E*=43.1 MeV; 209Bi(11B, 4n)216Ra, E*=44 MeV; 198Pt(22Ne, 6n)214Ra, E*=64.1 MeV; 174Yb(40Ar, 5n)209Ra, E*=20.9 MeV; 162Dy(50Ti, 3n)209Ra, E*=41.3 MeV; calculated Coulomb interaction parameter, mean fissility, charge and mass asymmetry, deformation parameter β2, and evaporation residue σ for synthesis of the pre-actinide nuclei using advanced statistical model (ASM) and dinuclear system model (DNS) models. Comparison with experimental data.

NUCLEAR REACTIONS 209Bi(12C, 6n)215Ac, E*=53.1 MeV; 197Au(22Ne, 5n)214Ac, E*=62.8 MeV; 175Lu(40Ar, 6n)209Ac, E*=68.2 MeV; 208Pb(16O, 3n)221Th, E*=31.5 MeV; 173Yb(48Ca, 4n)217Th, E*=46.6 MeV; 172Yb(48Ca, 4n)216Th, E*=45.7 MeV; 180Hf(40Ar, 4n)216Th, E*=49.4 MeV; 96Zr(124Sn, 4n)216Th, E*=48 MeV; 179Hf(40Ar, 4n)215Th, E*=38.9 MeV; 178Hf(40Ar, 5n)213Th, E*=44.8 MeV; 94Zr(124Sn, 3n)215Th, E*=37.1 MeV; 177Hf(40Ar, 4n)213Th, E*=39.2 MeV; 92Zr(124Sn, 3n)213Th, E*=31.7 MeV; 90Zr(124Sn, 3n)211Th, E*=38.4 MeV; 92Zr(124Sn, n)215Th, E*=23.6 MeV; 182W(32S, 4n)210Th, E*=53.1 MeV; 90Zr(124Sn, n)213Th, E*=22.6 MeV; 181Ta(40Ar, 4n)217Pa, E*=39.8 MeV; 208Pb(22Ne, 4n)226U, E*=37.2 MeV; 180Hf(48Ca, 3n)225U, E*=36.8 MeV; 238U(α, n)241Pu, E*=39.9 MeV; 235U(α, 2n)237Pu, E*=19.8 MeV; 234U(α, 2n)236Pu, E*=19.5 MeV; 233U(α, 2n)235Pu, E*=22.7 MeV; 184W(48Ca, 3n)229Pu, E*=31.2 MeV; 237Np(α, 2n)239Am, E*=21.5 MeV; 207Pb(34S, 3n)238Cf, E*=35.7 MeV; 207Pb(36S, 3n)240Cf, E*=32.1 MeV; 197Au(48Ca, 2n)243Es, E*=32.2 MeV; 238U(16O, 5n)249Fm, E*=50.2 MeV; 208Pb(48Ca, 2n)254No, E*=23.1 MeV; 246Cm(12C, 4n)254No, E*=41.2 MeV; 207Pb(48Ca, 2n)253No, E*=23.6 MeV; 248Cm(13C, 4n)257No, E*=38.7 MeV; 248Cm(12C, 4n)256No, E*=41.8 MeV; 246Cm(13C, 4n)255No, E*=42.3 MeV; 206Pb(48Ca, 2n)252No, E*=24.3 MeV; 244Cm(13C, 4n)253No, E*=41.4 MeV; 204Pb(48Ca, 2n)250No, E*=24, 25.4 MeV; 207Pb(48Ca, 2n)253No, E*=24.2 MeV; 209Bi(48Ca, 2n)255Lr, E*=22.9 MeV; calculated Coulomb interaction parameter, mean fissility, charge and mass asymmetry, deformation parameter β2, and evaporation residue σ for synthesis of the actinide nuclei using advanced statistical model (ASM) and dinuclear system model (DNS) models. Comparison with experimental data.

NUCLEAR REACTIONS 208Pb(50Ti, 2n)256Rf, E*=24.3 MeV; 248Cm(16O, 5n)259Rf, E*=53.58 MeV; 209Bi(50Ti, n)258Db, E*=15.8 MeV; 248Cm(19F, 5n)262Db, E*=55.4 MeV; 208Pb(54Cr, n)261Sg, E*=16.1 MeV; 248Cm(22Ne, 5n)265Sg, E*=54.9 MeV; 238U(30Si, 5n)263Sg, E*=40.5 MeV; 209Bi(54Cr, n)262Bh, E*=16.9 MeV; 208Pb(58Fe, n)265Hs, E*=16.1 MeV; 248Cm(26Mg, 5n)269Hs, E*=57 MeV; 238U(34S, 5n)267Hs, E*=57.6 MeV; 209Bi(58Fe, n)266Mt, E*=15.5 MeV; 208Pb(64Ni, n)271Ds, E*=18.1 MeV; 208Pb(62Ni, n)269Ds, E*=15.6 MeV; 209Bi(64Ni, n)272Rg, E*=13.1 MeV; 238U(48Ca, 3n)283Cn, E*=37.8 MeV; 208Pb(70Zn, n)277Cn, E*=10 MeV; 237Np(48Ca, 3n)282Nh, E*=46.9 MeV; 209Bi(70Zn, n)278Nh, E*=16.9 MeV; 244Pu(48Ca, 4n)288Fl, E*=41 MeV; 242Pu(48Ca, 4n)286Fl, E*=42.9 MeV; 240Pu(48Ca, 4n)284Fl, E*=49 MeV; 239Pu(48Ca, 3n)284Fl, E*=46.4 MeV; 243Am(48Ca, 3n)288Mc, E*=45 MeV; 248Cm(48Ca, 4n)292Lv, E*=46.9 MeV; 249Bk(48Ca, 4n)293Ts, E*=65.7 MeV; 249Cf(48Ca, 3n)294Og, E*=38.8 MeV; calculated Coulomb interaction parameter, mean fissility, charge and mass asymmetry, deformation parameter β2, and evaporation residue σ for synthesis of superheavy nuclei using advanced statistical model (ASM) and dinuclear system model (DNS) models. Comparison with experimental data.

doi: 10.1103/PhysRevC.104.024622
Citations: PlumX Metrics


2021NA21      Nucl.Phys. A1015, 122306 (2021)

A.M.Nagaraja, H.C.Manjunatha, N.Sowmya, L.Seenappa, P.S.Damodara Gupta, N.Manjunatha, S.A.Cecil Raj

Heavy particle radioactivity of superheavy element Z = 126

RADIOACTIVITY 221Fr, 221,222,223,224,226Ra, 225Ac(14C), 228Th(20O), 230U(22Ne), 230Th, 231Pa, 232,233U(24Ne), 234U(26Ne), 234U, 236,238Pu(28Mg), 238Pu(30Mg), 238Pu(32Si), 242Cm(34Si), 306,307,308,309,310,311,312,313,314,315,316,317,318,319,320,321,322,323,324,325,326126(α), (β+), (SF); analyzed available data; calculated T1/2.

doi: 10.1016/j.nuclphysa.2021.122306
Citations: PlumX Metrics


2021SO21      Phys.Part. and Nucl.Lett. 18, 177 (2021)

N.Sowmya, H.C.Manjunatha, P.S.Damodara gupta

Decay Properties of Superheavy Nuclei 269-290Fl

RADIOACTIVITY 269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288,289,290Fl(α); calculated T1/2 using the coulomb and proximity potential model (CPPM), generalized liquid drop model (GLDM), temperature dependent dynamical cluster model(DCM). Comparison with available data.

doi: 10.1134/S1547477121020199
Citations: PlumX Metrics


2021SR02      Int.J.Mod.Phys. E30, 2150094 (2021)

G.R.Sridhara, H.C.Manjunatha, N.Sowmya, P.S.Damodara Gupta

A study of alpha-decay using effective liquid drop model

RADIOACTIVITY 145Pm, 146,147Sm, 147,148Eu, 149,150,151,152Gd, 149Tb, 150Dy, 151Tb, 151,152,153,154Dy, 151,152,153,154Ho, 152,153,154,155,156Er, 153,154,155,156Tm, 154,155,156,157,158Yb, 155,156,157,158Lu, 156,157,158,159,160Hf, 162Hf, 174Hf, 157,158,159Ta, 163Ta, 158W, 171,172,173,174,175,176,177,178,179,180,181,182,183,184Pt, 186,188,190Pt, 170,171Au, 173Au, 175,176,177Au, 179,181,183,185Au, 186Au, 171,172,173,174Hg, 176,177,178,179,180,181,182,183,184,185,186Hg, 188Hg, 177Tl, 179,180,181Tl, 183Tl, 186,187Tl, 209,210,211,212,213,214,215,216Po, 218,219Po, 191,192,193,194,195At, 197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213At, 215At, 217,218,219,220At, 193,194,195,196,197Rn, 200Rn, 202,203,204,205,206,207,208,209,210,211Rn, 210Ac, 214Ac, 216Ac, 220Ac, 223,224,225,226Ac, 209Th, 211Th, 215Th, 217,218Th, 221Th, 223Th, 225,226,227Th, 229Th, 232Th, 224,225Pa, 228,229,230Pa, 219U, 223,225,227U, 228U, 231U, 234,235U, 227Np, 229Np, 231Np, 235,236,237Np, 229,230Pu, 233Pu, 236,237Pu, 239Pu, 241,242Pu, 235Am, 239,240Am, 257Rf, 259Rf, 263Rf, 255,256,257,258,259,260,261,262Db, 259,260,261Sg, 265Sg, 269Sg, 271Sg, 260,261,262Bh, 264Bh, 266,267Bh, 270Bh, 274Bh, 264,265,266,267,268,269Hs(α); calculated T1/2. Comparison with available data.

doi: 10.1142/S0218301321500944
Citations: PlumX Metrics


2021VI07      Int.J.Mod.Phys. E30, 2150078 (2021)

Y.S.Vidya, H.C.Manjunatha, P.S.Damodara Gupta

An attempt to construct semi-empirical formula for angular momentum-dependent fission barriers of actinides

NUCLEAR STRUCTURE 232Th, 230,231,232,233,234Pa, 231,232,233,234,235,236,237,238,239U, 236,237,238Np, 237,238,239,240,241,242,243,244,245Pu, 243Cm, 249Cm; analyzed available data; deduced a new semi-empirical formula for angular momentum-dependent fission barriers of actinides.

doi: 10.1142/S0218301321500786
Citations: PlumX Metrics


2020MA24      Z.Naturforsch. 75, 501 (2020)

H.C.Manjunatha, G.R.Sridhar, P.S.Damodara Gupta, H.B.Ramalingam, V.H.Doddamani

Pocket formula for alpha decay energies and half-lives of actinide nuclei

NUCLEAR STRUCTURE Z>88; analyzed available data; deduced formula for α-decay T1/2.

doi: 10.1515/zna-2020-0023
Citations: PlumX Metrics


2020MA62      Phys.Rev. C 102, 064605 (2020)

H.C.Manjunatha, N.Sowmya, N.Manjunatha, P.S.Damodara Gupta, L.Seenappa, K.N.Sridhar, Ganesh, T.Nandi

Entrance channel dependent hot fusion reactions for superheavy element synthesis

NUCLEAR REACTIONS 208Pb(62Ni, n)269Ds, 251Cf(25Mg, 4n)272Ds, 249,253Bk(26Al, 5n)270Ds/274Ds, 209Bi(64Ni, n)272Rg, 234Th(48Sc, 3n)279Rg, 248Cm(33P, 4n)277Rg, 242Pu(37Cl, 4n)275Rg, 238U(40K, 5n)273Rg, 208Pb(70Zn, n)277Cn, 242Pu(42Ar, 3n)281Cn, 238U(47Ca, 3n)282Cn, 249Bk(33P, 4n)278Cn, 209Bi(70Zn, n)278Nh, 254Cf(31P, 4n)281Nh, 250Cm(37Cl, 4n)283Nh, 252Cf(32P, 4n)280Nh, 253Cf(33P, 4n)282Nh, 249Bk(33S, 5n)277Nh, 244Pu(48Ca, 3n)289Fl, 240Pu(43Ca, 3n)280Fl, 246Cm(36Ar, 4n)278Fl, 243Am(48Ca, 3n)288Mc, 244Pu(46Sc, 3n)287Mc, 246Bk(38Ar, 3n)281Mc, 240Pu(48Sc, 3n)285Mc, 236U(51V, 3n)284Mc, 248Cm(48Ca, 4n)292Lv, 249Cf(36Ar, 3n)282Lv, 240Cm(41Ca, 3n)278Lv, 252Cf(36Ar, 4n)284Lv, 249Bk(48Ca, 4n)293Ts, (48Ca, 3n)294Ts, 243Bk(46Ca, 2n)287Ts, 248Bk(48Ca, 3n)293Ts, 249Cf(48Ca, 3n)294Og, 244Pu(52Cr, 3n)293Og, 252Cf(47Ca, 3n)296Og, 253Cf(40Ca, 5n)288Og, 250Cm(50V, 3n)297119, 239Pu(53Mn, 3n)289119, 249Cf(44Ti, n)292120, (47Ti, n)295120, (50Ti, n)298120, 239Np(64Ni, 2n)301121, 252Cf(48V, 3n)297121, 253Cf(49V, 3n)299121, 225Rn(85Kr, X)310122, 223At(86Rb, n)308122, 239Pa(76Ge, n)314123, 242Np(72Zn, n)313123, 240Np(64Zn, 2n)302123, 232Th(71As, 2n)301123, 242,244Pu(72Zn, n)313124/315124, 227Ac(85Kr, n)311125, 245Bk(58Ni, n)302125, 249Bk(66Ni, n)314125, 247Bk(60Ni, n)305125, 232Th(83Kr, X)315126, (82Kr, X)314126, E not given; Z=5-40, A=10-96 projectiles; Z=72-114, A=180-290 targets; calculated evaporation residue fusion cross sections in 6645 different projectile-target combinations for synthesis of Z=110-126 superheavy nuclei, and their dependence on entrance channel effects of mass asymmetry, charge asymmetry, isospin asymmetry, Coulomb charge, Coulomb interaction parameter, mean fissility, and Businaro-Gallone mass asymmetry; compared with available experimental data. 266,270,272,274,276,278,280Ds, 278,280,282,284,286Cn, 272,274,276,278,280,282Fl, 276,278,280,282,284,286,288,290,292,294Lv, 292,294,296,298,300Og, 286,288,290,292,294,296,298,300,302,304120, 308,310,312,314122, 314,316,318124, 318,320126; calculated evaporation residue cross sections in fusion reactions as function of the mass asymmetry parameter.

NUCLEAR REACTIONS 231U(36Ar, X)267Ds, 208Pb(61Ni, X)269Ds, 232U(38Ar, X)270Ds, 249Bk(26Al, X)275Ds, 251Cf(25Mg, X)276Ds, 253Cf(24Mg, X)277Ds, 252Cf(26Mg, X)278Ds, 253,254Bk(26Al, X)279Ds/280Ds, 254Bk(27Al, X)281Ds, 248Cf(26Al, X)274Rg, 231Pa(44Ca, X)275Rg, 239Pu(37Cl, X)276Rg, 236U(41K, X)277Rg, 238U(40K, X)278Rg, 242Pu(37Cl, X)279Rg, 253Cf(27Al, X)280Rg, 248,250Cm(33P, X)281Rg/283Rg, 234Th(48Sc, X)282Rg, 239Np(39K, X)278Cn, 243Pu(36Ar, X)279Cn, 250Cf(30Si, X)280Cn, 248Cm(33S, X)281Cn, 249Bk(33P, X)282Cn, 253Cf(30Si, X)283Cn, 242Pu(42Ar, X)284Cn, 238U(37Ca, X)285Cn, 254Cf(32Si, X)286Cn, 212Bi(67Zn, X)279Nh, 226Ac(54Cr, X)280Nh, 249Bk(33S, X)282Nh, 235U(48Sc, X)283Nh, 252Cf(32P, X)284Nh, 254Cf(31P, X)285Nh, 253Cf(33P, X)286Nh, 250Cm(37Cl, X)287Nh, 219,220Rn(58Ni, X)277Fl/278Fl, 217At(63Cu, X)280Fl, 226Ac(55Mn, X)281Fl, 246Cm(36Ar, X)282Fl, 240Pu(43Ca, X)283Fl, 246Bk(38Ar, X)284Mc, 236U(51V, X)287Mc, 249Pu(48Sc, X)288Mc, 242,244Pu(47Sc, X)289Mc/291Mc, 244Pu(46Sc, X)290Mc, 240,242,243Cm(40Ca, X)280Lv/282Lv/283Lv, 240Cm(41Ca, X)281Lv, 248,249,250,252,253Cf(36Ar, X)284Lv/285Lv/286Lv/288Lv/289Lv, 250Cf(37Ar, X)287Lv, 243Bk(46Ca, X)289Mc, 242Am(49Ti, X)291Mc, 252Bk(42Ca, X)294Mc, 248Bk(48Ca, X)296Mc, 239Pu(53Cr, X)292Og, 253Cf(40Ca, X)293Og, 250Cf(44Ca, X)294Og, 230Ac(65Cu, X)295Og, 244Pu(52Cr, X)296Og, 238U(59Fe, X)297Og, 250Bk(48Sc, X)298Og, 252Cf, 254Bk(47Ca, X)299Og/301Og, 198Pt(91Nb, X)289119, 207Bi(83Kr, X)290119, 241Am(50Cr, X)291119, 248Bk(44Ti, X)292119, 227Ac(66Zn, X)293119, 229Th(65Cu, X)294119, 236U(59Co, X)295119, 243Am(53Cr, X)296119, 238U(60Co, X)298119, 250Cm(50V, X)300119, (51V, X)301119, 209Po(78Kr, 2n)285120, 202Pb(86Sr, 2n)286120, 232U(59Ni, 4n)287120, 209Po(81Kr, 2n)288120, 232Po(58Ni, n)289120, 204Pb(87Sr, n)290120, 228Pu(64Fe, n)291120, 249Cf(44Ti, n)292120, (47Ti, n)295120, (50Ti, n)298120, 244Cm(50Cr, n)293120, 242Am(53Mn, n)294120, 210Bi(87Rb, n)296120, 247Bk(51V, n)297120, 246Cm(54Cr, n)299120, 229Th(72Zn, n)300120, 226Ra(76Ge, n)301120, 250Cm(53Cr, n)302120, 246Bk(53Cr, X)299121, 252Cf(48V, X)300121, 228Ra(73As, X)301121, 250Cm(52Mn, X)302121, 239Np(64Ni, X)303121, 233Pa(71Zn, X)304121, 253Cf(54Cr, n)306122, 230Ra(78Se, n)307122, 223At(86Rb, n)308122, 228Rn(83Kr, 2n)309122, 225Rn(85Kr, X)310122, 226Ac(86As, n)311122, 234Ra(80Se, 2n)312122, 230Rn(84Kr, n)313122, 232Th(71As, n)302123, 240Pu(67Zn, 4n)303123, 214Bi(92Zr, n)305123, 213Pb(94Nb, n)306123, 241Pu(67Cu, n)307123, 214Bi(96Zr, 2n)308123, 228Ra(85Kr, n)312124, 242,244Pu(72Zn, n)313124/315124, 228,230Rn(87Sr, n)314124/316124, 245,246,247Bk(58Ni, X)303125/304125/305125, 247Bk(60Ni, X)307125, 239Np(69Ge, n)308125, 243Am(66Zn, X)309125, 242Am(68Zn, X)310125, 246Cm(65Cu, X)311125, 249Bk(66Ni, X)315125, 232Th(82Kr, X)314126, (83Kr, X)315126, (84Kr, X)316126, (86Kr, X)318126, E not given; calculated fusion evaporation residue σ for suitable projectile-target combinations to synthesize Z=110-126 superheavy nuclei. 208Pb(40Ca, X), (48Ti, X), (52Cr, X), (56Fe, X), (59Ni, X), (65Zn, X), 209Bi(45Ca, X), (51Ti, X), (52Cr, X), (59Ni, X), (65Zn, X), E not given; calculated evaporation residue σ for the synthesis of Z=102-113 elements in cold fusion reactions, and compared with experimental data. 208Pb, 226Ra, 238U, 237Np, 244Pu, 243Am, 247Cm, 247Bk, 251Cf(48Ca, X), E not given; calculated evaporation residue σ for the synthesis of Z=112-118 elements in hot fusion reactions, and compared with experimental data. 232Th(82Kr, X)314126; calculated large evaporation residue cross sections as high as 31 nb.

RADIOACTIVITY 283Cn, 279Ds, 275Hs, 271Sg, 267Rf, 263No, 259Fm, 255Cf, 247,251Bk, 243Am, 239Pu, 235Np(α); 251Cm, 247Am, 239Np, 235U(β-); 291Lv, 287Fl, 283Cn, 279Ds, 275Hs, 271Sg, 267Rf, 263No, 259Fm, 255Cf, 247,251Bk, 243Am, 239Pu, 235Np(α); 251Cm, 247Am, 239Np, 235U(β-); 296119, 292Ts, 288Mc, 284Nh, 280Rg, 276Mt, 272Bh, 268Db, 264Lr, 260Md, 256Es, 252Cf, 248Bk, 244Cm, 240Pu, 236Pu(α); 252Bk, 248Cm, 244Am, 236U(β-); 295Og, 291Lv, 287Fl, 283Cn, 279Ds, 275Hs, 271Sg, 267Rf, 263No, 259Fm, 255Cf, 247,251Bk, 243Am, 239Pu, 235Np(α); 251Cm, 247Am, 239Np, 235U(β-); 299120, 295Og, 291Lv, 287Fl, 283Cn, 279Ds, 275Hs, 271Sg, 267Rf, 263No, 259Fm, 255Cf, 247,251Bk, 243Am, 239Pu, 235Np(α); 251Cm, 247Am, 239Np, 235U(β-); predicted decay chains of 283Cn (Z=112), 291Lv (Z=116), 295Og (Z=118), 296119 (Z=119), and 299120 (Z=120).

doi: 10.1103/PhysRevC.102.064605
Citations: PlumX Metrics


2020MA64      Phys.Atomic Nuclei 17, 909 (2020)

H.C.Manjunatha, M.G.Srinivas, N.Sowmya, P.S.Damodara Gupta, A.Cecil Raj

Proton Radioactivity of Heavy Nuclei of Atomic Number Range 72 < Z < 88

NUCLEAR STRUCTURE Z=72-88; calculated proton radioactivity of heavy nuclei, energy released during the proton decay and T1/2. Comparison with available data, checks of the Geiger-Nuttall law for proton decay.

doi: 10.1134/S1547477120070043
Citations: PlumX Metrics


2020SO25      Int.J.Mod.Phys. E29, 2050087 (2020)

N.Sowmya, H.C.Manjunatha, P.S.Damodara Gupta

Competition between decay modes of superheavy nuclei 281-310Og

RADIOACTIVITY 281,282,283,284,285,286,287,288,289,290,291,292,293,294,295,296,297,298,299,300,301,302,303,304,305,306,307,308,309,310Og(α), (12C), (14N), (16O), (22Ne), (24Mg), (28Si), (32S), (40Ar), (40Ca); calculated T1/2. Comparison with available data.

doi: 10.1142/S0218301320500871
Citations: PlumX Metrics


Back to query form